1
|
Han M, P P, Tian J, Wang C, Zhou S, Fu L, Wang L, Tian N. LncRNA NEAT1 protects uremic toxin-induced intestinal epithelial barrier injury by regulating miR-122-5p/Occludin axis. PLoS One 2025; 20:e0322989. [PMID: 40338929 PMCID: PMC12061087 DOI: 10.1371/journal.pone.0322989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/20/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Long non-coding RNA(LncRNA) has been reported to be associated with intestinal barrier damage. The aim of this study was to explore the mechanism of lncRNA Nuclear enriched abundant transcript 1 (NEAT1) in uremic toxin-induced intestinal epithelial barrier injury. METHODS Human colon cancer cells (Caco-2) were used to establish intestinal epithelial injury models with the urea treatment in different conditions. Cell Counting Kit-8 (CCK-8) and Western blot screening the best concentration and time. The expressions of lncRNA NEAT1 and miR-122-5p were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot and immunofluorescence were used to detect the expression of tight junction proteins Occludin, ZO-1 and Claudin-1. Sodium fluorescein was used to detect the paracellular permeability of intestinal epithelial injury models. The binding of miR-122-5p to lncRNA NEAT1 and Occludin was determined by bioinformatics analysis and dual luciferase reporter assay. RESULTS The best condition for the injury model was urea treatment in 144 mg/dl for 48 hours. With the increase of urea intervention time and concentration, the damage degree of intestinal epithelial cells is aggravated. Based on the qRT-PCR results, lncRNA NEAT1 was significantly down-regulated in the model group. Meanwhile, the tight junction proteins Occludin, ZO-1 and Claudin-1 were significantly reduced. The permeability of sodium fluorescein was significantly increased in the model group. Overexpression of lncRNA NEAT1 can alleviate the above performances. As the target gene of lncRNA NEAT1, miR-122-5p is significantly up-regulated in the model group. The dual luciferase reporter assay proved that miR-122-5p was targets to Occludin. The protective effect of overexpression lncRNA NEAT1 on intestinal epithelial barrier function is reversed by miR-122-5p mimics. CONCLUSION LncRNA NEAT1 protects uremic toxin-induced intestinal epithelial barrier injury by regulating miR-122-5p/Occludin axis.
Collapse
Affiliation(s)
- Meng Han
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Pathuama P
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinhai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Chen Wang
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Shengnan Zhou
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lina Fu
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Libin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital/ Shenzhen Nanshan Hospital, Guangdong, China
| | - Na Tian
- Department of Nephrology, General Hospital of Ningxia Medical University, Ningxia, China
| |
Collapse
|
2
|
Zhang Y, Wei C, Ding J, Chu J, Huang B, Shi G, Li S. Selenium deficiency modulates necroptosis-mediated intestinal inflammation in broiler through the lncRNAWSF27/miRNA1696/GPX3 axis. J Anim Sci 2025; 103:skae288. [PMID: 39331000 PMCID: PMC11712280 DOI: 10.1093/jas/skae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Deficiency of selenium (Se), an important trace element, causes diarrhea and even death in broilers, thereby affecting the economic development of poultry production. Adding Se is one way to relieve this situation; however, it has not fundamentally resolved intestinal inflammation. Therefore, we sought a new strategy to alleviate intestinal inflammation by studying the specific mechanisms of Se deficiency. By replicating the Se-deficient broiler model and establishing a chicken small intestinal epithelial cell (CSIEC) model, we determined that Se deficiency caused intestinal oxidative stress and necroptotic intestinal inflammation in broilers by decreasing glutathione peroxidase (GPX) 3 expression. Simultaneously, the expression of long non-coding RNA (lncRNA)WSF27 decreased and that of miR-1696 increased in Se-deficient intestines. Recently discovered competing endogenous RNAs (ceRNAs) form novel regulatory networks, which were found that selenoproteins are involved in ceRNA regulation. However, the mechanism of action of the non-coding RNA/GPX3 axis in Se-deficient broiler intestinal inflammation remains unclear. This study aimed to explore the mechanism through which Se deficiency regulates intestinal inflammation in broilers through the lncRNAWSF27/miR-1696/GPX3 axis. Our previous studies showed that lncRNAWSF27, miR-1696, and GPX3 have ceRNA-regulatory relationships. To further determine the role of the lncRNAWSF27/miR-1696/GPX3 axis in Se-deficient broiler intestinal inflammation, CSIEC models with GPX3 knockdown/overexpression, lncRNAWSF27 knockdown, or miR-1696 knockdown/overexpression were established to simulate intestinal injury. GPX3 knockdown, as well as lncRNAWSF27 and miR-1696 overexpression, aggravated cell damage. On the contrary, it can alleviate this situation. Our results reveal that the mechanism of lncRNAWSF27/miR-1696/GPX3 regulated Se-deficient broiler intestinal inflammation. This conclusion enriches our understanding of the mechanism of intestinal injury caused by Se deficiency and contributes to the diagnosis of Se-deficient intestinal inflammation and relevant drug development.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Chunyu Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiayi Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiahong Chu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bo Huang
- National Selenium-Rich Product Quality Supervision and Inspection Center, Product Quality Supervision and Inspection Institute, Enshi 445099, P. R. China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
3
|
Cairns CA, Xiao L, Wang JY. Posttranscriptional Regulation of Intestinal Mucosal Growth and Adaptation by Noncoding RNAs in Critical Surgical Disorders. J INVEST SURG 2024; 37:2308809. [PMID: 38323630 PMCID: PMC11027105 DOI: 10.1080/08941939.2024.2308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
The human intestinal epithelium has an impressive ability to respond to insults and its homeostasis is maintained by well-regulated mechanisms under various pathophysiological conditions. Nonetheless, acute injury and inhibited regeneration of the intestinal epithelium occur commonly in critically ill surgical patients, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Effective therapies for the preservation of intestinal epithelial integrity and for the prevention of mucosal hemorrhage and gut barrier dysfunction are limited, primarily because of a poor understanding of the mechanisms underlying mucosal disruption. Noncoding RNAs (ncRNAs), which include microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and small vault RNAs (vtRNAs), modulate a wide array of biological functions and have been identified as orchestrators of intestinal epithelial homeostasis. Here, we feature the roles of many important ncRNAs in controlling intestinal mucosal growth, barrier function, and repair after injury-particularly in the context of postoperative recovery from bowel surgery. We review recent literature surrounding the relationships between lncRNAs, microRNAs, and RNA-binding proteins and how their interactions impact cell survival, proliferation, migration, and cell-to-cell interactions in the intestinal epithelium. With advancing knowledge of ncRNA biology and growing recognition of the importance of ncRNAs in maintaining the intestinal epithelial integrity, ncRNAs provide novel therapeutic targets for treatments to preserve the gut epithelium in individuals suffering from critical surgical disorders.
Collapse
Affiliation(s)
- Cassandra A. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
4
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Jiang F, Wu M, Li R. The significance of long non-coding RNAs in the pathogenesis, diagnosis and treatment of inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2023; 6:pbad031. [PMID: 38163004 PMCID: PMC10757071 DOI: 10.1093/pcmedi/pbad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic relapsing gastrointestinal inflammatory diseases with significant global incidence. Although the pathomechanism of IBD has been extensively investigated, several aspects of its pathogenesis remain unclear. Long non-coding RNAs (lncRNAs) are transcripts with more than 200 nucleotides in length that have potential protein-coding functions. LncRNAs play important roles in biological processes such as epigenetic modification, transcriptional regulation and post-transcriptional regulation. In this review, we summarize recent advances in research on IBD-related lncRNAs from the perspective of the overall intestinal microenvironment, as well as their potential roles as immune regulators, diagnostic biomarkers and therapeutic targets or agents for IBD.
Collapse
Affiliation(s)
- Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wu
- Drug Discovery Section, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| |
Collapse
|
7
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
8
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
9
|
Jia M, Yi B, Chen X, Xu Y, Xu X, Wu Z, Ji J, Tang J, Yu D, Zheng Y, Zhou Q, Zhao Y. Carbon dots induce pathological damage to the intestine via causing intestinal flora dysbiosis and intestinal inflammation. J Nanobiotechnology 2023; 21:167. [PMID: 37231475 PMCID: PMC10210306 DOI: 10.1186/s12951-023-01931-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Carbon dots (CDs), as excellent antibacterial nanomaterials, have gained great attention in treating infection-induced diseases such as periodontitis and stomatitis. Given the eventual exposure of CDs to the intestine, elucidating the effect of CDs on intestinal health is required for the safety evaluation of CDs. RESULTS Herein, CDs extracted from ε-poly-L-lysine (PL) were chosen to explore the modulation effect of CDs on probiotic behavior in vitro and intestinal remodeling in vivo. Results verify that PL-CDs negatively regulate Lactobacillus rhamnosus (L. rhamnosus) growth via increasing reactive oxygen species (ROS) production and reducing the antioxidant activity, which subsequently destroys membrane permeability and integrity. PL-CDs are also inclined to inhibit cell viability and accelerate cell apoptosis. In vivo, the gavage of PL-CDs is verified to induce inflammatory infiltration and barrier damage in mice. Moreover, PL-CDs are found to increase the Firmicutes to Bacteroidota (F/B) ratio and the relative abundance of Lachnospiraceae while decreasing that of Muribaculaceae. CONCLUSION Overall, these evidences indicate that PL-CDs may inevitably result in intestinal flora dysbiosis via inhibiting probiotic growth and simultaneously activating intestinal inflammation, thus causing pathological damage to the intestine, which provides an effective and insightful reference for the potential risk of CDs from the perspective of intestinal remodeling.
Collapse
Affiliation(s)
- Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Bingcheng Yi
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
| | - Xian Chen
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yongzhi Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Xinkai Xu
- School of Stomatology, Qingdao University, Qingdao, 266003 China
| | - Zhaoxu Wu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266071 China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071 China
- School of Stomatology, Qingdao University, Qingdao, 266003 China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000 Zhejiang China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
10
|
Zhao S, Liao J, Shen M, Li X, Wu M. Epigenetic dysregulation of autophagy in sepsis-induced acute kidney injury: the underlying mechanisms for renoprotection. Front Immunol 2023; 14:1180866. [PMID: 37215112 PMCID: PMC10196246 DOI: 10.3389/fimmu.2023.1180866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Sepsis-induced acute kidney injury (SI-AKI), a common critically ill, represents one of the leading causes of global death. Emerging evidence reveals autophagy as a pivotal modulator of SI-AKI. Autophagy affects the cellular processes of renal lesions, including cell death, inflammation, and immune responses. Herein, we conducted a systematic and comprehensive review on the topic of the proposed roles of autophagy in SI-AKI. Forty-one relevant studies were finally included and further summarized and analyzed. This review revealed that a majority of included studies (24/41, 58.5%) showed an elevation of the autophagy level during SI-AKI, while 22% and 19.5% of the included studies reported an inhibition and an elevation at the early stage but a declination of renal autophagy in SI-AKI, respectively. Multiple intracellular signaling molecules and pathways targeting autophagy (e.g. mTOR, non-coding RNA, Sirtuins family, mitophagy, AMPK, ROS, NF-Kb, and Parkin) involved in the process of SI-AKI, exerting multiple biological effects on the kidney. Multiple treatment modalities (e.g. small molecule inhibitors, temsirolimus, rapamycin, polydatin, ascorbate, recombinant human erythropoietin, stem cells, Procyanidin B2, and dexmedetomidine) have been found to improve renal function, which may be attributed to the elevation of the autophagy level in SI-AKI. Though the exact roles of autophagy in SI-AKI have not been well elucidated, it may be implicated in preventing SI-AKI through various molecular pathways. Targeting the autophagy-associated proteins and pathways may hint towards a new prospective in the treatment of critically ill patients with SI-AKI, but more preclinical studies are still warranted to validate this hypothesis.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizho, Zhejiang, China
| | - Mei Wu
- Educational Administration Department, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
11
|
Gou W, Zhang D, Gao L. Qingdu decoction can reduce LPS induced ACLF endotoxemia by regulating microRNA-34c/MAZ/TJs and microRNA-122a/Zonulin/EGFR signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115922. [PMID: 36414212 DOI: 10.1016/j.jep.2022.115922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingdu Decoction (QDT) is a traditional Chinese medicine (TCM) that was derived from Xiaochengqi Decoction, a famous decoction documented in the book of Treatise on Exogenous Febrile Disease in the Eastern Han Dynasty. According to our years of clinical application, QDT showed satisfactory efficacy in the treatment of endotoxemia in acute-on-chronic liver failure (ACLF). However, the underlying molecular mechanisms remain largely unknown. AIM OF STUDY In this study, we aimed to systematically evaluate the intervention effect of QDT on endotoxemia in rats and further clarify its potential regulatory mechanism. MATERIALS AND METHODS The rat model of ACLF endotoxemia was induced by TAA and LPS + D-Gal. Then the rats were treated with clinical doses of QDT and lactulose. The rats were divided into four groups: CG, MG, QG and LG. The target microRNA was screened by high-throughput sequencing. The rat weight, liver index, hepatointestinal phenotype, serum biochemical indexes, mast cell activity, and hepatointestinal histopathology were used to evaluate the intervention effect. Western blot analysis was used to detect the expression levels of MAZ and its downstream genes ZO-1 and Occludin, and the expression levels of Zonulin and its downstream gene EGFR in colon. Finally, the expression of the miR-34c, MAZ, ZO-1, Occludin, miR-122a, Zonulin, and EGFR in colon was detected by qRT-PCR to further confirm the mechanism of the miR-34c/MAZ/TJs pathway and the miR-122a/Zonulin/EGFR pathway. RESULTS The rat weight, liver index, liver and colon phenotype, and serum biochemical indexes showed that QDT could significantly reduce liver and intestine injury and inhibit the progress of ACLF and endotoxemia. Toluidine blue staining and cytokine indexes showed that QDT could inhibit the activity of MCs and reduce the release of inflammatory factors. Mechanistically, QDT can inhibit the activity of MCs, activate miR-34c/MAZ/TJs pathway and miR-122a/Zonulin/EGFR pathway in colon, promote the recovery of intestinal barrier homeostasis, reduce and restore the damage of endotoxemia. CONCLUSION Our results suggested that QDT can significantly reduce rat ACLF endotoxemia by regulating the miR-34c/MAZ/TJs pathway and the miR-122a/Zonulin/EGFR pathway in colon.
Collapse
Affiliation(s)
- Wenjing Gou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lianyin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Zhao K, Wang C, Liu Y, Li Y, Hui T, Wang G, Zhang X, Xue X, Kang J, Feng G. Deficiency of microRNA-10b promotes DSS-induced inflammatory response via impairing intestinal barrier function. Biochem Biophys Res Commun 2022; 636:48-54. [DOI: 10.1016/j.bbrc.2022.10.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/15/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
13
|
Fan Y, Qin M, Zhu J, Chen X, Luo J, Chen T, Sun J, Zhang Y, Xi Q. MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation. Crit Rev Food Sci Nutr 2022; 64:4116-4133. [PMID: 36287029 DOI: 10.1080/10408398.2022.2139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Accumulating evidence has demonstrated that diet-derived gut microbiota participates in the regulation of host metabolism and becomes the foundation for precision-based nutritional interventions and the biomarker for potential individual dietary recommendations. However, the specific mechanism of the gut microbiota-host crosstalk remains unclear. Recent studies have identified that noncoding RNAs, as important elements in the regulation of the initiation and termination of gene expression, mediate microbiota-host communication. Besides, the cross-kingdom regulation of non-host derived microRNAs also influence microbiota-host crosstalk via diet motivation. Hence, understanding the relationship between gut microbiota, miRNAs, and host metabolism is indispensable to revealing individual differences in dietary motivation and providing targeted recommendations and strategies. In this review, we first present an overview of the interaction between diet, host genetics, and gut microbiota and collected some latest research associated with microRNAs modulated gut microbiota and intestinal homeostasis. Then, specifically described the possible molecular mechanisms of microRNAs in sensing and regulating gut microbiota-host crosstalk. Lastly, summarized the prospect of microRNAs as biomarkers in disease diagnosis, and the disadvantages of microRNAs in regulating gut microbiota-host crosstalk. We speculated that microRNAs could become potential novel circulating biomarkers for personalized dietary strategies to achieve precise nutrition in future clinical research implications.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengran Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Jiang B, Liu M, Li P, Zhu Y, Liu Y, Zhu K, Zuo Y, Li Y. RNA-seq reveals a novel porcine lncRNA MPHOSPH9-OT1 induces CXCL8/IL-8 expression in ETEC infected IPEC-J2 cells. Front Cell Infect Microbiol 2022; 12:996841. [PMID: 36093177 PMCID: PMC9452961 DOI: 10.3389/fcimb.2022.996841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrhea in piglets, leading to economic losses in the pig industry. In past decades, long non-coding RNAs (lncRNAs) have shown to be widely involved in the regulation of host immunity in porcine infection diseases. In this study, we explored the lncRNAs associated with ETEC F41 infection in IPEC-J2 cells by high-throughput sequencing and bioinformatic analysis. A total of 10150 novel porcine lncRNAs were identified. There were 161 differentially expressed (DE) lncRNAs associated with ETEC F41 infection, of which 65 DE lncRNAs were up-regulated and 96 DE lncRNAs were down-regulated. Functional and KEGG enrichment analysis of predicted target genes of DE lncRNAs indicated they are enriched in cell growth and inflammation-related pathways, such as endocytosis, focal adhesion, TGF-β signaling pathway, and adherens junctions. We revealed a novel candidate lncRNA MPHOSPH9-OT1 that was up-regulated after ETEC infection. The qRT-PCR validation and ELISA assessment showed the knockdown and overexpression of MPHOSPH9-OT1 resulted in significantly down- and up-regulation of cellular mRNA levels and secreted cytokine levels of CXCL8/IL-8, respectively. Meanwhile, MPHOSPH9-OT1 equilibrium is important to maintain the transepithelial electric resistance value and tight junction protein expression of IPEC-J2 cells. This study provides insights into the functionality of novel porcine lncRNAs in host immune responses to ETEC infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuzhu Zuo
- *Correspondence: Yan Li, ; Yuzhu Zuo,
| | - Yan Li
- *Correspondence: Yan Li, ; Yuzhu Zuo,
| |
Collapse
|
15
|
Li Y, Liu J, Pongkorpsakol P, Xiong Z, Li L, Jiang X, Zhao H, Yuan D, Zhang C, Guo Y, Dun Y. Relief Effects of Icariin on Inflammation-Induced Decrease of Tight Junctions in Intestinal Epithelial Cells. Front Pharmacol 2022; 13:903762. [PMID: 35754510 PMCID: PMC9214228 DOI: 10.3389/fphar.2022.903762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammatory cytokines including TNF-α and IL-1β impair intestinal barrier function in aging by disrupting intestinal tight junction integrity. Icariin (ICA) has a variety of pharmacological effects. Indeed, ICA produces anti-inflammatory, anti-oxidative stress, and inhibitory effects on microRNA (miRNA) expression. This study was to explore whether ICA could alleviate inflammation-associated intestinal barrier function impairment in aging and its underlying mechanism. Of particular interest, network pharmacology prediction indicated the potential therapeutic impacts of ICA for the treatment of colitis. Then, rats were used to study whether ICA has a protective effect on the reduction of tight junctions caused by inflammatory cytokines. Next, Caco-2 cell monolayers were used to explore the mechanism by which ICA alleviates the down-regulation of tight junctions. Network pharmacology prediction revealed that ICA alleviated colitis via suppressing oxidative stress. After ICA intervention, expressions of inflammatory cytokines were reduced, but tight junctions, antioxidant enzymes in aging rats were up-regulated. ICA reversed the TNF-α-induced decrease in abundance of Occludin protein in Caco-2 cell monolayers. Meanwhile, ICA alleviated the increase in permeability and expression of miR-122a. However, the protective effect of ICA was markedly attenuated after transfection with miR-122a mimics. In conclusion, ICA reduced the expressions of Occludin, Claudin1, and Claudin5 in colon, which were related to the reduction of TNF-α and IL-1β and alleviation of colonic in vivore. And ICA attenuated TNF-α-induced Occludin disruption and epithelial barrier impairment by decreasing miR-122a expression in Caco-2 cell monolayers.
Collapse
Affiliation(s)
- Yanli Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Jie Liu
- Department of Medical Research Center, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Zhengguo Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Anatomy and Histoembryology, Medical College, China Three Gorges University, Yichang, China
| | - Li Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Anatomy and Histoembryology, Medical College, China Three Gorges University, Yichang, China
| | - Xuemei Jiang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Pathology, Medical College, China Three Gorges University, Yichang, China
| | - Haixia Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Yuhui Guo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Yaoyan Dun
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China.,Department of Pathology, Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
16
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
17
|
Saccharomyces cerevisiae I4 Showed Alleviating Effects on Dextran Sulfate Sodium-Induced Colitis of Balb/c Mice. Foods 2022; 11:foods11101436. [PMID: 35627006 PMCID: PMC9140780 DOI: 10.3390/foods11101436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The purpose of this study was to investigate the ameliorating effects of three yeast strains, Saccharomyces cerevisiae I4, Clavispora lusitaniae 30 and Pichia kudriavzevii 11, isolated from traditional fermented dairy food in Xinjiang, China, on the ulcerative colitis symptoms of Balb/c mice treated by dextran sulfate sodium (DSS). Among which, S. cerevisiae I4 had good tolerance to simulated gastrointestinal juice and strong adhesion to HT–29 cells monolayers. Furthermore, the three yeast strains were oral administered to Balb/c mice with DSS induced colitis. The weight loss, colon shortening and histological injury of colitis mice were ameliorated. Then, oral administration of S. cerevisiae I4 improved the immune state by reducing the contents of TNF–α, IL–6 and IL–1β and increasing immunoglobulin. The relative expression of intestinal barrier proteins Claudin–1, Occludin and Zonula Occludins–1 (ZO–1) of the mice enhanced, and the short chain fatty acids (SCFAs) content such as Propionic acid, Butyric acid, Isobutyric acid and Isovaleric acid in the feces of the mice increased to varying degrees, after S. cerevisiae I4 treatment compared with the model group of drinking 3% DSS water without yeast treatment. Moreover, S. cerevisiae I4 treatment lifted the proportion of beneficial bacteria such as Muribaculaceae, Lactobacillaceae and Rikenellaceae in the intestinal tract of the mice, the abundance of harmful bacteria such as Staphylococcus aureus and Turicibacter was decreased. These results suggested that S. cerevisiae I4 could alleviate DSS induced colitis in mice by enhancing intestinal barrier function and regulating intestinal flora balance.
Collapse
|
18
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
19
|
Wang X, Xu L, Wang T, Xu J, Fan F, Zhang Y, Wang J, Cao Q. Pulsatilla decoction alleviates colitis by enhancing autophagy and regulating PI3K‑Akt‑mTORC1 signaling pathway. Mol Med Rep 2022; 25:108. [PMID: 35103289 PMCID: PMC8822884 DOI: 10.3892/mmr.2022.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic effect of Pulsatilla decoction (PD) on ulcerative colitis (UC) and to elucidate its potential molecular mechanisms. C57BL/6 mice expressing natural killer (NK)1.1 were used as experimental animals in the present study and a model of oxazolone‑induced colitis was established. Mice were randomly divided into the following five groups: i) PD group; ii) oxazolone‑induced colitis group; iii) IL‑13 intervention group; iv) 5‑aminosalicylic acid positive control group; and v) negative control group (equal volume saline gavage). A total of 10 animals were used in each group. The effects of PD on UC and the association between this regimen and the PI3K‑Akt‑mTORC1 signaling pathway were evaluated by disease activity index (DAI), hematoxylin and eosin staining, reverse transcription‑quantitative PCR (RT‑qPCR), immunofluorescence assay, ELISA and western blotting. The UC models were successfully established by injecting oxazolone gavage solution. Clinical colitis evaluation and histological examination revealed that PD reduced the DAI values in oxazolone‑induced colitis in mice and the degree of infiltration in NK1.1 cells. PD significantly reduced the secretion of IL‑13, as determined using an ELISA. In addition, western blotting and RT‑qPCR analyses demonstrated that Beclin1 and LC3II/I expression levels were downregulated following treatment of the mice with PD. In addition, PD not only partially restored alterations in the expression of tight junction proteins in the colon tissues, but also suppressed the activation of the PI3K‑Akt‑mTORC1 signaling pathway. The data indicated that this regimen could alleviate oxazolone‑induced UC in mice, which could significantly reduce tissue inflammation and autophagy. The mechanism of action was associated with the PI3K‑Akt‑mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Xuewei Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Lijun Xu
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Tao Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jian Xu
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Fugang Fan
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yu Zhang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jinpin Wang
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qin Cao
- Division of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
20
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
21
|
The Role of lncRNAs in Regulating the Intestinal Mucosal Mechanical Barrier. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2294942. [PMID: 34820453 PMCID: PMC8608538 DOI: 10.1155/2021/2294942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022]
Abstract
lncRNA is a transcript that is more than 200 bp in length. Currently, evidence has shown that lncRNA is of great significance in cell activity, involved in epigenetics, gene transcription, chromatin regulation, etc. The existence of an intestinal mucosal mechanical barrier hinders the invasion of pathogenic bacteria and toxins, maintaining the stability of the intestinal environment. Serious destruction or dysfunction of the mechanical barrier often leads to intestinal diseases. This review first summarizes the ability of lncRNAs to regulate the intestinal mucosal mechanical barrier. We then discussed how lncRNAs participate in various intestinal diseases by regulating the intestinal mucosal mechanical barrier. Finally, we envision its potential as a new marker for diagnosing and treating intestinal inflammatory diseases.
Collapse
|
22
|
Gebert J, Gelincik O, Oezcan-Wahlbrink M, Marshall JD, Hernandez-Sanchez A, Urban K, Long M, Cortes E, Tosti E, Katzenmaier EM, Song Y, Elsaadi A, Deng N, Vilar E, Fuchs V, Nelius N, Yuan YP, Ahadova A, Sei S, Shoemaker RH, Umar A, Wei L, Liu S, Bork P, Edelmann W, von Knebel Doeberitz M, Lipkin SM, Kloor M. Recurrent Frameshift Neoantigen Vaccine Elicits Protective Immunity With Reduced Tumor Burden and Improved Overall Survival in a Lynch Syndrome Mouse Model. Gastroenterology 2021; 161:1288-1302.e13. [PMID: 34224739 PMCID: PMC10184299 DOI: 10.1053/j.gastro.2021.06.073] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy
- Colorectal Neoplasms, Hereditary Nonpolyposis/genetics
- Colorectal Neoplasms, Hereditary Nonpolyposis/immunology
- Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
- Databases, Genetic
- Disease Models, Animal
- Epitopes
- Frameshift Mutation
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunogenetic Phenomena
- Mice, Inbred C57BL
- Mice, Knockout
- MutS Homolog 2 Protein/genetics
- Naproxen/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Tumor Burden/drug effects
- Tumor Microenvironment
- Vaccination
- Vaccine Efficacy
- Mice
Collapse
Affiliation(s)
- Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| | | | - Mine Oezcan-Wahlbrink
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Katharina Urban
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ali Elsaadi
- Weill Cornell Medical College, New York, New York
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vera Fuchs
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Nina Nelius
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Yan P Yuan
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Robert H Shoemaker
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| | | | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
23
|
Jang HJ, Lee SI. MicroRNA expression profiling during the suckling-to-weaning transition in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:854-863. [PMID: 34447961 PMCID: PMC8367414 DOI: 10.5187/jast.2021.e69] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/20/2022]
Abstract
Weaning induces physiological changes in intestinal development that affect
pigs’ growth performance and susceptibility to disease. As a
posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis
during intestinal development. We performed small RNA expression profiling in
the small intestine of piglets before weaning (BW), 1 week after weaning (1W),
and 2 weeks after weaning (2W) to identify weaning-associated differentially
expressed miRNAs. We identified 38 differentially expressed miRNAs with varying
expression levels among BW, 1W, and 2W. Then, we classified expression patterns
of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent
pattern 1, which had an increased expression at 1W and a decreased expression at
2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W
and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern
3, which had a stable expression at 1W and a decreased expression at 2W. Eleven
miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1,
ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and
ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and
a stable expression at 2W. Moreover, we identified 133 candidate targets for
miR-196a using a target prediction database. Gene ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the
target genes were associated with 19 biological processes, 4 cellular
components, 8 molecular functions, and 7 KEGG pathways, including
anterior/posterior pattern specification as well as the cancer, PI3K–Akt,
MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that
miRNAs regulate the development of the small intestine during the weaning
process in piglets by anterior/posterior pattern specification as well as the
cancer, PI3K–Akt, MAPK, GnRH, and neurotrophin signaling pathways.
Collapse
Affiliation(s)
- Hyun Jun Jang
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sang In Lee
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
24
|
Ayyar KK, Moss AC. Exosomes in Intestinal Inflammation. Front Pharmacol 2021; 12:658505. [PMID: 34177577 PMCID: PMC8220320 DOI: 10.3389/fphar.2021.658505] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are 30–150 nm sized vesicles released by a variety of cells, and are found in most physiological compartments (feces, blood, urine, saliva, breast milk). They can contain different cargo, including nucleic acids, proteins and lipids. In Inflammatory Bowel Disease (IBD), a distinct exosome profile can be detected in blood and fecal samples. In addition, circulating exosomes can carry targets on their surface for monoclonal antibodies used as IBD therapy. This review aims to understand the exosome profile in humans and other mammals, the cargo contained in them, the effect of exosomes on the gut, and the application of exosomes in IBD therapy.
Collapse
Affiliation(s)
- Kanchana K Ayyar
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
25
|
LncRNA: A Potential Research Direction in Intestinal Barrier Function. Dig Dis Sci 2021; 66:1400-1408. [PMID: 32591966 DOI: 10.1007/s10620-020-06417-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides and play important roles in a variety of diseases. LncRNAs are involved in many biologic processes including cell differentiation, development, and apoptosis. The intestinal barrier is considered one of the most important protective barriers in humans. Severe damage or dysfunction of the intestinal barrier may be associated with the occurrence and development of many diseases, such as inflammatory bowel disease and ulcerative colitis. LncRNAs have been found to be associated with intestinal barrier function in some studies, which are at an early stage. In this review, we introduce the roles of LncRNAs in the intestinal barrier and investigate the possibility of lncRNAs as a research field in the intestinal barrier.
Collapse
|
26
|
Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, Li S, Zhou Y, Luo L, Huang J, Xiao R, Chen J, Zeng Q. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci 2021; 17:712-727. [PMID: 33767583 PMCID: PMC7975691 DOI: 10.7150/ijbs.45885] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review.
Collapse
Affiliation(s)
- Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
27
|
Long Noncoding RNA THAP9-AS1 and TSPOAP1-AS1 Provide Potential Diagnostic Signatures for Pediatric Septic Shock. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7170464. [PMID: 33344646 PMCID: PMC7725549 DOI: 10.1155/2020/7170464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Background Sepsis is a systemic inflammatory syndrome caused by infection with a high incidence and mortality. Although long noncoding RNAs have been identified to be closely involved in many inflammatory diseases, little is known about the role of lncRNAs in pediatric septic shock. Methods We downloaded the mRNA profiles GSE13904 and GSE4607, of which GSE13904 includes 106 blood samples of pediatric patients with septic shock and 18 health control samples; GSE4607 includes 69 blood samples of pediatric patients with septic shock and 15 health control samples. The differentially expressed lncRNAs were identified through the limma R package; meanwhile, GO terms and KEGG pathway enrichment analysis was performed via the clusterProfiler R package. The protein-protein interaction (PPI) network was constructed based on the STRING database using the targets of differently expressed lncRNAs. The MCODE plug-in of Cytoscape was used to screen significant clustering modules composed of key genes. Finally, stepwise regression analysis was performed to screen the optimal lncRNAs and construct the logistic regression model, and the ROC curve was applied to evaluate the accuracy of the model. Results A total of 13 lncRNAs which simultaneously exhibited significant differences in the septic shock group compared with the control group from two sets were identified. According to the 18 targets of differentially expressed lncRNAs, we identified some inflammatory and immune response-related pathways. In addition, several target mRNAs were predicted to be potentially involved in the occurrence of septic shock. The logistic regression model constructed based on two optimal lncRNAs THAP9-AS1 and TSPOAP1-AS1 could efficiently separate samples with septic shock from normal controls. Conclusion In summary, a predictive model based on the lncRNAs THAP9-AS1 and TSPOAP1-AS1 provided novel lightings on diagnostic research of septic shock.
Collapse
|
28
|
Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. Int J Biol Macromol 2020; 167:76-84. [PMID: 33248053 DOI: 10.1016/j.ijbiomac.2020.11.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023]
Abstract
Many dietary polysaccharides have been shown to protect the intestinal barrier integrity against several noxious stimuli. Previously, we have isolated a polysaccharide RAMPtp from Atractylodis macrocephalae Koidz, and analyzed its structure. However, the effects of RAMPtp on intestinal barrier function have not been investigated. Here, we evaluated the protective effects of RAMPtp on Dextran sulfate sodium (DSS)-induced intestinal epithelial cells (IECs) injury. The findings showed that RAMPtp boosted the proliferation and survival of IECs during DSS stimulation. Furthermore, we found that RAMPtp protected the IECs from injury induced by DSS through maintaining the barrier function and inflammation response. Mechanistically, we identified a novel lncRNA ITSN1-OT1, which was induced by RAMPtp during DSS stimulation. It blocked the nuclear import of phosphorylated STAT2 to prevent the DSS induced decreased expression and structural destroy of tight junction proteins. Hence, the study clarified the protective effects and mechanism of polysaccharides RAMPtp on DSS-induced intestinal barrier dysfunction.
Collapse
|
29
|
Zhang X, Ma L, Zhang C, Hou B, Zhou Y, Yu S. Silencing LncRNA-DANCR attenuates inflammation and DSS-induced endothelial injury through miR-125b-5p. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 44:644-653. [PMID: 33317921 DOI: 10.1016/j.gastrohep.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND LncRNA-DANCR is involved in inflammation and acts as a major contributor to colon cancer. The effects and mechanism of LncRNA-DANCR were first investigated in a DSS-induced colitis model in vivo and vitro. MATERIAL AND METHODS Sprague-Dawley rats were given DSS to induce the colitis model. TNF-α, IL-1β, IL-6 levels and expression of intestinal adhesion proteins ZO-1 and MUC2 in colon tissues and DSS-induced NCM460 cells were measured using corresponding kits. A hematoxylin and eosin (H&E) staining assay was performed to evaluate colon tissue pathology conditions. Protein expression levels in DSS-induced NCM460 cells were evaluated by Western blotting, and cell apoptosis was detected using a TUNEL assay. Gene levels in DSS-induced NCM460 cells were evaluated by PCR. The StarBase online tool was used to predict the LncRNA-DANCR target. The LncRNA-DANCR target was verified using a luciferase reporter assay. RESULTS LncRNA-DANCR was up-regulated in DSS-induced groups of rats. TNF-α, IL-1β and IL-6 expression was significantly increased in DSS-induced groups of rats and cells. Zo-1 and MUC2 expression levels were decreased in DSS-induced groups of rats. Silencing LncRNA-DANCR reduced inflammation, cell apoptosis and up-regulated ZO-1, MUC2 and Claudin-1 in DSS-induced cells. MiR-125b-5p was the downstream LncRNA-DANCR target. All LncRNA-DANCR effects in the colitis model were reversed by the miR-125b-5p inhibitor. CONCLUSION LncRNA-DANCR/miR-125b-5p, which may act as a regulatory axis in inflammation, apoptosis and barrier function dysregulation, can provide an essential reference for the development of new drugs in colitis treatment.
Collapse
Affiliation(s)
- Xiujing Zhang
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China.
| | - Lizhuan Ma
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Chao Zhang
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Bingxu Hou
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Yanli Zhou
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Simiao Yu
- Department of Gastroenterology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| |
Collapse
|
30
|
Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 2020; 95:1287-1307. [PMID: 32410383 PMCID: PMC7540363 DOI: 10.1111/brv.12608] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Gut mucosal barriers, including chemical and physical barriers, spatially separate the gut microbiota from the host immune system to prevent unwanted immune responses that could lead to intestinal inflammation. In inflammatory bowel disease (IBD), there is mucosal barrier dysfunction coupled with immune dysregulation and dysbiosis. The discovery of exosomes as regulators of vital functions in both physiological and pathological processes has generated much research interest. Interestingly, exosomes not only serve as natural nanocarriers for the delivery of functional RNAs, proteins, and synthetic drugs or molecules, but also show potential for clinical applications in tissue repair and regeneration as well as disease diagnosis and prognosis. Biological or chemical modification of exosomes can broaden, change and enhance their therapeutic capability. We review the modulatory effects of exosomal proteins, RNAs and lipids on IBD components such as immune cells, the gut microbiota and the intestinal mucosal barrier. Mechanisms involved in regulating these factors towards attenuating IBD have been explored in several studies employing exosomes derived from different sources. We discuss the potential utility of exosomes as diagnostic markers and drug delivery systems, as well as the application of modified exosomes in IBD.
Collapse
Affiliation(s)
- Dickson K. W. Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
- Directorate of University Health Services, University of Cape Coast, PMBCape CoastGhana
| | - Li Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
- Nanjing Lishui People's Hospital, Zhongda Hospital Lishui BranchSoutheast UniversityNanjingJiangsu211200China
| | - Yifei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| |
Collapse
|
31
|
Al-Sadi R, Engers J, Abdulqadir R. Talk about micromanaging! Role of microRNAs in intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 319:G170-G174. [PMID: 32658620 DOI: 10.1152/ajpgi.00214.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Defective intestinal tight-junction (TJ) barrier has been implicated in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and other inflammatory conditions of the gut. The role of microRNAs (miRNA's or miR's) has also been demonstrated in the last two decades in the pathogenesis of IBD and in the regulation of intestinal TJ barrier function. MiRNAs are noncoding regulators of gene expression at the posttranscription level that have an essential role in targeting transcripts encoding proteins of intestinal TJs and their regulators. Many miRNAs have been reported to regulate or deregulate the TJ proteins responsible for the intestinal barrier integrity and intestinal permeability. Many of those miRNAs have been reported to have essential roles in the pathogenesis of IBD. In this mini-review, we summarize the results of studies in the last three years that implicate miRNAs in the defective TJ barrier in relation to IBD. The therapeutic potential of using specific miRNAs to target the intestinal TJ barrier might be of great insight for IBD therapy.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Jessica Engers
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Raz Abdulqadir
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
32
|
Which long noncoding RNAs and circular RNAs contribute to inflammatory bowel disease? Cell Death Dis 2020; 11:456. [PMID: 32541691 PMCID: PMC7295799 DOI: 10.1038/s41419-020-2657-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), a chronic relapsing gastrointestinal inflammatory disease, mainly comprises ulcerative colitis (UC) and Crohn’s disease (CD). Although the mechanisms and pathways of IBD have been widely examined in recent decades, its exact pathogenesis remains unclear. Studies have focused on the discovery of new therapeutic targets and application of precision medicine. Recently, a strong connection between IBD and noncoding RNAs (ncRNAs) has been reported. ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). The contributions of lncRNAs and circRNAs in IBD are less well-studied compared with those of miRNAs. However, lncRNAs and circRNAs are likely to drive personalized therapy for IBD. They will enable accurate diagnosis, prognosis, and prediction of therapeutic responses and promote IBD therapy. Herein, we briefly describe the molecular functions of lncRNAs and circRNAs and provide an overview of the current knowledge of the altered expression profiles of lncRNAs and circRNAs in patients with IBD. Further, we discuss how these RNAs are involved in the nosogenesis of IBD and are emerging as biomarkers.
Collapse
|
33
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Li M, Zhao J, Cao M, Liu R, Chen G, Li S, Xie Y, Xie J, Cheng Y, Huang L, Su M, Xu Y, Zheng M, Zou K, Geng L, Xu W, Gong S. Mast cells-derived MiR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res 2020; 53:12. [PMID: 32209121 PMCID: PMC7092522 DOI: 10.1186/s40659-020-00279-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. Results In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. Conclusions These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.
Collapse
Affiliation(s)
- Musheng Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ruitao Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Guanhua Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Songyu Li
- Department of Clinical Laboratory, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Yuanwen Xie
- Department of Anorectal, Qionghai Hospital of Traditional Chinese Medicine, Qionghai, 571400, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingmin Su
- Department of Cancer Biology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, CF103AT, UK
| | - Yuxin Xu
- Department of Preventive Medicine, School of School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Mingyue Zheng
- School of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
35
|
Wang X, Wang H, Zhang R, Li D, Gao MQ. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. Int J Biol Sci 2020; 16:251-263. [PMID: 31929753 PMCID: PMC6949150 DOI: 10.7150/ijbs.38214] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play multiple key roles during inflammatory processes. In this study, a novel lncRNA identified by the high-throughput sequencing analysis was found significantly down-regulated in Escherichia coli-introduced cell model of bovine mastitis. Given that this lncRNA consists of the antisense of leucine-rich repeat-containing protein 75A (LRRC75A), it was named LRRC75A antisense lncRNA1 (LRRC75A-AS1). The expression of LRRC75A-AS1 was down-regulated in bovine mammary epithelial cells and mammary tissues under inflammatory condition. Knockout (KO) of LRRC75A-AS1 by CRISPR-Cas9 system in bovine mammary alveolar cell-T (MAC-T) cell line could enhance expressions of tight junction (TJ) proteins Claudin-1, Occludin and ZO-1, reduce cell monolayer permeability, and inhibit Staphylococcus aureus adhesion and invasion. Meanwhile, it also down-regulated expressions of inflammatory factors and attenuated activation of NF-κB pathway. Similarly, knockdown of LRRC75A caused the changes as LRRC75A-AS1 KO did, while overexpression of LRRC75A enabled the opposite effects. TJ of epithelioid cells barriers the pathogenic microorganisms outside during inflammation, in which LRRC75A-AS1 can regulate the expression of TJ proteins through LRRC75A, affecting the development of inflammation.
Collapse
Affiliation(s)
- Xixi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
36
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
37
|
Huang S, Zhan Z, Li L, Guo H, Yao Y, Feng M, Deng J, Xiong J. LINC00958-MYC positive feedback loop modulates resistance of head and neck squamous cell carcinoma cells to chemo- and radiotherapy in vitro. Onco Targets Ther 2019; 12:5989-6000. [PMID: 31413594 PMCID: PMC6661987 DOI: 10.2147/ott.s208318] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant long non-coding RNA (lncRNA) expression contributes cancer development and resistance to therapy. This study first assessed expression of lncRNA LINC00958 in a variety of human cancers using GEPIA database data and then associated it with prognosis of head and neck squamous cell carcinoma (HNSCC) and investigated LINC00958 interaction with c-Myc and the c-Myc-related gene interplay in HNSCC cells. Materials and methods A cohort of 48 HNSCC vs normal tissues was collected for qRT-PCR analysis of LINC00958 and c-Myc expression and statistical analyses. HNSCC cell lines were subjected to transfection with LINC00958 and c-Myc siRNAs or cDNA and their negative control siRNA or empty vector for qRT-PCR, Western blot, cell viability, colony formation, luciferase reporter, chromatin immunoprecipitation, and RNA immunoprecipitation assays. Results The data showed that LINC00958 expression was upregulated in HNSCC tissues and cell lines, upregulation of which was associated with poor tumor differentiation, advanced tumor stage, and shorter overall survival of patients. In vitro, LINC00958 expression induced HNSCC cell viability and colony formation, whereas knockdown of LINC00958 expression enhanced HNSCC cell sensitivity to ionizing radiation and cisplatin treatment. Mechanistically, LINC00958 is a direct target of c-Myc and can enhance the transcriptional activity of c-Myc, thus to form a positive feedback gene network in HNSCC cells, and in turn to modulate HNSCC cell resistance to chemo- and radiotherapy. Conclusion This study demonstrated the LINC00958 interplay with c-Myc as a feedback loop facilitated HNSCC development and resistance to chemo- and radiotherapy. Targeting of such a network could be further evaluated as a novel therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Zhengyu Zhan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
38
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
39
|
Ma D, Cao Y, Wang Z, He J, Chen H, Xiong H, Ren L, Shen C, Zhang X, Yan Y, Yan T, Guo F, Xuan B, Cui Z, Ye G, Fang JY, Chen H, Hong J. CCAT1 lncRNA Promotes Inflammatory Bowel Disease Malignancy by Destroying Intestinal Barrier via Downregulating miR-185-3p. Inflamm Bowel Dis 2019; 25:862-874. [PMID: 30615124 DOI: 10.1093/ibd/izy381] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The long noncoding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) has been reported to play a vital role in the development of cancer. Although the link between inflammation and cancer initiation is well established, whether CCAT1 is involved in inflammation and promotes inflammatory bowel disease (IBD) malignancy remains undetermined. We aimed to investigate the expression of CCAT1 in IBD and the effect of CCAT1 overexpression on intestinal epithelial barrier function. METHODS The relationship between CCAT1 and the inflammation-related pathway was analyzed in both colorectal cancer (CRC) and IBD patients. Gene expression was detected by real-time polymerase chain reaction and Western blot. Transepithelial electrical resistance (TEER) and FD-4 flux measurement were used to test the effect of CCAT1 and miR-185-3p on intestinal epithelial barrier function. Luciferase assay was performed to validate the target site of miR-185-3p on 3'-UTR of MLCK mRNA. RESULTS Gene set enrichment analysis revealed that several inflammation-related genes were enriched in the CCAT1 high-expressed group of CRC patients. The relationship between CCAT1 and inflammation activation in IBD patients was further confirmed. CCAT1 expression positively correlated with MLCK, which acts as a protein kinase to phosphorylate myosin light chain and induces tight junction protein distribution, whereas it was negatively correlated with miR-185-3p in IBD tissues. We also determined that CCAT1 overexpression increased Caco-2 monolayer permeability and upregulated MLCK. Furthermore, CCAT1-induced MLCK overexpression and IBD disease progression were significantly attenuated by miR-185-3p. CONCLUSIONS The CCAT1/miR-185-3p/MLCK signaling pathway is strongly activated to destroy barrier function and promotes the pathogenesis of IBD.
Collapse
Affiliation(s)
- Dan Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Cao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Gastroenterology and Guangzhou Key Laboratory of Digestive Disease, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, China
| | - Huimin Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Ren
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yan
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
MiR-34c Ameliorates Neuropathic Pain by Targeting NLRP3 in a Mouse Model of Chronic Constriction Injury. Neuroscience 2018; 399:125-134. [PMID: 30593918 DOI: 10.1016/j.neuroscience.2018.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs have been reported to be an important pathophysiological factor in neuropathic pain. However, the potential mechanism through which miRNAs function in neuropathic pain remains unclear. The purpose of this study was to explore the potential role of mir-34c in neuropathic pain in a mouse model of chronic constriction injury (CCI). We found that overexpression of miR-34c greatly alleviated CCI-induced neuropathic pain and spinal cord infarction, and reduced cell apoptotic and inflammatory cytokine expression in CCI mice. We also demonstrated that miR-34c suppressed the expression of NLRP3 by directly binding the 3'-untranslated region. Overexpression of miR-34c decreased the protein levels of NLRP3, ASC, caspase-1, IL-1β, and IL-18 in the spinal cord in CCI mice. Together, our results indicated that miR-34c may inhibit neuropathic pain development in CCI mice through inhibiting NLRP3-mediated neuroinflammation.
Collapse
|
41
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Lu Q, Gong W, Wang J, Ji K, Sun X, Xu C, Du L, Wang Y, Liu Q. Analysis of changes to lncRNAs and their target mRNAs in murine jejunum after radiation treatment. J Cell Mol Med 2018; 22:6357-6367. [PMID: 30324649 PMCID: PMC6237565 DOI: 10.1111/jcmm.13940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
LncRNAs have been reported to play an important role in various diseases. However, their role in the radiation‐induced intestinal injury is unknown. The goal of the present study was to analyse the potential mechanistic role of lncRNAs in the radiation‐induced intestinal injury. Mice were divided into two groups: Control (non‐irradiated) and irradiated. Irradiated mice were administered 14 Gy of abdominal irradiation (ABI) and were assessed 3.5 days after irradiation. Changes to the jejuna of ABI mice were analysed using RNA‐Seq for alterations to both lncRNA and mRNA. These results were validated using qRT‐PCR. LncRNAs targets were predicted based on analysis of lncRNAs‐miRNAs‐mRNAs interaction. 29 007 lncRNAs and 17 142 mRNAs were detected in the two groups. At 3.5 days post‐irradiation, 91 lncRNAs and 57 lncRNAs were significantly up‐ and downregulated respectively. Similarly, 752 mRNAs and 400 mRNAs were significantly up‐ and downregulated respectively. qRT‐PCR was used to verify the altered expression of four lncRNAs (ENSMUST00000173070, AK157361, AK083183, AK038898) and four mRNAs (Mboat1, Nek10, Ccl24, Cyp2c55). Gene ontology and KEGG pathway analyses indicated the predicted genes were mainly involved in the VEGF signalling pathway. This study reveals that the expression of lncRNAs was altered in the jejuna of mice post‐irradiation. Moreover, it provides a resource for the study of lncRNAs in the radiation‐induced intestinal injury.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Wei Gong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Xiaohui Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| |
Collapse
|
43
|
Liao K, Xu J, Yang W, You X, Zhong Q, Wang X. The research progress of LncRNA involved in the regulation of inflammatory diseases. Mol Immunol 2018; 101:182-188. [DOI: 10.1016/j.molimm.2018.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023]
|
44
|
Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The MicroRNA-326: Autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol 2018; 233:9209-9222. [PMID: 30078204 DOI: 10.1002/jcp.26949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are uniquely regulated in healthy, inflamed, activated, cancerous, or other cells and tissues of a pathological state. Many studies confirm that immune dysregulation and autoimmune diseases with inflammation are correlated with various miRNA expression changes in targeted tissues and cells in innate or adaptive immunity. In this review, we will explain the history and classification of epigenetic changes. Next, we will describe the role of miRNAs changes, especially mir-326 in autoimmunity, autoinflammatory, and other pathological conditions. A systematic search of MEDLINE, Embase, and Cochrane Library was presented for all related studies from 1899 to 2017 with restrictions in the English language. In recent years, researchers have concentrated on mostly those roles of miRNA that are correlated with the inflammatory and anti-inflammatory process. Latest studies have proposed a fundamental pathogenic role in cancers and autoinflammatory diseases. Studies have described the role of microRNAs in autoimmunity and autoinflammatory diseases, cancers, and so on. The miRNA-326 expression plays a significant role in autoimmune and other types of diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Iran
| |
Collapse
|
45
|
Chen J, Wan J, Ye J, Xia L, Lu N. Emerging role of lncRNAs in the normal and diseased intestinal barrier. Inflamm Res 2018; 67:757-764. [PMID: 30008030 DOI: 10.1007/s00011-018-1170-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE A significant effort has been made to understand the intestinal barrier, but the effective means to prevent, reduce, and restore intestinal mucosal damage remains unclear. Recently, a few of studies have explained the mechanism of the intestinal barrier in long noncoding RNAs (lncRNAs). This review aims to summarize recent views on the function of lncRNAs in the intestinal barrier and discuss the emerging role of lncRNAs in intestinal barrier diseases caused by inflammatory diseases. METHODS Observations led us to believe that lncRNAs participate in inflammatory responses, cell proliferation, and control microbial susceptibility. In view of these, lncRNAs have been proved to involve in the intestinal barrier. RESULTS lncRNAs directly or indirectly affect TJ mRNA translation and intestinal epithelial cells (IECs) paracellular permeability, as well as IECs proliferation and susceptibility to apoptosis, to modulate the function of the intestinal barrier. miRNAs play a pivotal role in this process. CONCLUSIONS lncRNAs have been shown to be fundamentally involved in intestinal mucosal regeneration, protection, and epithelial barrier function. It may emerge as new and potential factors to be evaluated in the intestinal barrier diseases caused by acute pancreatitis, inflammatory bowel diseases, and imbalance of intestinal flora.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianhua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jianfang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liang Xia
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
46
|
Zhang Y, Meng W, Cui H. LncRNA CBR3-AS1 predicts unfavorable prognosis and promotes tumorigenesis in osteosarcoma. Biomed Pharmacother 2018; 102:169-174. [PMID: 29554595 DOI: 10.1016/j.biopha.2018.02.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
LncRNA CBR3-AS1 has been suggested to promote malignancy in several types of human cancers, but the clinical significance and biological function of lncRNA CBR3-AS1 in osteosarcoma is still unknown. The purpose of our study is to explore the clinical significance of lncRNA CBR3-AS1 in osteosarcoma patients and the biological function in osteosarcoma cells. In our results, we found lncRNA CBR3-AS1 was highly-expressed in osteosarcoma tissues and cell lines, and associated with Enneking stage, distant metastasis and histological grade. Survival analysis indicated that the high-expression of lncRNA CBR3-AS1 was an independent poor prognostic factor for osteosarcoma patients. Loss-of-function studies showed knockdown of lncRNA CBR3-AS1 suppressed osteosarcoma cells proliferation, migration and invasion, and promotes cells apoptosis, but had no effect on cell-cycle distribution. There was no association between lncRNA CBR3-AS1 and CBR3 expression in osteosarcoma tissues, and knockdown of lncRNA CBR3-AS1 had no effect on CBR3 mRNA and protein expression osteosarcoma cells. In conclusion, lncRNA CBR3-AS1 serves an oncogenic role to regulate osteosarcoma cells proliferation, migration, invasion and apoptosis, and is an independent poor prognostic factor for osteosarcoma patients.
Collapse
Affiliation(s)
- Yunxing Zhang
- Department of Emergency Surgery, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Wang Meng
- Department of Medical Abministration, Jining No.1 People's Hospital, Jining 272000, Shandong, China
| | - Hongxia Cui
- Department of Oncology, Jining No.1 People's Hospital, No. 6 Jiankang Road, Jining 272000, Shandong, China.
| |
Collapse
|