1
|
DeSisto J, Balakrishnan I, Knox AJ, Link G, Venkataraman S, Vibhakar R, Green AL. PRMT5 Maintains Tumor Stem Cells to Promote Pediatric High-Grade Glioma Tumorigenesis. Mol Cancer Res 2025; 23:107-118. [PMID: 39422546 PMCID: PMC11799838 DOI: 10.1158/1541-7786.mcr-24-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Pediatric high-grade gliomas (PHGG) are aggressive, undifferentiated central nervous system tumors with poor outcomes, for which no standard-of-care drug therapy currently exists. Through a knockdown (KD) screen for epigenetic regulators, we identified PRMT5 as essential for PHGG cell growth. We hypothesized that, similar to its effect in normal cells, PRMT5 promotes self-renewal of stem-like PHGG tumor-initiating cells essential for tumor growth. We conducted in vitro analyses, including limiting dilution studies of self-renewal, to determine the phenotypic effects of PRMT5 KD. We performed chromatin immunoprecipitation sequencing (ChIP-Seq) to identify PRMT5-mediated epigenetic changes and performed gene set enrichment analysis to identify pathways that PRMT5 regulates. Using an orthotopic xenograft model of PHGG, we tracked survival and histologic characteristics resulting from PRMT5 KD or administration of a PRMT5 inhibitor ± radiation therapy. In vitro, PRMT5 KD slowed cell-cycle progression, tumor growth and self-renewal, and altered chromatin occupancy at genes associated with differentiation, tumor formation, and growth. In vivo, PRMT5 KD increased survival and reduced tumor aggressiveness; however, pharmacologic inhibition of PRMT5 with or without radiation therapy did not improve survival. PRMT5 KD epigenetically reduced tumor-initiating cells' self-renewal, leading to increased survival in preclinical models. Pharmacologic inhibition of PRMT5 enzymatic activity may have failed in vivo due to insufficient reduction of PRMT5 activity by chemical inhibition, or this failure may suggest that nonenzymatic activities of PRMT5 are more relevant. Implications: PRMT5 maintains and promotes the growth of stem-like cells that initiate and drive tumorigenesis in PHGG.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aaron J. Knox
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabrielle Link
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
2
|
Fowler TE, Bloomquist DT, Glessner C, Patel P, James JN, Bollinger K, McCluskey LP, Bloomquist RF. A novel model of autologous tooth transplantation for the study of nerve recruitment. BMC Oral Health 2024; 24:1141. [PMID: 39334208 PMCID: PMC11438115 DOI: 10.1186/s12903-024-04884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Limited treatment options exist for damaged nerves and despite impressive advances in tissue engineering, scientists and clinicians have yet to fully replicate nerve development and recruitment. Innervation is a critical feature for normal organ function. While most organs are innervated prior to birth, a rare example of postnatal nerve recruitment occurs in the natural development of secondary teeth during adolescence. Many animals undergo postnatal shedding of deciduous teeth with development and eruption of secondary teeth, a process requiring recruitment of nerve and vasculature to each tooth pulp for viability. Here, the investigators created a novel model for the study of postnatal innervation by exploiting the natural phenomenon of tooth-driven nerve recruitment. METHODS The investigators theorized that developing teeth possess a special capacity to induce innervation which could be harnessed in a clinical setting for nerve regeneration, and hyptothesized that a transplant model could be created to capture this phenomenon. In this descriptive study, a rat model of autologous tooth transplantation and de novo nerve recruitment was developed by surgically transferring whole developing molars to the autologous tibia. RESULTS Downstream histological analysis performed 6 to 14 weeks after surgery demonstrated integration of molar into tibia in 81% of postoperative rats, with progressive pulpal expression of nerve marker ß-tubulin III suggestive of neuronal recruitment. CONCLUSIONS These findings provide a novel model for the study of organ transplantation and support the theory that developing dental tissues may retain nerve-inductive properties postnatally.
Collapse
Affiliation(s)
- Teresa E Fowler
- Department of Ophthalmology, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
| | - Doan T Bloomquist
- Department of Ophthalmology, Charlie Norwood Veterans Affairs Medical Center, 950 15th Street, Augusta, GA, 30901, USA
| | - Caroline Glessner
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA
| | - Poonam Patel
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA
| | - Jeffrey N James
- Department of Surgery, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
- Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Ave, New Orleans, LA, 70119, USA
| | - Kathryn Bollinger
- Department of Ophthalmology, Wellstar MCG Health, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Ophthalmology, Charlie Norwood Veterans Affairs Medical Center, 950 15th Street, Augusta, GA, 30901, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, Augusta, GA, 30912, USA
- The James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ryan F Bloomquist
- The Dental College of Georgia at Augusta University, 1430 John Wesley Gilbert Drive, Augusta, GA, 30912, USA.
- University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
3
|
Fritze J, Lang S, Sommarin M, Soneji S, Ahlenius H. Single-cell RNA sequencing of aging neural progenitors reveals loss of excitatory neuron potential and a population with transcriptional immune response. Front Neurosci 2024; 18:1400963. [PMID: 39184324 PMCID: PMC11341460 DOI: 10.3389/fnins.2024.1400963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
In the adult murine brain, neural stem cells (NSCs) can be found in two main niches: the dentate gyrus (DG) and the subventricular zone (SVZ). In the DG, NSCs produce intermediate progenitors (IPs) that differentiate into excitatory neurons, while progenitors in the SVZ migrate to the olfactory bulb (OB), where they mainly differentiate into inhibitory interneurons. Neurogenesis, the process of generating new neurons, persists throughout life but decreases dramatically with aging, concomitantly with increased inflammation. Although many cell types, including microglia, undergo significant transcriptional changes, few such changes have been detected in neural progenitors. Furthermore, transcriptional profiles in progenitors from different neurogenic regions have not been compared on a single-cell level, and little is known about how they are affected by aging-related inflammation. We have generated a single cell RNA sequencing dataset enriched for IPs, which revealed that most aged neural progenitors only acquire minor transcriptional changes. However, progenitors set to become excitatory neurons decrease faster than others. In addition, a population in the aged SVZ, not detected in the OB, acquired major transcriptional activation related to immune responses. This suggests that differences in age related neurogenic decline between regions is not due to tissue differences but rather cell type specific intrinsic transcriptional programs, and that subset of neuroblasts in the SVZ react strongly to age related inflammatory cues.
Collapse
Affiliation(s)
- Jonas Fritze
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Stefan Lang
- Lund Stem Cell Center, Lund, Sweden
- Computational Genomics Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Mikael Sommarin
- Lund Stem Cell Center, Lund, Sweden
- Stem Cells and Leukemia Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Center, Lund, Sweden
- Computational Genomics Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| |
Collapse
|
4
|
Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, Wang K, Liu X, Tang C, Li W, Li Z, Wen X, Yang G, Guo C, Liu Z, Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci 2024; 115:412-426. [PMID: 38115797 PMCID: PMC10859609 DOI: 10.1111/cas.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ying Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liang Jin
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Cao
- Department of PathologyThe Third Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhiyu Liu
- Department of UrologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Petrović DJ, Jagečić D, Krasić J, Sinčić N, Mitrečić D. Effect of Fetal Bovine Serum or Basic Fibroblast Growth Factor on Cell Survival and the Proliferation of Neural Stem Cells: The Influence of Homocysteine Treatment. Int J Mol Sci 2023; 24:14161. [PMID: 37762465 PMCID: PMC10531752 DOI: 10.3390/ijms241814161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the obtained results. Here, we compared the effects of homocysteine (Hcy), a molecule involved in neurodegeneration, on immature cells of the nervous system cultivated in basal medium or media supplemented by either fetal bovine serum or basic fibroblast growth factor. The number of cells in basal media supplemented with basic fibroblast growth factor (bFGF) was 2.5 times higher in comparison to the number of cells in basal media supplemented with fetal bovine serum (FBS). We also found that the neuron-specific β-3-tubulin protein expression dose dependently decreased with increasing Hcy exposure. Interestingly, bFGF exerts a protective effect on β-3-tubulin protein expression at a concentration of 1000 µM Hcy compared to FBS-treated neural stem cells on Day 7. Supplementation with bFGF increased SOX2 protein expression two-fold compared to FBS supplementation. GFAP protein expression increased five-fold on Day 3 in FBS-treated neural stem cells, whereas on Day 7, bFGF increased GFAP expression two-fold compared to FBS-treated neural stem cells. Here, we have clearly shown that the selection of culturing media significantly influences various cellular parameters, which, in turn, can lead to different conclusions in experiments based on in vitro models of pathological conditions.
Collapse
Affiliation(s)
- Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Glycoscience Research Laboratory, Genos Ltd., 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jure Krasić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Laboratory for Neurogenomics and In Situ Hybridization, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nino Sinčić
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers (epiMark), Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; (D.J.P.); (D.J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- BIMIS—Biomedical Research Center Šalata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Coyoy-Salgado A, Orozco-Barrios C, Sánchez-Torres S, Olayo MG, Cruz GJ, Morales-Corona J, Olayo R, Diaz-Ruiz A, Ríos C, Alvarez-Mejia L, Mondragón-Lozano R, Morales-Guadarrama A, Alonso-García AL, Fabela-Sánchez O, Salgado-Ceballos H. Gene expression and locomotor recovery in adult rats with spinal cord injury and plasma-synthesized polypyrrole/iodine application combined with a mixed rehabilitation scheme. Front Neurol 2023; 14:1124245. [PMID: 37288064 PMCID: PMC10243140 DOI: 10.3389/fneur.2023.1124245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of β-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - María Guadalupe Olayo
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Guillermo Jesus Cruz
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Camilo Ríos
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Rodrigo Mondragón-Lozano
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Electrical Engineering Department, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | | | - Omar Fabela-Sánchez
- Researchers for Mexico CONACyT-Centro de Investigación en Química Aplicada, Department of Chemistry Macromolecules and Nanomaterials, Saltillo, Mexico
| | - Hermelinda Salgado-Ceballos
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| |
Collapse
|
7
|
Dong Z, He W, Lin G, Chen X, Cao S, Guan T, Sun Y, Zhang Y, Qi M, Guo B, Zhou Z, Zhuo R, Wu R, Liu M, Liu Y. Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6. J Biol Chem 2023; 299:103020. [PMID: 36791914 PMCID: PMC10011063 DOI: 10.1016/j.jbc.2023.103020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and post-translational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the evaluated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A, and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Xu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
8
|
Muralidharan N, Murugan A, Raj PA, Jothi M. Restoration of functional PAX3 transcriptional factor enhanced neuronal differentiation in PAX3b isoform-depleted neuroblastoma cells. Cell Tissue Res 2023; 391:55-65. [PMID: 36378335 DOI: 10.1007/s00441-022-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Collapse
Affiliation(s)
- Narenkumar Muralidharan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Abinayaselvi Murugan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Prabhuraj Andiperumal Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Mathivanan Jothi
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
9
|
Liu S, Lin G, Yang Q, Wang P, Ma C, Qian X, He X, Dong Z, Liu Y, Liu M, Wu R, Yang L. Depletion of SASH1, an astrocyte differentiation-related gene, contributes to functional recovery in spinal cord injury. CNS Neurosci Ther 2022; 29:228-238. [PMID: 36286186 PMCID: PMC9804067 DOI: 10.1111/cns.13998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS This study aimed to evaluate the effects of the depletion of SAM and SH3 domain-containing protein 1 (SASH1) on functional recovery after spinal cord injury (SCI) and to investigate the possible mechanism of SASH1 knockdown in astrocytes facilitating axonal growth. METHODS SCI model was established in adult rats. SASH1 small interfering RNA (siSASH1) was used to investigate its function. Hindlimb motor function was evaluated by the Basso-Bresnahan-Beattie (BBB) assay. The gene expressions were evaluated by the methods of qRT-PCR, Western-blotting, ELISA, and immunohistochemistry. RESULTS SASH1 knockdown improved the BBB scores after SCI and significantly reduced GFAP expression. In cultured spinal astrocytes, siSASH1 treatment decreased interferon-γ release and increased brain-derived neurotrophic factor (BDNF) release. When cocultured with SASH1-knockdown astrocytes, axonal growth increased. The neuronal tropomyosin receptor kinase B (BDNF receptor) expression increased, especially in the axonal tips. SASH1 expression increased while NSCs differentiated into glial cells, instead of neurons. After SASH1 depletion, differentiated NSCs maintained a higher level of Nestin protein and an increase in BDNF release. CONCLUSIONS These results indicate that SASH1 acts as an astrocytic differentiation-maintaining protein, and SASH1 downregulation limits glial activation and contributes toward functional recovery after SCI.
Collapse
Affiliation(s)
- Siyi Liu
- Department of NeurosurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Qiao Yang
- Department of NeurosurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Penghui Wang
- Department of NeurosurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Xiaomei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongChina
| | - Liu Yang
- Department of NeurosurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
10
|
Lin G, Lin H, Zhuo R, He W, Ma C, Liu Y, Liu M. GCN5/KAT2A contributes to axon growth and neurogenesis. Neurosci Lett 2022; 784:136742. [PMID: 35716963 DOI: 10.1016/j.neulet.2022.136742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Posttranslational modification (PTM) of tubulin proteins is involved in microtubule dynamics. Acetylation, an important alpha-tubulin PTM, which is regarded as a hallmark event of stable microtubules, often occurs in neurogenesis and axon outgrowth. GCN5/KAT2A is a well-known histone acetyltransferase and has also been reported to hold the activity of nonhistone acetyltransferases, such as acetylated tubulin (Ace-tubulin). In this study, we investigated the role of GCN5/KAT2A in axon growth and neurogenesis. E18 cortical neurons obtained from day 18 embryos of pregnant Sprague-Dawley (SD) rats were cultured and transfected with GCN5 siRNA or treated with the GCN5 inhibitor MB-3. Neural stem cells (NSCs) derived from the cerebral cortexes of E14 SD rats were cultured and differentiated. During differentiation, MB-3 was applied to investigate the effect of GCN5 dysfunction on neurogenesis. The axonal length and the ratio and distribution of acetylated and tyrosinated tubulin (Tyr-tubulin) were evaluated by immunostaining assay. The expression levels of Nestin, Tuj1, acetylated tubulin, and tyrosinated tubulin proteins were analyzed by Western blotting assays. In primary neurons, both GCN5 siRNA and MB-3 treatment reduced acetylated tubulin protein, changed the ratio of acetylated and tyrosinated tubulin, and decreased axonal length. During NSC differentiation, MB-3 application reduced axon outgrowth, decreased acetylated tubulin and altered the distribution of acetylated tubulin and tyrosinated tubulin. This study revealed for the first time that the acetyltransferase GCN5/KAT2A could contribute to axon outgrowth by altering the ratio and distribution of acetylated tubulin.
Collapse
Affiliation(s)
- Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Haixu Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
11
|
Duly AMP, Kao FCL, Teo WS, Kavallaris M. βIII-Tubulin Gene Regulation in Health and Disease. Front Cell Dev Biol 2022; 10:851542. [PMID: 35573698 PMCID: PMC9096907 DOI: 10.3389/fcell.2022.851542] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubule proteins form a dynamic component of the cytoskeleton, and play key roles in cellular processes, such as vesicular transport, cell motility and mitosis. Expression of microtubule proteins are often dysregulated in cancer. In particular, the microtubule protein βIII-tubulin, encoded by the TUBB3 gene, is aberrantly expressed in a range of epithelial tumours and is associated with drug resistance and aggressive disease. In normal cells, TUBB3 expression is tightly restricted, and is found almost exclusively in neuronal and testicular tissues. Understanding the mechanisms that control TUBB3 expression, both in cancer, mature and developing tissues will help to unravel the basic biology of the protein, its role in cancer, and may ultimately lead to the development of new therapeutic approaches to target this protein. This review is devoted to the transcriptional and posttranscriptional regulation of TUBB3 in normal and cancerous tissue.
Collapse
Affiliation(s)
- Alastair M. P. Duly
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
| | - Felicity C. L. Kao
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Wee Siang Teo
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Randwick, NSW, Australia
- Australian Center for NanoMedicine, UNSW Sydney, Sydney, NSW, Australia
- School of Women and Children’s Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Kanojia D, Panek WK, Cordero A, Fares J, Xiao A, Savchuk S, Kumar K, Xiao T, Pituch KC, Miska J, Zhang P, Kam KL, Horbinski C, Balyasnikova IV, Ahmed AU, Lesniak MS. BET inhibition increases βIII-tubulin expression and sensitizes metastatic breast cancer in the brain to vinorelbine. Sci Transl Med 2021; 12:12/558/eaax2879. [PMID: 32848091 DOI: 10.1126/scitranslmed.aax2879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Metastases from primary breast cancer result in poor survival. βIII-tubulin (TUBB3) has been established as a therapeutic target for breast cancer metastases specifically to the brain. In this study, we conducted a systematic analysis to determine the regulation of TUBB3 expression in breast cancer metastases to the brain and strategically target these metastases using vinorelbine (VRB), a drug approved by the U.S. Food and Drug Administration (FDA). We found that human epidermal growth factor receptor 2 (HER2) signaling regulates TUBB3 expression in both trastuzumab-sensitive and trastuzumab-resistant neoplastic cells. We further discovered that bromodomain and extra-terminal domain (BET) inhibition increases TUBB3 expression, rendering neoplastic cells more susceptible to apoptosis by VRB. Orthotopic xenograft assays using two different breast cancer cell models revealed a reduction in tumor volume with BET inhibition and VRB treatment. In addition, in vivo studies using a model of multiple brain metastasis (BM) showed improved survival with the combination of radiation + BET inhibitor (iBET-762) + VRB (75% long-term survivors, P < 0.05). Using in silico analysis and BET inhibition, we found that the transcription factor myeloid zinc finger-1 (MZF-1) protein binds to the TUBB3 promoter. BET inhibition decreases MZF-1 expression and subsequently increases TUBB3 expression. Overexpression of MZF-1 decreases TUBB3 expression and reduces BM in vivo, whereas its knockdown increases TUBB3 expression in breast cancer cells. In summary, this study demonstrates a regulatory mechanism of TUBB3 and provides support for an application of BET inhibition to sensitize breast cancer metastases to VRB-mediated therapy.
Collapse
Affiliation(s)
- Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annie Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Solomiia Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kwok-Ling Kam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Wang Z, Liu Q, Huang P, Cai G. miR-299-3p suppresses cell progression and induces apoptosis by downregulating PAX3 in gastric cancer. Open Life Sci 2021; 16:266-276. [PMID: 33817318 PMCID: PMC8005920 DOI: 10.1515/biol-2021-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is ranked the fourth leading cause of cancer-related death, with an over 75% mortality rate worldwide. In recent years, miR-299-3p has been identified as a biomarker in multiple cancers, such as acute promyelocytic leukemia, thyroid cancer, and lung cancer. However, the regulatory mechanism of miR-299-3p in GC cell progression is still largely unclear. Cell viability and apoptosis tests were performed by CCK8 and flow cytometry assay, respectively. Transwell assay was recruited to examine cell invasion ability. The interaction between miR-299-3p and PAX3 was determined by the luciferase reporter system. PAX3 protein level was evaluated by western blot assay. The expression of miR-299-3p was downregulated in GC tissues and cell lines (MKN-45, AGS, and MGC-803) compared with the normal tissues and cells. Besides, overexpression of miR-299-3p significantly suppressed proliferation and invasion and promoted apoptosis in GC. Next, we clarified that PAX3 expression was regulated by miR-299-3p using a luciferase reporter system, qRT-PCR, and western blot assay. Additionally, downregulation of PAX3 repressed GC cell progression. The rescue experiments indicated that restoration of PAX3 inversed miR-299-3p-mediated inhibition on cell proliferation and invasion. miR-299-3p suppresses cell proliferation and invasion as well as induces apoptosis by regulating PAX3 expression in GC, representing desirable biomarkers for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenfen Wang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Ping Huang
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| | - Guohao Cai
- Department of Gastrointestinal Surgery, Hainan General Hospital, No. 19 Xiuhua Rd, Xiuying District, 570311, Haikou, Hainan, China
| |
Collapse
|
14
|
Pérez-Luz S, Loria F, Katsu-Jiménez Y, Oberdoerfer D, Yang OL, Lim F, Muñoz-Blanco JL, Díaz-Nido J. Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. Int J Mol Sci 2020; 21:ijms21186662. [PMID: 32933002 PMCID: PMC7555998 DOI: 10.3390/ijms21186662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich’s ataxia is the most common hereditary ataxia for which there is no cure or approved treatment at present. However, therapeutic developments based on the understanding of pathological mechanisms underlying the disease have advanced considerably, with the implementation of cellular models that mimic the disease playing a crucial role. Human olfactory ecto-mesenchymal stem cells represent a novel model that could prove useful due to their accessibility and neurogenic capacity. Here, we isolated and cultured these stem cells from Friedreich´s ataxia patients and healthy donors, characterizing their phenotype and describing disease-specific features such as reduced cell viability, impaired aconitase activity, increased ROS production and the release of cytokines involved in neuroinflammation. Importantly, we observed a positive effect on patient-derived cells, when frataxin levels were restored, confirming the utility of this in vitro model to study the disease. This model will improve our understanding of Friedreich´s ataxia pathogenesis and will help in developing rationally designed therapeutic strategies.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km 2,200, 28220 Madrid, Spain
| | - Frida Loria
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Calle Budapest 1, 28922 Madrid, Spain
- Correspondence: ; Tel.: +34-911-964-594
| | - Yurika Katsu-Jiménez
- Karolinska Institutet, Department of Microbiology Tumor and Cell Biology, Solnaväjen 1, 171 77 Stockholm, Sweden;
| | - Daniel Oberdoerfer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Oscar-Li Yang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| | - Filip Lim
- Department of Molecular Biology, Autonomous University of Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - José Luis Muñoz-Blanco
- Department of Neurology, Hospital Universitario Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain;
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain; (S.P.-L.); (D.O.); (O.-L.Y.); (J.D.-N.)
| |
Collapse
|
15
|
Alexandre J, Malheiro R, Dias da Silva D, Carmo H, Carvalho F, Silva JP. The Synthetic Cannabinoids THJ-2201 and 5F-PB22 Enhance In Vitro CB 1 Receptor-Mediated Neuronal Differentiation at Biologically Relevant Concentrations. Int J Mol Sci 2020; 21:6277. [PMID: 32872617 PMCID: PMC7503567 DOI: 10.3390/ijms21176277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 μM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.); (R.M.); (D.D.d.S.); (H.C.)
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.); (R.M.); (D.D.d.S.); (H.C.)
| |
Collapse
|
16
|
Wei C, Ren L, Li K, Lu Z. The regulation of survival and differentiation of neural stem cells by miR-124 via modulating PAX3. Neurosci Lett 2018; 683:19-26. [PMID: 29864453 DOI: 10.1016/j.neulet.2018.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNAs) have crucial functions in the regulation of proliferation and differentiation of neural stem cells (NSCs). MiR-124 has been reported to be implicated in neurogenesis. However, the precise function and mechanism of miR-124 still need further verification. In this study, we identified paired box 3 (PAX3) as a potential target of miR-124 using bioinformatics approaches. Next, we found PAX3 had reversed expression pattern with miR-124 as well as TUBB3 and GFAP. Dual-luciferase assay showed that miR-124 could bind to the 3'-UTR of PAX3 mRNA and restrain its expression. It was demonstrated that overexpression and knocking down of miR-124 in NSCs could promote the survival and suppress the apoptosis of NSCs. Meanwhile, miR-124 enhanced the expression of TUBB3 and GFAP via impairing PAX3 expression. Mechanistic study revealed that augmented Akt-GSK3β signaling pathway was the driving-force for the regulatory functions of miR-124 in NSCs. In summary, this study for the first time uncovered that miR-124 could suppress PAX3 expression, which in turn regulated the differentiation of NSCs.
Collapse
Affiliation(s)
- Chunxia Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Lanfen Ren
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Kui Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
| |
Collapse
|