1
|
Takagiwa Y, Higashihori N, Kano S, Moriyama K. Roles of the histone methyltransferase SET domain bifurcated 1 in epithelial cells during tooth development. Arch Oral Biol 2024; 165:106026. [PMID: 38875772 DOI: 10.1016/j.archoralbio.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE This study aimed to reveal the effects of SET domain bifurcated 1 (SETDB1) on epithelial cells during tooth development. DESIGN We generated conditional knockout mice (Setdb1fl/fl,Keratin14-Cre+ mice), in which Setdb1 was deleted only in epithelial cells. At embryonic day 14.5 (E14.5), immunofluorescence staining was performed to confirm the absence of SETDB1 within the epithelium of tooth embryos from Setdb1fl/fl,Keratin14-Cre+ mice. Mouse embryos were harvested after reaching embryonic day 13.5 (E13.5), and sections were prepared for histological analysis. To observe tooth morphology in detail, electron microscopy and micro-CT analysis were performed at postnatal months 1 (P1M) and 6 (P6M). Tooth embryos were harvested from postnatal day 7 (P7) mice, and the epithelial components of the tooth embryos were isolated and examined using quantitative RT-PCR for the expression of genes involved in tooth development. RESULTS Setdb1fl/fl,Keratin14-Cre+ mice exhibited enamel hypoplasia, brittle and fragile dentition, and significant abrasion. Coronal sections displayed abnormal ameloblast development, including immature polarization, and a thin enamel layer that detached from the dentinoenamel junction at P7. Electron microscopic analysis revealed characteristic findings such as an uneven surface and the absence of an enamel prism. The expression of Msx2, Amelogenin (Amelx), Ameloblastin (Ambn), and Enamelin (Enam) was significantly downregulated in the epithelial components of tooth germs in Setdb1fl/fl,Keratin14-Cre+ mice. CONCLUSIONS These results indicate that SETDB1 in epithelial cells is important for tooth development and clarify the relationship between the epigenetic regulation of SETDB1 and amelogenesis imperfecta for the first time.
Collapse
Affiliation(s)
- Yuri Takagiwa
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Norihisa Higashihori
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Sakurako Kano
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
2
|
Hu L, Cheng Z, Wu L, Luo L, Pan P, Li S, Jia Q, Yang N, Xu B. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways. Hum Cell 2023:10.1007/s13577-023-00902-w. [PMID: 37074626 DOI: 10.1007/s13577-023-00902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Osteogenic differentiation plays important roles in the pathogenesis of osteoporosis. In this study, we explored the regulatory mechanism of histone methyltransferase SET domain bifurcated 1 (SETDB1) underlying the osteogenic differentiation in osteoporosis. The common osteoporosis-related genes were retrieved from the GeneCards, CTD, and Phenolyzer databases. The enrichment analysis was conducted on the candidate osteoporosis-related genes using the PANTHER software, and the binding site between transcription factors and target genes predicted by hTFtarget. The bioinformatics analyses suggested 6 osteoporosis-related chromatin/chromatin binding protein or regulatory proteins (HDAC4, SIRT1, SETDB1, MECP2, CHD7, and DKC1). Normal and osteoporosis tissues were collected from osteoporosis patients to examine the expression of SETDB1. It was found that SETDB1 was poorly expressed in osteoporotic femoral tissues, indicating that SETDB1 might be involved in the development of osteoporosis. We induced SETDB1 overexpression/knockdown, orthodenticle homeobox 2 (OTX2) overexpression, activation of Wnt/β-catenin or BMP-Smad pathways alone or in combination in osteoblasts or ovariectomized mice. The data indicated that SETDB1 methylation regulated H3K9me3 in the OTX2 promoter region and inhibited the expression of OTX2. Besides, the BMP-Smad and Wnt/β-catenin pathways were inhibited by OTX2, thereby resulting in inhibited osteogenic differentiation. Animal experiments showed that overexpressed SETDB1 could promote the increase of calcium level and differentiation of femoral tissues. In conclusion, upregulation of SETDB1 promotes osteogenic differentiation by inhibiting OTX2 and activating the BMP-Smad and Wnt/β-catenin pathways in osteoporosis.
Collapse
Affiliation(s)
- Lianying Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Zhen Cheng
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Liangliang Luo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Ping Pan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Shujin Li
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Qiyu Jia
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Ning Yang
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
3
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
4
|
Kano S, Higashihori N, Thiha P, Takechi M, Iseki S, Moriyama K. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development. Biochem Biophys Res Commun 2022; 598:74-80. [PMID: 35151207 DOI: 10.1016/j.bbrc.2022.01.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
The histone methyltransferase SET domain bifurcated 1 (SETDB1) catalyzes the trimethylation of lysine 9 of histone H3, thereby regulating gene expression. In this study, we used conditional knockout mice, where Setdb1 was deleted only in neural crest cells (Setdb1fl/fl,Wnt1-Cre + mice), to clarify the role of SETDB1 in palatal development. Setdb1fl/fl,Wnt1-Cre + mice died shortly after birth due to a cleft palate with full penetration. Reduced palatal mesenchyme proliferation was seen in Setdb1fl/fl,Wnt1-Cre + mice, which might be a possible mechanism of cleft palate development. Quantitative RT-PCR and in situ hybridization showed that expression of the Pax9, Bmp4, Bmpr1a, Wnt5a, and Fgf10 genes, known to be important for palatal development, were markedly decreased in the palatal mesenchyme of Setdb1fl/fl,Wnt1-Cre + mice. Along with these phenomena, SMAD1/5/9 phosphorylation was decreased by the loss of Setdb1. Our results demonstrated that SETDB1 is indispensable for palatal development partially through its proliferative effect. Taken together with previous reports that PAX9 regulates BMP signaling during palatal development which implies that loss of Setdb1 may be involved in the cleft palate development by decreasing SMAD-dependent BMP signaling through Pax9.
Collapse
Affiliation(s)
- Sakurako Kano
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Norihisa Higashihori
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Phyo Thiha
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masaki Takechi
- Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sachiko Iseki
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
5
|
Li M, Ning J, Wang J, Yan Q, Zhao K, Jia X. SETD7 regulates chondrocyte differentiation and glycolysis via the Hippo signaling pathway and HIF‑1α. Int J Mol Med 2021; 48:210. [PMID: 34617577 PMCID: PMC8510680 DOI: 10.3892/ijmm.2021.5043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Chondrocytes are well adapted to hypoxia and produce more functional extracellular matrix in low oxygen environments in vitro. In our previous study, methyltransferase SET domain containing (SETD)7 regulated chondrocyte activity in hypoxic conditions. However, the precise association between SETD7 and chondrocyte differentiation under low oxygen partial pressure remains unclear. The association between SETD7 and chondrocyte differentiation was studied by silencing SETD7 in chondrocytes in vitro. The results showed that the silencing of SETD7 in ATDC5 cells inhibited the Hippo signaling pathway, decreased Yes-associated protein (YAP) phosphorylation and increased the levels of YAP and hypoxia inducible factor-1α (HIF-1α) in the nucleus. YAP combined with HIF-1α to form a complex that promoted the expression of genes involved in chondrogenic differentiation and the glycolytic pathway. Thus, SETD7 inhibited chondrocyte differentiation and glycolysis via the Hippo signaling pathway. The present study demonstrated that SETD7 was a potential molecular target that maintained the chondrocyte phenotype during cartilage tissue engineering and cartilage-associated disease.
Collapse
Affiliation(s)
- Maoquan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jinqiu Ning
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jiwei Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Qiqian Yan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
6
|
Thiha P, Higashihori N, Kano S, Moriyama K. Histone methyltransferase SET domain bifurcated 1 negatively regulates parathyroid hormone/parathyroid hormone-related peptide receptor to control chondrocyte proliferation in Meckel's cartilage. Arch Oral Biol 2021; 131:105251. [PMID: 34521010 DOI: 10.1016/j.archoralbio.2021.105251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study is to show that the proliferation of chondrocytes is regulated by SET domain bifurcated 1 (SETDB1) along with the downregulation of parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor in Meckel's cartilage. DESIGN Setdb1 was knocked down or overexpressed in a mouse chondrogenic ATDC5 cells, by transfecting the cells with short interfering RNA against Setdb1 or wild-type Setdb1 expression vector, respectively. Cell proliferation was detected by bromodeoxyuridine incorporation. Setdb1 was conditionally deleted in neural crest cells with Wnt1-Cre (Setdb1 conditional knockout mice). Immunofluorescence staining of paraffin sections of embryonic days 13.5 and 14.5 Setdb1 conditional knockout mice or transfected ATDC5 cells was performed to detect PTH/PTHrP receptor. Protein kinase B (AKT) phosphorylation inhibitor was added to both siRNA-transfected ATDC5 cultures to determine whether AKT activation induces PTH/PTHrP receptor expression after Setdb1 knockdown or vice versa. RESULTS Setdb1 knockdown in ATDC5 cells showed increased cell proliferation and parathyroid hormone receptor 1 expression. Contrasting results were observed in the Setdb1-overexpressed wild-type cells. Immunofluorescence staining showed the highly expressed PTH/PTHrP receptor in Setdb1-knocked down ATDC5 cells and in the chondrocytes of Setdb1 conditional knockout embryonic Meckel's cartilage, indicating the negative regulation of SETDB1 on PTH/PTHrP receptor. Strong staining of phosphorylated AKT was observed in Setdb1-knocked down ATDC5 cells. However, the inhibition of AKT phosphorylation significantly reduced both the PTH/PTHrP receptor staining and the Setdb1-knockdown-induced increase in ATDC5 cell proliferation. CONCLUSIONS Our findings contribute new insights on SETDB1 function in relation with AKT and PTH/PTHrP receptor during chondrocyte proliferation.
Collapse
Affiliation(s)
- Phyo Thiha
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Norihisa Higashihori
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| | - Sakurako Kano
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
7
|
Wan C, Zhang F, Yao H, Li H, Tuan RS. Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol 2021; 9:626708. [PMID: 33937229 PMCID: PMC8085601 DOI: 10.3389/fcell.2021.626708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The involvement of histone modifications in cartilage development, pathology and regeneration is becoming increasingly evident. Understanding the molecular mechanisms and consequences of histone modification enzymes in cartilage development, homeostasis and pathology provides fundamental and precise perspectives to interpret the biological behavior of chondrocytes during skeletal development and the pathogenesis of various cartilage related diseases. Candidate molecules or drugs that target histone modifying proteins have shown promising therapeutic potential in the treatment of cartilage lesions associated with joint degeneration and other chondropathies. In this review, we summarized the advances in the understanding of histone modifications in the regulation of chondrocyte fate, cartilage development and pathology, particularly the molecular writers, erasers and readers involved. In addition, we have highlighted recent studies on the use of small molecules and drugs to manipulate histone signals to regulate chondrocyte functions or treat cartilage lesions, in particular osteoarthritis (OA), and discussed their potential therapeutic benefits and limitations in preventing articular cartilage degeneration or promoting its repair or regeneration.
Collapse
Affiliation(s)
- Chao Wan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fengjie Zhang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanyu Yao
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rocky S Tuan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,MOE Key Laboratory for Regenerative Medicine (Shenzhen Base), School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
8
|
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Front Cell Dev Biol 2020; 8:821. [PMID: 32984323 PMCID: PMC7484903 DOI: 10.3389/fcell.2020.00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meckel's cartilage was first described by the German anatomist Johann Friedrich Meckel the Younger in 1820 from his analysis of human embryos. Two hundred years after its discovery this paper follows the development and largely transient nature of the mammalian Meckel's cartilage, and its role in jaw development. Meckel's cartilage acts as a jaw support during early development, and a template for the later forming jaw bones. In mammals, its anterior domain links the two arms of the dentary together at the symphysis while the posterior domain ossifies to form two of the three ear ossicles of the middle ear. In between, Meckel's cartilage transforms to a ligament or disappears, subsumed by the growing dentary bone. Several human syndromes have been linked, directly or indirectly, to abnormal Meckel's cartilage formation. Herein, the evolution, development and fate of the cartilage and its impact on jaw development is mapped. The review focuses on developmental and cellular processes that shed light on the mechanisms behind the different fates of this cartilage, examining the control of Meckel's cartilage patterning, initiation and maturation. Importantly, human disorders and mouse models with disrupted Meckel's cartilage development are highlighted, in order to understand how changes in this cartilage impact on later development of the dentary and the craniofacial complex as a whole. Finally, the relative roles of tissue interactions, apoptosis, autophagy, macrophages and clast cells in the removal process are discussed. Meckel's cartilage is a unique and enigmatic structure, the development and function of which is starting to be understood but many interesting questions still remain.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
9
|
Zhou Z, Wu B, Tang X, Yang W, Zou Q, Wang H. High SET Domain Bifurcated 1 (SETDB1) Expression Predicts Poor Prognosis in Breast Carcinoma. Med Sci Monit 2020; 26:e922982. [PMID: 32305991 PMCID: PMC7191957 DOI: 10.12659/msm.922982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background SETDB1, an H3K9-specific histone methyltransferase, plays important roles in the progression of various human cancers. However, the expression patterns and its clinical roles of SETDB1 remain elusive in breast cancer (BC). Material/Methods The transcriptional level of SETDB1 and survival data in BC were analyzed through UALCAN, ONCOMINE, and Pan Cancer Prognostics Database. SETDB1 protein expression was assessed by immunohistochemistry (IHC) in 159 BC tissue samples. The associations between SETDB1 expression and clinical pathological characteristics of patients were analyzed. The GEO dataset GSE108656 was downloaded and analyzed to identify the differentially expressed genes (DEGs) between control and BC cells targeting interference with SETDB. The DEGs were further integrated by bioinformatics analysis to decipher the key signaling pathways and hub genes that are regulated by SETDB. Results The public databases showed the level of SETDB1 mRNA was significantly upregulated in BC. Our IHC results demonstrated the level of SETDB1 protein was associated with tumor size (P=0.028), histopathological grading (P=0.012), lymph node metastasis (P<0.001), and TNM stage (P<0.001). High expression of SETDB1 indicated worse overall survival (P=0.015) and shorter relapse-free survival (P=0.027). The bioinformatic analysis of GSE108656 suggested that the SETDB1-related DEGs was mainly enriched in antigen processing and presentation, as well as immune networks in BC. The cytoHubba analysis suggested the top 10 hub genes were IL6, BMP4, CD74, PECAM1, HLA-DPA1, HLA-DRA, LAMC1, CTSB, SERPINA1, and CTSD. Conclusions The results suggest that SETDB1 is an oncogene and can serve as a prognostic biomarker for BC. However, the mechanisms of SETDB1 in BC remain to be explored.
Collapse
Affiliation(s)
- Zhaoping Zhou
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Xinjie Tang
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Wenlin Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China (mainland)
| | - Qiang Zou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Hongying Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
10
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
11
|
Antwi P, Hong CS, Duran D, Jin SC, Dong W, DiLuna M, Kahle KT. A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9. Cold Spring Harb Mol Case Stud 2018; 4:a002766. [PMID: 29695406 PMCID: PMC5983176 DOI: 10.1101/mcs.a002766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/29/2022] Open
Abstract
Campomelic dysplasia is a rare skeletal dysplasia characterized by Pierre Robin sequence, craniofacial dysmorphism, shortening and angulation of long bones, tracheobronchomalacia, and occasionally sex reversal. The disease is due to mutations in SOX9 or chromosomal rearrangements involving the long arm of Chromosome 17 harboring the SOX9 locus. SOX9, a transcription factor, is indispensible in establishing and maintaining neural stem cells in the central nervous system. We present a patient with angulation of long bones and external female genitalia on prenatal ultrasound who was subsequently found to harbor the chromosomal abnormality 46, XY, t(6;17) (p21.1;q24.3) on prenatal genetic testing. Comparative genomic hybridization revealed deletions at 6p21.1 and 17q24.3, the latter being 2.3 Mb upstream of SOX9 Whole-exome sequencing did not identify pathogenic variants in SOX9, suggesting that the 17q24.3 deletion represents a translocation breakpoint farther upstream of SOX9 than previously identified. At 2 mo of age the patient developed progressive communicating ventriculomegaly and thinning of the cortical mantle without clinical signs of increased intracranial pressure. This case suggests ventriculomegaly in some cases represents not a primary impairment of cerebrospinal fluid dynamics, but an epiphenomenon driven by a genetic dysregulation of neural progenitor cell fate.
Collapse
Affiliation(s)
- Prince Antwi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Christopher S Hong
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael DiLuna
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|