1
|
Alam MS, Dhiman A, Bhardwaj T, Chatterjee S, Lakra V, Tripathi M, Lohani K, Sharma YD, Mirdha BR, Kumar A, Sharma TK, Rathore S. Aptamer-Based Diagnosis for Plasmodium vivax Specific Malaria. ACS Infect Dis 2025; 11:762-772. [PMID: 40042916 DOI: 10.1021/acsinfecdis.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Malaria, caused by a protozoan parasite of the genus Plasmodium, is a severe infectious disease with life-threatening consequences that has burdened mankind for centuries. Although Plasmodium falciparum (P. falciparum) malaria is more prevalent globally than Plasmodium vivax (P. vivax) malaria, India bears the largest burden of P. vivax malaria, with over 3.6 million cases accounting for ∼48% of global P. vivax malaria cases. Existing detection methods for P. vivax malaria are costly or tedious or have low accuracy. To address the need for a specific diagnostic assay for P. vivax, we generated aptamers specific to Plasmodium vivax tryptophan-rich antigen (PvTRAg). We employed them in an aptamer-linked immobilized sorbent assay (ALISA) to detect P. vivax malaria infections. The two most specific aptamers for PvTRAg, identified as Apt_14 and Apt_16, were obtained using the Systematic Evolution of Ligands by Exponential Enrichment. The dissociation constant (KD) values of Apt_14 and Apt_16 were 1.9 and 1.2 nM, respectively, indicating high affinity to PvTRAg. The limit of detection for both aptamers was found to be 2.5 nM. During clinical validation, the sensitivity of 96% and 84% was obtained with Apt_14- and Apt_16-based ALISA with 100% specificity. The aptamers demonstrated nonsignificant cross-reactivity with other nonmalarial antigens and PvTRAg homologues along with a high level of selectivity for PvTRAg over P. falciparum antigens and various other antigens. Altogether, our findings confirm the effectiveness of DNA aptamers for the accurate diagnosis of P. vivax malaria and lay the groundwork for developing an aptamer-based diagnostic assay for malaria.
Collapse
Affiliation(s)
- Mohd Shoeb Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanu Bhardwaj
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat 382355, India
| | - Sudarshana Chatterjee
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vaishali Lakra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manish Tripathi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Khusboo Lohani
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yagya Dutt Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijay Ranjan Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Amit Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat 382355, India
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Mohali, Punjab 160062, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
2
|
De Meulenaere K, Cuypers B, Gamboa D, Laukens K, Rosanas-Urgell A. A new Plasmodium vivax reference genome for South American isolates. BMC Genomics 2023; 24:606. [PMID: 37821878 PMCID: PMC10568799 DOI: 10.1186/s12864-023-09707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Cimperman CK, Pena M, Gokcek SM, Theall BP, Patel MV, Sharma A, Qi C, Sturdevant D, Miller LH, Collins PL, Pierce SK, Akkaya M. Cerebral Malaria Is Regulated by Host-Mediated Changes in Plasmodium Gene Expression. mBio 2023; 14:e0339122. [PMID: 36852995 PMCID: PMC10127683 DOI: 10.1128/mbio.03391-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA(C57BL/6)], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA(BALB/c)], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65(C57BL/6)]. All ANKA(C57BL/6) mice developed CM. In contrast, in ANKA(BALB/c) and NK65(C57BL/6), infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA(BALB/c) was remarkably different than that in ANKA(C57BL/6) but similar to the gene expression in NK65(C57BL/6). Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.
Collapse
Affiliation(s)
- Clare K. Cimperman
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Sohret M. Gokcek
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Brandon P. Theall
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Meha V. Patel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Anisha Sharma
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - ChenFeng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Daniel Sturdevant
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Munir Akkaya
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, Laman M, Robinson LJ, Gamboa D, Laukens K, Rosanas-Urgell A. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol 2022; 12:1011692. [PMID: 36250048 PMCID: PMC9563252 DOI: 10.3389/fcimb.2022.1011692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Surendra Kumar Prajapati
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | - Bernadine Kasian
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Health Security and Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Castro-Salguedo C, Mendez-Cuadro D, Moneriz C. Erythrocyte membrane proteins involved in the immune response to Plasmodium falciparum and Plasmodium vivax infection. Parasitol Res 2021; 120:1789-1797. [PMID: 33797613 DOI: 10.1007/s00436-021-07135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/21/2021] [Indexed: 11/29/2022]
Abstract
Invasion of Plasmodium into the red blood cell involves the interactions of a substantial number of proteins, with red cell membrane proteins as the most involved throughout the process from entry to exit. The objective of this work was to identify proteins of the human erythrocyte membrane capable of generating an antigenic response to P. falciparum and P. vivax infection, with the goal of searching for new molecular targets of interest with an immunological origin to prevent Plasmodium infection. To identify these proteins, an immunoproteomic technique was carried out in four stages: protein separation (electrophoresis), detection of antigenic proteins (western blotting), identification of proteins of interest (mass spectrometry), and interpretation of the data (bioinformatic analysis). Four proteins were identified from extracts of membrane proteins from erythrocytes infected with P. falciparum: Spectrin, Ankyrin-1, Band 3 and band 4.2, and a single protein was identified from erythrocytes infected with P. vivax: Band 3. These results demonstrate that modifications in the red blood cell membrane during infection with P. falciparum and P. vivax can generate an immune response, altering proteins of great structural and functional importance.
Collapse
Affiliation(s)
- Cristian Castro-Salguedo
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.,Grupo de Investigaciones Biomédicas-GIB, Universidad de San Buenaventura, Cartagena, 130010, Colombia
| | - Darío Mendez-Cuadro
- Analytical Chemistry and Biomedicine Group, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, 130015, Colombia
| | - Carlos Moneriz
- Biochemistry and Diseases Research Group, Facultad de Medicina, Universidad de Cartagena, Cartagena, 130015, Colombia.
| |
Collapse
|
6
|
|
7
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
8
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Sironi M, Forni D, Clerici M, Cagliani R. Genetic conflicts with Plasmodium parasites and functional constraints shape the evolution of erythrocyte cytoskeletal proteins. Sci Rep 2018; 8:14682. [PMID: 30279439 PMCID: PMC6168477 DOI: 10.1038/s41598-018-33049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites exerted a strong selective pressure on primate genomes and mutations in genes encoding erythrocyte cytoskeleton proteins (ECP) determine protective effects against Plasmodium infection/pathogenesis. We thus hypothesized that ECP-encoding genes have evolved in response to Plasmodium-driven selection. We analyzed the evolutionary history of 15 ECP-encoding genes in primates, as well as of their Plasmodium-encoded ligands (KAHRP, MESA and EMP3). Results indicated that EPB42, SLC4A1, and SPTA1 evolved under pervasive positive selection and that episodes of positive selection tended to occur more frequently in primate species that host a larger number of Plasmodium parasites. Conversely, several genes, including ANK1 and SPTB, displayed extensive signatures of purifying selection in primate phylogenies, Homininae lineages, and human populations, suggesting strong functional constraints. Analysis of Plasmodium genes indicated adaptive evolution in MESA and KAHRP; in the latter, different positively selected sites were located in the spectrin-binding domains. Because most of the positively selected sites in alpha-spectrin localized to the domains involved in the interaction with KAHRP, we suggest that the two proteins are engaged in an arms-race scenario. This observation is relevant because KAHRP is essential for the formation of “knobs”, which represent a major virulence determinant for P. falciparum.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
10
|
Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, Gámez-Valero A, Seguí-Barber J, Izquierdo-Useros N, Martinez-Picado J, Fernández-Becerra C, Del Portillo HA. Proteomics study of human cord blood reticulocyte-derived exosomes. Sci Rep 2018; 8:14046. [PMID: 30232403 PMCID: PMC6145868 DOI: 10.1038/s41598-018-32386-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Reticulocyte-derived exosomes (Rex), extracellular vesicles of endocytic origin, were initially discovered as a cargo-disposal mechanism of obsolete proteins in the maturation of reticulocytes into erythrocytes. In this work, we present the first mass spectrometry-based proteomics of human Rex (HuRex). HuRex were isolated from cultures of human reticulocyte-enriched cord blood using different culture conditions and exosome isolation methods. The newly described proteome consists of 367 proteins, most of them related to exosomes as revealed by gene ontology over-representation analysis and include multiple transporters as well as proteins involved in exosome biogenesis and erythrocytic disorders. Immunoelectron microscopy validated the presence of the transferrin receptor. Moreover, functional assays demonstrated active capture of HuRex by mature dendritic cells. As only seven proteins have been previously associated with HuRex, this resource will facilitate studies on the role of human reticulocyte-derived exosomes in normal and pathological conditions affecting erythropoiesis.
Collapse
Affiliation(s)
| | - Armando de Menezes-Neto
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Instituto Aggeu Magalhães-FIOCRUZ, Recife, Pernambuco, Brazil
| | | | - Ana Gámez-Valero
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Department of Pathology & REMAR-IVECAT Group, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Seguí-Barber
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- IGTP Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Carmen Fernández-Becerra
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- IGTP Institut d'Investigació Germans Trias i Pujol, Badalona, Spain.
| | - Hernando A Del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- IGTP Institut d'Investigació Germans Trias i Pujol, Badalona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
11
|
Bermúdez M, Moreno-Pérez DA, Arévalo-Pinzón G, Curtidor H, Patarroyo MA. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J 2018; 17:301. [PMID: 30126427 PMCID: PMC6102941 DOI: 10.1186/s12936-018-2456-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identification and characterization of proteins which might be participating in P. vivax invasion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defining each parasite protein’s function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to membrane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species’ continuous in vitro culture is so difficult to standardize. Some alternatives for P. vivax in vitro culture have also been described.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Darwin Andrés Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, DC, Colombia
| | - Gabriela Arévalo-Pinzón
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
12
|
Mourão LC, Baptista RDP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, Fontes CJF, Rathore S, Sharma YD, da Silva-Pereira RA, Bemquerer MP, Braga ÉM. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep 2018; 8:8762. [PMID: 29884876 PMCID: PMC5993813 DOI: 10.1038/s41598-018-27109-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Maíra Mazzoni Pucci
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Érika Martins Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|