1
|
Huang G, Zhan X, Shen L, Lou L, Dai Y, Jiang A, Gao Y, Wang Y, Xie X, Zhang J. APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma. Clin Exp Med 2024; 24:212. [PMID: 39249558 PMCID: PMC11383847 DOI: 10.1007/s10238-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Emerging evidence suggests that the APOBEC family is implicated in multiple cancers and might be utilized as a new target for cancer detection and treatment. However, the dysregulation and clinical implication of the APOBEC family in clear cell renal cell cancer (ccRCC) remain elusive. TCGA multiomics data facilitated a comprehensive exploration of the APOBEC family across cancers, including ccRCC. Remodeling analysis classified ccRCC patients into two distinct subgroups: APOBEC family pattern cancer subtype 1 (APCS1) and subtype 2 (APCS2). The study investigated differences in clinical parameters, tumor immune microenvironment, therapeutic responsiveness, and genomic mutation landscapes between these subtypes. An APOBEC family-related risk model was developed and validated for predicting ccRCC patient prognosis, demonstrating good sensitivity and specificity. Finally, the overview of APOBEC3B function was investigated in multiple cancers and verified in clinical samples. APCS1 and APCS2 demonstrated considerably distinct clinical features and biological processes in ccRCC. APCS1, an aggressive subtype, has advanced clinical stage and a poor prognosis. APCS1 exhibited an oncogenic and metabolically active phenotype. APCS1 also exhibited a greater tumor mutation load and immunocompromised condition, resulting in immunological dysfunction and immune checkpoint treatment resistance. The genomic copy number variation of APCS1, including arm gain and loss, was much more than that of APCS2, which may help explain the tired immune system. Furthermore, the two subtypes have distinct drug sensitivity patterns in clinical specimens and matching cell lines. Finally, we developed a predictive risk model based on subtype biomarkers that performed well for ccRCC patients and validated the clinical impact of APOBEC3B. Aberrant APOBEC family expression patterns might modify the tumor immune microenvironment by increasing the genome mutation frequency, thus inducing an immune-exhausted phenotype. APOBEC family-based molecular subtypes could strengthen the understanding of ccRCC characterization and guide clinical treatment. Targeting APOBEC3B may be regarded as a new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guiying Huang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Clinical Laboratory, Lishui Central Hospital, Lishui, Zhejiang, China
| | - Xianlin Zhan
- Department of Clinical Laboratory, PLA Navy Medical Center, Shanghai, China
| | - Lihong Shen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Luping Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuehong Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Aiming Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi IS, Sun J, Politi K, Levantini E, Zhang W, Kobayashi SS, Zhang WC. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. Br J Cancer 2023; 128:1647-1664. [PMID: 36810913 PMCID: PMC10133251 DOI: 10.1038/s41416-023-02196-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lung cancer cells overexpress mucin 1 (MUC1) and active subunit MUC1-CT. Although a peptide blocks MUC1 signalling, metabolites targeting MUC1 are not well studied. AICAR is a purine biosynthesis intermediate. METHODS Cell viability and apoptosis were measured in AICAR-treated EGFR-mutant and wild-type lung cells. AICAR-binding proteins were evaluated by in silico and thermal stability assays. Protein-protein interactions were visualised by dual-immunofluorescence staining and proximity ligation assay. AICAR-induced whole transcriptomic profile was determined by RNA sequencing. EGFR-TL transgenic mice-derived lung tissues were analysed for MUC1 expression. Organoids and tumours from patients and transgenic mice were treated with AICAR alone or in combination with JAK and EGFR inhibitors to evaluate treatment effects. RESULTS AICAR reduced EGFR-mutant tumour cell growth by inducing DNA damage and apoptosis. MUC1 was one of the leading AICAR-binding and degrading proteins. AICAR negatively regulated JAK signalling and JAK1-MUC1-CT interaction. Activated EGFR upregulated MUC1-CT expression in EGFR-TL-induced lung tumour tissues. AICAR reduced EGFR-mutant cell line-derived tumour formation in vivo. Co-treating patient and transgenic mouse lung-tissue-derived tumour organoids with AICAR and JAK1 and EGFR inhibitors reduced their growth. CONCLUSIONS AICAR represses the MUC1 activity in EGFR-mutant lung cancer, disrupting protein-protein interactions between MUC1-CT and JAK1 and EGFR.
Collapse
Affiliation(s)
- Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Alice Rodriguez-Fuguet
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
| | - Jiao Sun
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Levantini
- Harvard Stem Cell Institute, 330 Brookline Avenue, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, 56124, Pisa, Italy
| | - Wei Zhang
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8575, Japan
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA.
| |
Collapse
|
3
|
Zhang L, Liu Y, Zhou R, He B, Wang W, Zhang B. Cyclophilin D: Guardian or Executioner for Tumor Cells? Front Oncol 2022; 12:939588. [PMID: 35860554 PMCID: PMC9289278 DOI: 10.3389/fonc.2022.939588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophilin D (CypD) is a peptide-proline cis-trans isomerase (PPIase) distributed in the mitochondrial matrix. CypD regulates the opening of the mitochondrial permeability conversion pore (mPTP) and mitochondrial bioenergetics through PPIase activity or interaction with multiple binding partners in mitochondria. CypD initially attracted attention due to its regulation of mPTP overopening-mediated cell death. However, recent studies on the effects of CypD on tumors have shown conflicting results. Although CypD has been proven to promote the aerobic glycolysis in tumor cells, its regulation of malignant characteristics such as the survival, invasion and drug resistance of tumor cells remains controversial. Here, we elaborate the main biological functions of CypD and its relationships with tumor progression identified in recent years, focusing on the dual role of CypD in tumors.
Collapse
Affiliation(s)
- Ling Zhang
- School of Nursing, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| | - Yi Liu
- School of Nursing, Jining Medical University, Jining, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Rou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Wenjun Wang
- School of Nursing, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Bin Zhang, ; Ling Zhang,
| |
Collapse
|
4
|
Hou Q, Zhong Y, Liu L, Wu L, Liu J. Construction of a lung adenocarcinoma prognostic model based on N6-methyl-adenosine-related long noncoding RNA and screening of potential drugs based on this model. Anticancer Drugs 2022; 33:371-383. [PMID: 35213857 PMCID: PMC8912967 DOI: 10.1097/cad.0000000000001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Lung adenocarcinoma (LUAD) has a high mortality rate. N6-methyl-adenosine (m6A)-related long noncoding RNA (lncRNA) is associated with tumor prognosis. Our objective was to construct an m6A-related lncRNA prognostic model and screen potential drugs for the treatment of LUAD. The LUAD sequencing data were randomly divided into Train and Test cohorts. In the Train group, the LASSO Cox regression was used to construct the m6A-related lncRNA prognostic model. The LUAD tumor immune dysfunction and exclusion model was used to evaluate immunotherapy efficacy in LUAD. The 'pRRophetic' package was utilized to screen potential drugs for the treatment of LUAD. Eleven m6A-related lncRNAs were identified by LASSO Cox regression and were used to construct the risk model to calculate sample risk scores. Patients were divided into high- and low-risk groups based on their median risk scores. The LUAD data of The Cancer Genome Atlas database showed that the overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group in both cohorts. Multivariate Cox regression analysis showed that this risk model could serve as an independent prognostic factor of LUAD, and receiver operating characteristic curves suggested that m6A-related lncRNA prognostic signature has a good ability in predicting OS. Finally, nine potential drugs for LUAD treatment were screened based on this prognostic model. The prognostic model constructed based on the m6A-related lncRNAs facilitated prognosis prediction in LUAD patients. The screened therapeutic agents have potential application values and provide a reference for the clinical treatment of LUAD.
Collapse
Affiliation(s)
- Qinghua Hou
- Department of Clinical Medicine, Weifang Medical University, Weifang
| | | | - Linzhuang Liu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liusheng Wu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jixian Liu
- Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
GNE-493 inhibits prostate cancer cell growth via Akt-mTOR-dependent and -independent mechanisms. Cell Death Dis 2022; 8:120. [PMID: 35296639 PMCID: PMC8927604 DOI: 10.1038/s41420-022-00911-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
GNE-493 is a novel PI3K/mTOR dual inhibitor with improved metabolic stability, oral bioavailability, and excellent pharmacokinetic parameters. Here GNE-493 potently inhibited viability, proliferation, and migration in different primary and established (LNCaP and PC-3 lines) prostate cancer cells, and provoking apoptosis. GNE-493 blocked Akt-mTOR activation in primary human prostate cancer cells. A constitutively-active mutant Akt1 restored Akt-mTOR activation but only partially ameliorated GNE-493-induced prostate cancer cell death. Moreover, GNE-493 was still cytotoxic in Akt1/2-silenced primary prostate cancer cells. Significant oxidative stress and programmed necrosis cascade activation were detected in GNE-493-treated prostate cancer cells. Moreover, GNE-493 downregulated Sphingosine Kinase 1 (SphK1), causing ceramide accumulation in primary prostate cancer cells. Daily single dose GNE-493 oral administration robustly inhibited the growth of the prostate cancer xenograft in the nude mice. Akt-mTOR inactivation, SphK1 downregulation, ceramide level increase, and oxidative injury were detected in GNE-493-treated prostate cancer xenograft tissues. Together, GNE-493 inhibited prostate cancer cell growth possibly through the Akt-mTOR-dependent and -independent mechanisms.
Collapse
|
6
|
AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2021; 12:365. [PMID: 33824293 PMCID: PMC8024326 DOI: 10.1038/s41419-021-03655-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
7
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Ramond F, Rio M, Héron B, Imbard A, Marie S, Billiemaz K, Denommé-Pichon AS, Kuentz P, Ceballos I, Piraud M, Vincent MF, Touraine R. AICA-ribosiduria due to ATIC deficiency: Delineation of the phenotype with three novel cases, and long-term update on the first case. J Inherit Metab Dis 2020; 43:1254-1264. [PMID: 32557644 DOI: 10.1002/jimd.12274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/06/2022]
Abstract
5-Amino-4-imidazolecarboxamide-ribosiduria (AICA)-ribosiduria is an exceedingly rare autosomal recessive condition resulting from the disruption of the bifunctional purine biosynthesis protein PURH (ATIC), which catalyzes the last two steps of de novo purine synthesis. It is characterized biochemically by the accumulation of AICA-riboside in urine. AICA-ribosiduria had been reported in only one individual, 15 years ago. In this article, we report three novel cases of AICA-ribosiduria from two independent families, with two novel pathogenic variants in ATIC. We also provide a clinical update on the first patient. Based on the phenotypic features shared by these four patients, we define AICA-ribosiduria as the syndromic association of severe-to-profound global neurodevelopmental impairment, severe visual impairment due to chorioretinal atrophy, ante-postnatal growth impairment, and severe scoliosis. Dysmorphic features were observed in all four cases, especially neonatal/infancy coarse facies with upturned nose. Early-onset epilepsy is frequent and can be pharmacoresistant. Less frequently observed features are aortic coarctation, chronic hepatic cytolysis, minor genital malformations, and nephrocalcinosis. Alteration of the transformylase activity of ATIC might result in a more severe impairment than the alteration of the cyclohydrolase activity. Data from literature points toward a cytotoxic mechanism of the accumulated AICA-riboside.
Collapse
Affiliation(s)
- Francis Ramond
- Service de Génétique, CHU-Hôpital Nord, Saint-Etienne, France
| | - Marlène Rio
- Institut Imagine, Paris, France
- Inserm U781, Hôpital Necker-Enfants Malades, Paris, France
| | - Bénédicte Héron
- Service de Neurologie Pédiatrique, Hôpital Armand-Trousseau, APHP et GRC No. 19, Universités Sorbonne, UPMC 06, Paris, France
| | - Apolline Imbard
- Biochemistry Hormonology Laboratory, Robert-Debré University Hospital, APHP, Paris, France
- LIPSYS, Faculty of pharmacy, Paris Saclay University, Chatenay-Malabry, France
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Kareen Billiemaz
- Service de Réanimation Pédiatrique, CHU-Hôpital Nord, Saint-Étienne, France
| | - Anne-Sophie Denommé-Pichon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
- Laboratoire de Génétique Moléculaire, UF Innovation en Diagnostic Génomique des Maladies Rares, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
- UMR-Inserm 1231 GAD Team, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Paul Kuentz
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
- UMR-Inserm 1231 GAD Team, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France
- Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Irène Ceballos
- Metabolic Biochemistry Department, Necker Hospital, APHP, Paris, France
| | - Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie-Françoise Vincent
- Laboratoire des Maladies Métaboliques, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Renaud Touraine
- Service de Génétique, CHU-Hôpital Nord, Saint-Etienne, France
| |
Collapse
|
9
|
Temerdashev AZ, Dmitrieva EV. Methods for the Determination of Selective Androgen Receptor Modulators. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Keap1-targeting microRNA-941 protects endometrial cells from oxygen and glucose deprivation-re-oxygenation via activation of Nrf2 signaling. Cell Commun Signal 2020; 18:32. [PMID: 32102665 PMCID: PMC7045607 DOI: 10.1186/s12964-020-0526-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mimicking ischemia-reperfusion injury, oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) applied to endometrial cells produces significant oxidative stress and programmed necrosis, which can be inhibited by nuclear-factor-E2-related factor 2 (Nrf2) signaling. MicroRNA (miRNA)-induced repression of Keap1, a Nrf2 suppressor protein that facilitates Nrf2 degradation, is novel strategy to activate Nrf2 cascade. METHODS MicroRNA-941 (miR-941) was exogenously expressed in HESC and primary human endometrial cells, and the Nrf2 pathway examined by Western blotting and real-time quantitative PCR analysis. The endometrial cells were treated with OGDR, cell programmed necrosis and apoptosis were tested. RESULTS MiR-941 is a novel Keap1-targeting miRNA that regulates Nrf2 activity. In T-HESC cells and primary human endometrial cells, ectopic overexpression of miR-941 suppressed Keap1 3'-UTR (untranslated region) expression and downregulated its mRNA/protein expression, leading to activation of the Nrf2 cascade. Conversely, inhibition of miR-941 elevated Keap1 expression and activity in endometrial cells, resulting in suppression of Nrf2 activation. MiR-941 overexpression in endometrial cells attenuated OGDR-induced oxidative stress and programmed necrosis, whereas miR-941 inhibition enhanced oxidative stress and programmed necrosis. MiR-941 overexpression and inhibition were completely ineffective in Keap1-/Nrf2-KO T-HESC cells (using CRISPR/Cas9 strategy). Restoring Keap1 expression, using an UTR-depleted Keap1 construct, abolished miR-941-induced anti-OGDR activity in T-HESC cells. Thus Keap1-Nrf2 cascade activation is required for miR-941-induced endometrial cell protection. CONCLUSIONS Targeting Keap1 by miR-941 activates Nrf2 cascade to protect human endometrial cells from OGDR-induced oxidative stress and programmed necrosis. Video Abstract.
Collapse
|
11
|
Sun Q, Shen X, Wang P, Ma J, Sha W. Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging (Albany NY) 2019; 11:12661-12673. [PMID: 31884421 PMCID: PMC6949086 DOI: 10.18632/aging.102593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (MTB) infection induces cytotoxicity to host human macrophages. The underlying signaling mechanisms are largely unknown. Here we discovered that MTB infection induced programmed necrosis in human macrophages, causing mitochondrial cyclophilin-D (CypD)-p53-adenine nucleotide translocator type 1 association, mitochondrial depolarization and lactate dehydrogenase medium release. In human macrophages MTB infection-induced programmed necrosis and apoptosis were largely attenuated by CypD inhibition (by cyclosporin A), silencing and knockout, but intensified with ectopic CypD overexpression. Further studies identified microRNA-1281 as a CypD-targeting miRNA. Ectopic overexpression of microRNA-1281 decreased CypD 3'-untranslated region activity and its expression, protecting human macrophages from MTB-induced programmed necrosis and apoptosis. Conversely, microRNA-1281 inhibition in human macrophages, by the anti-sense sequence, increased CypD expression and potentiated MTB-induced cytotoxicity. Importantly, in CypD-KO macrophages miR-1281 overexpression or inhibition was ineffective against MTB infection. Restoring CypD expression, by an untranslated region-depleted CypD construct, reversed miR-1281-induced cytoprotection against MTB in human macrophages. Collectively, these results show that targeting CypD by miR-1281 protects human macrophages from MTB-induced programmed necrosis and apoptosis.
Collapse
Affiliation(s)
- Qin Sun
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaona Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ma
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Xia YH, Lu Z, Wang SM, Hu LX. Nrf2 activation mediates tumor-specific hepatic stellate cells-induced DIgR2 expression in dendritic cells. Aging (Albany NY) 2019; 11:11565-11575. [PMID: 31831714 PMCID: PMC6932929 DOI: 10.18632/aging.102554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023]
Abstract
Our previous studies discovered that tumor-specific hepatic stellate cells (tHSCs) induced dendritic cell-derived immunoglobulin receptor 2 (DIgR2) expression in bone marrow-derived dendritic cells (mDCs), inhibiting splenic T cell activation. The current study aims to explore the underlying mechanism of DIgR2 expression by focusing on Nrf2 (nuclear-factor-E2-related factor 2) signaling. We show that tHSCs co-culture induced significant Nrf2 signaling activation in mDCs. The latter was evidenced by Nrf2-Keap1 disassociation, Nrf2 protein stabilization, accumulation and nuclear translocation. Expression of Nrf2-dependent genes, including heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1), were detected in tHSCs-co-cultured mDCs. Importantly tHSCs-induced DIgR2 expression was blocked by Nrf2 shRNA or knockout (KO, by CRISPR/Cas9 method). Conversely, forced activation of Nrf2, by Keap1 shRNA or the Nrf2 activators (3H-1,2-dithiole-3-thione and MIND4-17), induced significant DIgR2 expression. tHSCs stimulation induced reactive oxygen species (ROS) production in mDCs. Conversely, ROS scavengers inhibited tHSCs-induced ROS production, Nrf2 activation and DIgR2 expression in mDCs. Significantly, tHSCs inhibited production of multiple cytokines (CD80, CD86 and IL-12) in mDCs, reversed by Nrf2 depletion. Moreover, Nrf2 shRNA or KO attenuated splenic T cell inhibition by tHSCs-stimulated mDCs. Together, we conclude that Nrf2 activation mediates tHSCs-induced DIgR2 expression in mDCs.
Collapse
Affiliation(s)
- Yun-Hong Xia
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shou-Min Wang
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Li-Xia Hu
- Department of Oncology, Hefei Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes. Oncotarget 2019; 10:6432-6443. [PMID: 31741708 PMCID: PMC6849649 DOI: 10.18632/oncotarget.27266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Phenformin is a biguanide drug which, besides the original anti-diabetic effect, also exerts anti-cancer effects. The aim of this study was to further characterize these latter in terms of both cell-viability and modulation of the secretion of the pro-tumorigenic chemokine CXCL8. Normal human thyrocytes in primary cultures (NHT) and thyroid cancer cell lines, TPC-1 and 8505C (RET/PTC and BRAFV600E mutated, respectively) were treated with increasing concentrations of phenformin at different times. Cell-viability was assessed by WST-1 and further characterized by AnnexinV/PI staining and cell proliferation colony-assay. CXCL8 levels were measured in cell supernatants. Phenformin reduced cell-viability in TPC-1 and 8505C and their ability to form colonies. In NHT cells, phenformin affected cell-viability only at the maximal dose but interestingly it inhibited CXCL8 secretion at all the concentrations not affecting cell-viability. Phenformin had no effect on CXCL8 secretion in thyroid cancer cell lines. Thus, phenformin exerts anti-cancer effects on both cancer cells (cell death induction) and surrounding normal cells (inhibition of CXCL8 secretion). These results highlight that the anti-cancer effects of phenformin are multifaceted and effective on both solid and soluble components of the tumor-microenvironment.
Collapse
|
14
|
AICAR Induces Apoptosis and Inhibits Migration and Invasion in Prostate Cancer Cells Through an AMPK/mTOR-Dependent Pathway. Int J Mol Sci 2019; 20:ijms20071647. [PMID: 30987073 PMCID: PMC6480054 DOI: 10.3390/ijms20071647] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current clinical challenges of prostate cancer management are to restrict tumor growth and prohibit metastasis. AICAR (5-aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside), an AMP-activated protein kinase (AMPK) agonist, has demonstrated antitumor activities for several types of cancers. However, the activity of AICAR on the cell growth and metastasis of prostate cancer has not been extensively studied. Herein we examine the effects of AICAR on the cell growth and metastasis of prostate cancer cells. Cell growth was performed by MTT assay and soft agar assay; cell apoptosis was examined by Annexin V/propidium iodide (PI) staining and poly ADP ribose polymerase (PARP) cleavage western blot, while cell migration and invasion were evaluated by wound-healing assay and transwell assay respectively. Epithelial–mesenchymal transition (EMT)-related protein expression and AMPK/mTOR-dependent signaling axis were analyzed by western blot. In addition, we also tested the effect of AICAR on the chemosensitivity to docetaxel using MTT assay. Our results indicated that AICAR inhibits cell growth in prostate cancer cells, but not in non-cancerous prostate cells. In addition, our results demonstrated that AICAR induces apoptosis, attenuates transforming growth factor (TGF)-β-induced cell migration, invasion and EMT-related protein expression, and enhances the chemosensitivity to docetaxel in prostate cancer cells through regulating the AMPK/mTOR-dependent pathway. These findings support AICAR as a potential therapeutic agent for the treatment of prostate cancer.
Collapse
|
15
|
Yan M, Qi H, Xia T, Zhao X, Wang W, Wang Z, Lu C, Ning Z, Chen H, Li T, Tekcham DS, Liu X, Liu J, Chen D, Liu X, Xu G, Piao HL. Metabolomics profiling of metformin-mediated metabolic reprogramming bypassing AMPKα. Metabolism 2019; 91:18-29. [PMID: 30468782 DOI: 10.1016/j.metabol.2018.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metformin is a first-line drug for treating type 2 diabetes and has gained considerable interest as a potential anticancer agent. Increasing evidence suggests that metformin antagonizes diabetes and tumors through disrupting metabolic homeostasis and altering energy state. However, whether AMP activated protein kinase (AMPK) contributes to such effects of metformin remains controversial. METHODS We performed integrative metabolomics analyses to systematically examine the effects of metformin on metabolic pathways in Prkaa1 wild type (WT) and knock-out (KO) mouse embryonic fibroblast (MEF) cells as well as human cells based on gas chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry (CE-MS). RESULTS Metformin treatment induced metabolic reprogramming and reduced the energy state of both Prkaa1 WT and KO MEF cells, as evidenced by suppressed tricarboxylic acid (TCA) cycle, elevated lactate production as well as decreased NAD+/NADH ratio. Additionally, metabolic flux analysis also showed that metformin Ampkα-independently increased metabolic flux from glucose to lactate and decreased metabolic flux from acetyl-CoA to TCA cycle as well as from pyruvate to malate. Moreover, metformin Ampkα-dependently upregulated P-Acc but Ampkα-independently inhibited the levels of P-mTor, P-S6, Lc3, Atgl and P-Erk in MEF cells. Similarly, we demonstrated that a commonly used AMPK agonist 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fetal bovine serum (FBS) starvation, as a common model for energy stress, both led to Ampkα-independent metabolism alterations in MEF cells. Furthermore, these effects of metformin were also confirmed in human hepatocellular carcinoma (HCC) cells as well as in MCF10A shControl and shPRKAA1 cells. Importantly, we found that metformin could obviously inhibit colony conformation of HCC cells in an Ampkα-independent manner. CONCLUSIONS Our data highlight a comprehensive view of metabolic reprogramming mediated by metformin as well as AICAR. These observations suggest that metformin could affect cellular metabolism largely bypassing Ampkα, and may provide a new insight for its clinical usage.
Collapse
Affiliation(s)
- Min Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, China
| | - Zhen Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongming Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dinesh Singh Tekcham
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiumei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Awwad O, Coperchini F, Pignatti P, Denegri M, Massara S, Croce L, Di Buduo CA, Abbonante V, Balduini A, Chiovato L, Rotondi M. The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. J Endocrinol Invest 2018; 41:1275-1282. [PMID: 29546654 DOI: 10.1007/s40618-018-0862-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE The AMPK-activator AICAR recently raised great interest for its anti-cancer properties. With specific regard to thyroid cancer, AICAR reduces cancer cell growth, invasion and metastasis. CXCL8, a chemokine with several recognized tumorigenic effects, is abundantly secreted in thyroid cancer microenvironment. The aim of this study was to investigate if AICAR could inhibit the basal and the TNFα-induced CXCL8 secretion in normal human thyroid cells (NHT) and in thyroid cancer cell lines TPC-1 and BCPAP (RET/PTC and BRAFV600e mutated, respectively). METHODS The effect of AICAR on basal and CXCL8-induced cell migration was assessed. Cells were incubated with AICAR (0.05, 0.5, 1, 2 mM) alone or in combination with TNF-α (10 ng/ml) for 24 h. CXCL8 concentrations were measured in cell supernatants. Transwell migration assays were performed in NHT, TPC-1 and BCPAP, basally and after treatment with AICAR (2 mM) and rh-CXCL8 (50 ng/ml) alone or in combination. RESULTS AICAR dose dependently inhibited the basal secretion of CXCL8 in TPC-1 (F = 4.26; p < 0.007) and BCPAP (F = 6.75; p < 0.0001) but not in NHT. TNFα-induced CXCL8 secretion was dose dependently reduced by AICAR in NHT (F = 9.99; p < 0.0001), TPC-1 (F = 9.25; p < 0.0001) and BCPAP (F = 6.82; p < 0.0001). AICAR significantly reduced the basal migration of TPC-1 and BCPAP but not of NHT. CONCLUSIONS CXCL8-induced cell migration was inhibited in NHT, TPC-1 and BCPAP. This is the first demonstration of the inhibition of CXCL8 secretion exerted by AICAR in TPC-1 and BCPAP indicating that the anti-cancer properties of AICAR are, at least in part, mediated by its ability to reduce the pro-tumorigenic effects of CXCL8.
Collapse
Affiliation(s)
- O Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, 11937, Jordan
| | - F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - P Pignatti
- Allergy and Immunology Unit, ICS Maugeri I.R.C.C.S, 27100, Pavia, Italy
| | - M Denegri
- Molecular Cardiology, ICS-Maugeri, Via Maugeri 10/10°, 27100, Pavia, Italy
| | - S Massara
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - L Croce
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| | - C A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - V Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy.
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, ICS Maugeri I.R.C.C.S, University of Pavia, Via S. Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
17
|
Xu Y, Gao YW, Yang Y. SC79 protects dopaminergic neurons from oxidative stress. Oncotarget 2018; 9:12639-12648. [PMID: 29560097 PMCID: PMC5849161 DOI: 10.18632/oncotarget.23538] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress could lead to dopaminergic neuronal cell death. SC79 is a novel, selective and highly-efficient Akt activator. The current study tested its effect in dopaminergic neurons with oxidative stress. In both SH-SY5Y cells and primary murine dopaminergic neurons, pre-treatment with SC79 largely inhibited hydrogen peroxide (H2O2)-induced cell viability reduction, apoptosis and necrosis. SC79 activated Akt in the neuronal cells, which was required for its neuroprotection against H2O2. Inhibition of Akt activation (by MK-2206 or AT7867) or expression (by targeted short hairpin RNA) largely attenuated SC79-induced neuroprotection. Further, CRISPR-Cas9-mediated Akt1 knockout in SH-SY5Y cells abolished SC79-induced neuroprotective function against H2O2. Reversely, forced activation of Akt by the constitutively-active Akt1 mimicked SC79-induced anti-H2O2 activity. Together, we conclude that activation of Akt by SC79 protects dopaminergic neurons from H2O2.
Collapse
Affiliation(s)
- Yan Xu
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| | - Ya-Wen Gao
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| | - Yu Yang
- Geriatrics Department, The Second Xiang Ya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Zeng R, Zhang R, Song X, Ni L, Lai Z, Liu C, Ye W. The long non-coding RNA MALAT1 activates Nrf2 signaling to protect human umbilical vein endothelial cells from hydrogen peroxide. Biochem Biophys Res Commun 2017; 495:2532-2538. [PMID: 29274336 DOI: 10.1016/j.bbrc.2017.12.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
The potential effect of the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) against hydrogen peroxide (H2O2)-induced oxidative injury in endothelial cells was tested. We show that forced-expression of MALAT1 using a lentiviral vector ("LV-MALAT1") significantly attenuated H2O2-induced death and apoptosis of human umbilical vein endothelial cells (HUVECs). Conversely, knocking down of MALAT1 by targeted siRNA exacerbated H2O2-induced HUVEC injury. For the mechanism study, we show that LV-MALAT1 induced Keap1 downregulation, leading to nuclear-factor-E2-related factor 2 (Nrf2) stabilization and activation. Critically, Nrf2 shRNA almost completely abolished LV-MALAT1-mediated HUVEC protection against H2O2. Significantly, H2O2-induced oxidative stress, lipid peroxidation and DNA damages in HUVECs were attenuated by LV-MALAT1, but were intensified with MALAT1 siRNA. In summary, we identified a novel signaling axis involving MALAT1, Keap1 and Nrf2, which in turn protects HUVECs from oxidative injury.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xitao Song
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Ginseng Rh2 protects endometrial cells from oxygen glucose deprivation/re-oxygenation. Oncotarget 2017; 8:105703-105713. [PMID: 29285285 PMCID: PMC5739672 DOI: 10.18632/oncotarget.22390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, oxygen glucose deprivation/re-oxygenation (OGDR) was applied to cultured endometrial cells to mimic ischemic-reperfusion injuries. We also tested the potential effect of Ginseng Rh2 (GRh2) against the process. In established T-HESC human endometrial cells and primary murine endometrial cells, GRh2 largely inhibited OGDR-induced viability reduction and cell death. Remarkably, OGDR induced programmed necrosis in the endometrial cells, evidenced by cyclophilin D-p53-adenine nucleotide translocator 1 (ANT-1) mitochondrial association, mitochondrial depolarization, reactive oxygen species production, and lactate dehydrogenase release. Notably, such effects by OGDR were largely attenuated with co-treatment of GRh2. Further, cyclophilin D inhibition or knockdown also protected endometrial cells from OGDR. On the other hand, forced over-expression of cyclophilin D facilitated OGDR-induced T-HESC cell necrosis, which was dramatically inhibited by GRh2. Together, GRh2 protects endometrial cells from OGDR possibly via inhibiting CypD-dependent programmed necrosis pathway.
Collapse
|
20
|
Tonry C, Armstrong J, Pennington S. Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression. Oncotarget 2017; 8:15307-15337. [PMID: 28410543 PMCID: PMC5362488 DOI: 10.18632/oncotarget.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins - one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Claire Tonry
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | - Stephen Pennington
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
21
|
Xie J, Li Q, Ding X, Gao Y. GSK1059615 kills head and neck squamous cell carcinoma cells possibly via activating mitochondrial programmed necrosis pathway. Oncotarget 2017; 8:50814-50823. [PMID: 28881606 PMCID: PMC5584207 DOI: 10.18632/oncotarget.15135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study tested the anti-head and neck squamous cell carcinoma (HNSCC) cell activity by GSK1059615, a novel PI3K and mTOR dual inhibitor. GSK1059615 inhibited survival and proliferation of established (SCC-9, SQ20B and A253 lines) and primary human HNSCC cells. GSK1059615 blocked PI3K-AKT-mTOR activation in HNSCC cells. Intriguingly, GSK1059615 treatment in HNSCC cells failed to provoke apoptosis, but induced programmed necrosis. The latter was tested by mitochondria depolarization, ANT-1-cyclophilin-D mitochondrial association and lactate dehydrogenase (LDH) release. Reversely, mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid) or cyclophilin-D shRNA dramatically alleviated GSK1059615-induced SCC-9 cell death. Further studies demonstrated that GSK1059615 i.p. injection suppressed SCC-9 tumor growth in nude mice, which was compromised with co-administration with cyclosporin A. Thus, targeting PI3K-AKT-mTOR pathway by GSK1059615 possibly provokes programmed necrosis pathway to kill HNSCC cells.
Collapse
Affiliation(s)
- Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quan Li
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunyun Gao
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B, Zhou L. AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun 2016; 482:246-252. [PMID: 27847321 DOI: 10.1016/j.bbrc.2016.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, its activity in human gallbladder cancer cells was evaluated here. We show that AICAR provoked significant apoptosis in human gallbladder cancer cell lines (Mz-ChA-1, QBC939 and GBC-SD) and primary gallbladder cancer cells. AICAR-induced cytotoxicity in gallbladder cancer cells appears independent of AMPK activation. Inhibition of AMPK, via AMPKα shRNA knockdown or dominant negative mutation (T172A), failed to rescue GBC-SD cells from AICAR. Further, forced-activation of AMPK, by adding two other AMPK activators (A769662 and Compound 13), or expressing a constitutively-active mutant AMPKα (T172D), didn't induce GBC-SD cell death. Remarkably, AICAR treatment in gallbladder cancer cells induced endoplasmic reticulum (ER) stress activation, the latter was tested by caspase-12 activation, C/EBP homologous protein (CHOP) expression and IRE1/PERK phosphorylation. Contrarily, salubrinal (the ER stress inhibitor), z-ATAD-fmk (the caspase-12 inhibitor) or CHOP shRNAs significantly attenuated AICAR-induced gallbladder cancer cell apoptosis. Together, we conclude that AICAR-induced gallbladder cancer cell apoptosis requires ER stress activation, but is independent of AMPK.
Collapse
Affiliation(s)
- Jifeng Nie
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Aidong Liu
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qunya Tan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kai Zhao
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Kui Hu
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Yong Li
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Bin Yan
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China
| | - Lin Zhou
- Department of Minimally Invasive Surgery, Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
23
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Feiks A, Nowotny C, Gruber W. [Characteristics of peripheral rheograms following thermal provocation in normal and pathologic pregnancy]. Geburtshilfe Frauenheilkd 1988; 48:647-50. [PMID: 3181714 DOI: 10.1055/s-2008-1026557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using the impedance plethysmographic method of rheography it is possible to ascertain the tone of the peripheral resistance vessels directly by simple means. Previous studies have shown that there is a close relationship between peripheral vasodilatation at rest and normal course of pregnancy. In the present study, rheographic changes were studied in patients with normal pregnancy (n = 27, Group 1), diabetes mellitus (n = 18, Group 2), "pregnancy-induced hypertension" (n = 10, Group 3), and chronic placental insufficiency (n = 16, Group 4) during and following a low-temperature stimulus. After exposure to icy water, the Group 1 subjects showed a 40% reduction in rheographic amplitude, Groups 2 and 3 a 25% reduction, while Group 4 patients showed no signs of vasoconstriction going beyond the resting state (p less than 0.001). The four groups also differed considerably as regards vessel wall behavior in the recovery phase. The study confirms that the amplitude of the peripheral rheogram is a good indicator for detecting high-risk pregnancies. The amplitude pattern under thermal stimulation also provides further information on the dynamic behavior of the resistance vessels in normal and pathologic pregnancies.
Collapse
Affiliation(s)
- A Feiks
- II. Univ.-Frauenklinik Wien, Osterreich
| | | | | |
Collapse
|