1
|
Ahi EP, Panda B, Primmer CR. The hippo pathway: a molecular bridge between environmental cues and pace of life. BMC Ecol Evol 2025; 25:35. [PMID: 40275190 PMCID: PMC12020181 DOI: 10.1186/s12862-025-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| | - Bineet Panda
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Ma J, Lin Y, Xiong W, Liu X, Pan M, Sun J, Sun Y, Li Y, Guo H, Pang G, Wang X, Ren F. The microRNA-29ab1/Zfp36/AR Axis in the Hypothalamus Regulates Male-Typical Behaviors in Mice. Int J Mol Sci 2024; 25:13089. [PMID: 39684798 DOI: 10.3390/ijms252313089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Male-typical behaviors such as aggression and mating, which reflect sexual libido in male mice, are regulated by the hypothalamus, a crucial part of the nervous system. Previous studies have demonstrated that microRNAs (miRNAs), especially miR-29, play a vital role in reproduction and the neural control of behaviors. However, it remains unclear whether miR-29 affects reproduction through the hypothalamus-mediated regulation of male-typical behaviors. Here, we constructed two mouse knockout models by ablating either the miR-29ab1 or miR-29b2c cluster. Compared to WT, the ablation of miR-29ab1 in male mice significantly reduced the incidence of aggression by 60% and the incidence of mating by 46.15%. Furthermore, the loss of miR-29ab1 in male mice led to the downregulation of androgen receptor (AR) in the ventromedial hypothalamus. Transcriptomic analysis of the hypothalamus of miR-29ab1-deficient mice revealed inflammatory activation and aberrant expression of genes associated with male-typical behaviors, including Ar, Pgr, Htr4, and Htr2c. Using bioinformatics analysis and dual-luciferase reporter assays, we identified zinc finger protein 36 (Zfp36) as a direct downstream target gene of miR-29ab1. We subsequently showed that ZFP36 colocalized with AR in GT1-7 cells. Furthermore, inhibition of Zfp36 or RelB in GT1-7 cells led to an increase in AR expression. Collectively, our results demonstrate that the miR-29ab1/Zfp36/AR axis in the hypothalamus plays a pivotal role in the regulation of aggression and mating in male mice, providing a potential therapeutic target for treating infertility caused by low libido.
Collapse
Affiliation(s)
- Jie Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Minghui Pan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guofang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Jeong HR, Hwang IT. The role of MicroRNAs as fine-tuners in the onset of puberty: a comprehensive review. Ann Pediatr Endocrinol Metab 2024; 29:211-219. [PMID: 39231482 PMCID: PMC11374517 DOI: 10.6065/apem.2346238.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 09/06/2024] Open
Abstract
MicroRNA (miRNA) are small, noncoding RNA molecules that play pivotal roles in gene expression, various biological processes, and development of disease. MiRNAs exhibit distinct expression patterns depending on time points and tissues, indicating their relevance to the development, differentiation, and somatic growth of organisms. MiRNAs are also involved in puberty onset and fertility. Although puberty is a universal stage in the life cycles of most organisms, the precise mechanisms initiating this process remain elusive. Genetic, hormonal, nutritional, environmental, and epigenetic factors are presumed contributors. The intricate regulation of puberty during growth also suggests that miRNAs are involved. This study aims to provide insight into the understanding of miRNAs roles in the initiation of puberty by reviewing the existing research.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
6
|
Wagner V, Kern F, Hahn O, Schaum N, Ludwig N, Fehlmann T, Engel A, Henn D, Rishik S, Isakova A, Tan M, Sit R, Neff N, Hart M, Meese E, Quake S, Wyss-Coray T, Keller A. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat Biotechnol 2024; 42:109-118. [PMID: 37106037 DOI: 10.1038/s41587-023-01751-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.
Collapse
Affiliation(s)
- Viktoria Wagner
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Dominic Henn
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shusruto Rishik
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Alina Isakova
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michelle Tan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rene Sit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Norma Neff
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Martin Hart
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Saarland, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
7
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
8
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
10
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
11
|
Hrdlicka HC, Pereira RC, Shin B, Yee SP, Deymier AC, Lee SK, Delany AM. Inhibition of miR-29-3p isoforms via tough decoy suppresses osteoblast function in homeostasis but promotes intermittent parathyroid hormone-induced bone anabolism. Bone 2021; 143:115779. [PMID: 33253931 PMCID: PMC7770763 DOI: 10.1016/j.bone.2020.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
miRNAs play a vital role in post-transcriptional regulation of gene expression in osteoblasts and osteoclasts, and the miR-29 family is expressed in both lineages. Using mice globally expressing a miR-29-3p tough decoy, we demonstrated a modest 30-60% decrease all three miR-29-3p isoforms: miR-29a, miR-29b, and miR-29c. While the miR-29-3p decoy did not impact osteoclast number or function, the tough decoy decreased bone formation in growing mice, which led to decreased trabecular bone volume in mature animals. These data support previous in vitro studies suggesting that miR-29-3p is a positive regulator of osteoblast differentiation. In contrast, when mice were treated with intermittent parathyroid hormone (PTH1-34), inhibition of miR-29-3p augmented the effect of PTH on cortical bone anabolism, increased bone formation rate and osteoblast surface, and increased levels of Ctnnb1/βcatenin mRNA, which is a miR-29 target. These findings highlight differences in the mechanisms controlling basal level bone formation and bone formation induced by intermittent PTH. Overall, the global miR-29-3p tough decoy model represents a modest loss-of-function, which could be a relevant tool for assessing the possible impact of systemically administered miR-29-3p inhibitors. Our studies provide a potential rationale for co-administration of PTH1-34 and miR-29-3p inhibitors, to boost bone formation in severely affected osteoporosis patients, particularly in the cortical compartment.
Collapse
Affiliation(s)
- Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at University of California, Los Angeles, United States of America
| | - Bongjin Shin
- Center on Aging, UConn Health Center, Farmington, CT, United States of America
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, UConn Health Center, Farmington, CT, United States of America
| | - Alix C Deymier
- Institute of Material Sciences, UConn Health Center, Farmington, CT, United States of America
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health Center, Farmington, CT, United States of America.
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America.
| |
Collapse
|
12
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|
13
|
Singh T, Yadav S. Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 2020; 60:101068. [PMID: 32283224 DOI: 10.1016/j.arr.2020.101068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
The progressive loss of neuronal structure and functions resulting in the death of neurons is considered as neurodegeneration. Environmental toxicants induced degeneration of neurons is accelerated with aging. In adult brains, most of the neurons are post-mitotic, and their loss results in the development of diseases like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Neurodegenerative diseases have several similarities at the sub-cellular and molecular levels, such as synaptic degeneration, oxidative stress, inflammation, and cognitive decline, which are also known in brain aging. Identification of these similarities at the molecular level offers hope for the development of new therapeutics to ameliorate all neurodegenerative diseases simultaneously. Aging is known as the most strongly associated additive factor in the pathogenesis of neurodegenerative diseases. Studies carried out so far identified several genes, which are responsible for selective degeneration of neurons in different neurodegenerative diseases. Countless efforts have been made in identifying therapeutics for neurodegenerative diseases; however, the discovery of effective therapy remains elusive. Findings made in the last two decades identified microRNAs (miRNAs) as the most potent post-transcription regulatory RNA molecule, which can condition protein levels in the cell and tissue-specific manner. Identification of miRNAs, which regulate both neurotoxicant and aging-associated degeneration of brain cells, raises the possibility that roads leading to aging and neurotoxicant induced neurodegeneration cross at some point. Identification of miRNAs, which are common to aging and neurotoxicant induced neurodegeneration, will help in understanding the complex mechanism of neurodegenerative disease development. In the future, the use of natural miRNAs in vivo in therapy will be able to tackle several issues of aging and neurodegeneration. In the present review, we have provided a summary of findings made on the role of miRNAs in neurodegeneration and explored the common link made by miRNAs between aging and neurotoxicants induced neurodegeneration.
Collapse
Affiliation(s)
- Tanisha Singh
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Neurological Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania-15213, USA.
| | - Sanjay Yadav
- Developmental Toxicology Division, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan,31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, Munsiganj, Raebareli 229405, UP, India.
| |
Collapse
|
14
|
Kinser HE, Pincus Z. MicroRNAs as modulators of longevity and the aging process. Hum Genet 2019; 139:291-308. [PMID: 31297598 DOI: 10.1007/s00439-019-02046-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress translation or induce mRNA degradation of target transcripts through sequence-specific binding. miRNAs target hundreds of transcripts to regulate diverse biological pathways and processes, including aging. Many microRNAs are differentially expressed during aging, generating interest in their use as aging biomarkers and roles as regulators of the aging process. In the invertebrates Caenorhabditis elegans and Drosophila, a number of miRNAs have been found to both positive and negatively modulate longevity through canonical aging pathways. Recent studies have also shown that miRNAs regulate age-associated processes and pathologies in a diverse array of mammalian tissues, including brain, heart, bone, and muscle. The review will present an overview of these studies, highlighting the role of individual miRNAs as biomarkers of aging and regulators of longevity and tissue-specific aging processes.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, USA
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, USA.
| |
Collapse
|
15
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
17
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
18
|
Dzakah EE, Waqas A, Wei S, Yu B, Wang X, Fu T, Liu L, Shan G. Loss of miR-83 extends lifespan and affects target gene expression in an age-dependent manner in Caenorhabditis elegans. J Genet Genomics 2018; 45:651-662. [PMID: 30595472 DOI: 10.1016/j.jgg.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that are involved in the post-transcriptional regulation of protein-coding genes. miRNAs modulate lifespan and the aging process in a variety of organisms. In this study, we identified a role of miR-83 in regulating lifespan of Caenorhabditis elegans. mir-83 mutants exhibited extended lifespan, and the overexpression of miR-83 was sufficient to decrease the prolonged lifespan of the mutants. We observed upregulation of the expression levels of a set of miR-83 target genes in young mir-83 mutant adults; while different sets of genes were upregulated in older mir-83 mutant adults. In vivo assays showed that miR-83 regulated expression of target genes including din-1, spp-9 and col-178, and we demonstrated that daf-16 and din-1 were required for the extension of lifespan in the mir-83 mutants. The regulation of din-1 by miR-83 during aging resulted in the differential expression of din-1 targets such as gst-4 and gst-10. In daf-2 mutants, the expression level of miR-83 was significantly reduced compared to wild-type animals. We identified a role for miR-83 in modulating lifespan in C. elegans and provided molecular insights into its functional mechanism.
Collapse
Affiliation(s)
- Emmanuel Enoch Dzakah
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast 03321, Ghana
| | - Ahmed Waqas
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shuai Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Bin Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tao Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Ge Shan
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Centre for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
19
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
20
|
Li C, Gao S, Chen S, Chen L, Zhao Y, Jiang Y, Zheng X, Zhou X. Differential expression of microRNAs in luteinising hormone-treated mouse TM3 Leydig cells. Andrologia 2017; 50. [PMID: 28762514 DOI: 10.1111/and.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Testosterone is primarily produced by Leydig cells of the mammalian male gonads. The cellular functions of Leydig cells are regulated by the hypothalamus-pituitary-gonad axis, whereas the microRNA (miRNA) changes of LH-treated Leydig cells are unknown. Mouse TM3 Leydig cells were treated with LH, and deep sequencing showed that 29 miRNAs were significantly different between two groups (fold change of >1.5 or <0.5, p < .05), of which 27 were upregulated and two were downregulated. The differential expression of miR-29b-3p, miR-378b, miR-193b and miR-3695 was confirmed by quantitative real-time polymerase chain reaction. Bioinformatic analysis revealed that miRNAs regulated a large number of genes with different functions. Pathway analysis indicated that miRNAs were involved in the Wingless and INT-1, adenosine 5'-monophosphate-activated protein kinase, NF-kappa B and Toll-like receptor signalling pathways. Results showed that miRNAs might be involved in the regulation of LH to Leydig cells.
Collapse
Affiliation(s)
- C Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - S Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - S Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - L Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - Y Zhao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - Y Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - X Zheng
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - X Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
21
|
MicroRNAs in brain aging. Mech Ageing Dev 2017; 168:3-9. [PMID: 28119001 DOI: 10.1016/j.mad.2017.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/06/2017] [Accepted: 01/18/2017] [Indexed: 12/19/2022]
Abstract
Brain aging is one of the most crucial biological processes that affect the physiological balance between health and disease. Age-associated dysfunction of brain leads to severe health problems in current aging society. MicroRNAs (miRNAs) have emerged as important regulators in most physiological processes including fine-tuning of the short-term, cellular regulatory functions as well as modulation of long-term organismal lifespan. In this review, we discuss critical roles of miRNAs in the progression of normal and pathological brain aging. 50% of all known miRNAs are found in brain including cortex and hippocampus. A significant number of expressed miRNAs were differentially regulated during aging, implicating miRNAs as regulators of brain aging. The ability of miRNAs to regulate multiple targets within a pathway or even multiple pathways allows for coordinated regulation of brain functions. miRNA-mediated, brain functional changes are evident in cognition, inflammation, neuroprotection, lipid metabolism, mitochondrial function and lifespan. Dysregulation of brain miRNAs contributes to accelerated cognitive decline and increased neurological disorders. Elucidating mechanisms by which miRNAs and their multiple targets are temporally and spatially regulated in normal and pathological brain aging will provide a deeper understanding on the process of interrelated pathways of brain aging, and a new insight into therapeutic interventions.
Collapse
|