1
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2025; 28:260-269. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
2
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
5
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
6
|
Ito K, Yamaguchi M, Semba T, Tabata K, Tamura M, Aoyama M, Abe T, Asano O, Terada Y, Funahashi Y, Fujii H. Amelioration of Tumor-promoting Microenvironment via Vascular Remodeling and CAF Suppression Using E7130: Biomarker Analysis by Multimodal Imaging Modalities. Mol Cancer Ther 2024; 23:235-247. [PMID: 37816248 DOI: 10.1158/1535-7163.mct-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
E7130 is a novel anticancer agent created from total synthetic study of the natural compound norhalichondrin B. In addition to inhibiting microtubule dynamics, E7130 also ameliorates tumor-promoting aspects of the tumor microenvironment (TME) by suppressing cancer-associated fibroblasts (CAF) and promoting remodeling of tumor vasculature. Here, we demonstrate TME amelioration by E7130 using multi-imaging modalities, including multiplexed mass cytometry [cytometry by time-of-flight (CyTOF)] analysis, multiplex IHC analysis, and MRI. Experimental solid tumors characterized by large numbers of CAFs in TME were treated with E7130. E7130 suppressed LAP-TGFβ1 production, a precursor of TGFβ1, in CAFs but not in cancer cells; an effect that was accompanied by a reduction of circulating TGFβ1 in plasma. To our best knowledge, this is the first report to show a reduction of TGFβ1 production in TME. Furthermore, multiplex IHC analysis revealed reduced cellularity and increased TUNEL-positive apoptotic cells in E7130-treated xenografts. Increased microvessel density (MVD) and collagen IV (Col IV), an extracellular matrix (ECM) component associated with endothelial cells, were also observed in the TME, and plasma Col IV levels were also increased by E7130 treatment. MRI revealed increased accumulation of a contrast agent in xenografts. Moreover, diffusion-weighted MRI after E7130 treatment indicated reduction of tumor cellularity and interstitial fluid pressure. Overall, our findings strongly support the mechanism of action that E7130 alters the TME in therapeutically beneficial ways. Importantly, from a translational perspective, our data demonstrated MRI as a noninvasive biomarker to detect TME amelioration by E7130, supported by consistent changes in plasma biomarkers.
Collapse
Affiliation(s)
- Ken Ito
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| | - Masayuki Yamaguchi
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| | - Taro Semba
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Kimiyo Tabata
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Moe Tamura
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Muneo Aoyama
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Takanori Abe
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Osamu Asano
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Yasuhiko Terada
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Hirofumi Fujii
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| |
Collapse
|
7
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol 2023; 143:1877-1885. [PMID: 37452808 PMCID: PMC11974346 DOI: 10.1016/j.jid.2023.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses. Currently, the best-characterized PRRs include, in addition to TLRs, nucleotide-binding oligomerization domain-like receptors, RIG-I-like RNA helicases, C-type lectin receptors, and many more. Systemic sclerosis (SSc) is a chronic autoimmune condition characterized by inflammation and progressive fibrosis in multiple organs. Using an unbiased survey for SSc-associated DAMPs, we have identified the ECM glycoproteins fibronectin-containing extra domain A and tenascin C as the most highly upregulated in SSc skin and lung biopsies. These DAMPs activate TLR4 on resident stromal cells to elicit profibrotic responses and sustained myofibroblasts activation resulting in progressive fibrosis. This review summarizes the current understanding of the complex functional roles of DAMPs in the progression and failure of resolution of fibrosis in general, with a particular focus on SSc, and considers viable therapeutic approaches targeting DAMPs.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
10
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
11
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
12
|
Chen Y, Zhang P, Liao J, Cheng J, Zhang Q, Li T, Zhang H, Jiang Y, Zhang F, Zeng Y, Mo L, Yan H, Liu D, Zhang Q, Zou C, Wei GH, Mo Z. Single-cell transcriptomics reveals cell type diversity of human prostate. J Genet Genomics 2022; 49:1002-1015. [PMID: 35395421 DOI: 10.1016/j.jgg.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/29/2022]
Abstract
Extensive studies have been performed to describe the phenotypic changes occurring during malignant transformation of the prostate. However, the cell types and associated changes that contribute to the development of prostate diseases and cancer remain elusive, largely due to the heterogeneous composition of prostatic tissues. Here, we conduct a comprehensive evaluation of four human prostate tissues by single-cell RNA sequencing (scRNA-seq) to analyze their cellular compositions. We identify 18 clusters of cell types, each with distinct gene expression profiles and unique features; of these, one cluster of epithelial cells (Ep) is found to be associated with immune function. In addition, we characterize a special cluster of fibroblasts and aberrant signaling changes associated with prostate cancer (PCa). Moreover, we provide insights into the epithelial changes that occur during the cellular senescence and aging. These results expand our understanding of the unique functional associations between the diverse prostatic cell types and the contributions of specific cell clusters to the malignant transformation of prostate tissues and PCa development.
Collapse
Affiliation(s)
- Yang Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peng Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiwen Cheng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linjian Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haibiao Yan
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Deyun Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Gong-Hong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 201114, China; Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
13
|
Thiery J. Modulation of the antitumor immune response by cancer-associated fibroblasts: mechanisms and targeting strategies to hamper their immunosuppressive functions. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:598-629. [PMID: 36338519 PMCID: PMC9630350 DOI: 10.37349/etat.2022.00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are highly heterogeneous players that shape the tumor microenvironment and influence tumor progression, metastasis formation, and response to conventional therapies. During the past years, some CAFs subsets have also been involved in the modulation of immune cell functions, affecting the efficacy of both innate and adaptive anti-tumor immune responses. Consequently, the implication of these stromal cells in the response to immunotherapeutic strategies raised major concerns. In this review, current knowledge of CAFs origins and heterogeneity in the tumor stroma, as well as their effects on several immune cell populations that explain their immunosuppressive capabilities are summarized. The current development of therapeutic strategies for targeting this population and their implication in the field of cancer immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM, UMR 1186, 94800 Villejuif, France
- Gustave Roussy Cancer Campus, 94805 Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
14
|
Wong HY, Sheng Q, Hesterberg AB, Croessmann S, Rios BL, Giri K, Jackson J, Miranda AX, Watkins E, Schaffer KR, Donahue M, Winkler E, Penson DF, Smith JA, Herrell SD, Luckenbaugh AN, Barocas DA, Kim YJ, Graves D, Giannico GA, Rathmell JC, Park BH, Gordetsky JB, Hurley PJ. Single cell analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental pathways of aggressive disease. Nat Commun 2022; 13:6036. [PMID: 36229464 PMCID: PMC9562361 DOI: 10.1038/s41467-022-33780-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.
Collapse
Affiliation(s)
- Hong Yuen Wong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda B Hesterberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Croessmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda L Rios
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Khem Giri
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jorgen Jackson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam X Miranda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan Watkins
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kerry R Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Meredith Donahue
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Winkler
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David F Penson
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph A Smith
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Duke Herrell
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy N Luckenbaugh
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel A Barocas
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young J Kim
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Diana Graves
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
| | - Ben H Park
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Jennifer B Gordetsky
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula J Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Thomas R, Jerome JM, Dang TD, Souto EP, Mallam JN, Rowley DR. Androgen receptor variant-7 regulation by tenascin-c induced src activation. Cell Commun Signal 2022; 20:119. [PMID: 35948987 PMCID: PMC9364530 DOI: 10.1186/s12964-022-00925-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Bone metastatic prostate cancer does not completely respond to androgen-targeted therapy and generally evolves into lethal castration resistant prostate cancer (CRPC). Expression of AR-V7- a constitutively active, ligand independent splice variant of AR is one of the critical resistant mechanisms regulating metastatic CRPC. TNC is an extracellular matrix glycoprotein, crucial for prostate cancer progression, and associated with prostate cancer bone metastases. In this study, we investigated the mechanisms that regulate AR-V7 expression in prostate cancer cells interacting with osteogenic microenvironment including TNC. METHODS Prostate cancer/preosteoblast heterotypical organoids were evaluated via immunofluorescence imaging and gene expression analysis using RT-qPCR to assess cellular compartmentalization, TNC localization, and to investigate regulation of AR-V7 in prostate cancer cells by preosteoblasts and hormone or antiandrogen action. Prostate cancer cells cultured on TNC were assessed using RT-qPCR, Western blotting, cycloheximide chase assay, and immunofluorescence imaging to evaluate (1) regulation of AR-V7, and (2) signaling pathways activated by TNC. Identified signaling pathway induced by TNC was targeted using siRNA and a small molecular inhibitor to investigate the role of TNC-induced signaling activation in regulation of AR-V7. Both AR-V7- and TNC-induced signaling effectors were targeted using siRNA, and TNC expression assessed to evaluate potential feedback regulation. RESULTS Utilizing heterotypical organoids, we show that TNC is an integral component of prostate cancer interaction with preosteoblasts. Interaction with preosteoblasts upregulated both TNC and AR-V7 expression in prostate cancer cells which was suppressed by testosterone but elevated by antiandrogen enzalutamide. Interestingly, the results demonstrate that TNC-induced Src activation regulated AR-V7 expression, post-translational stability, and nuclear localization in prostate cancer cells. Treatment with TNC neutralizing antibody, Src knockdown, and inhibition of Src kinase activity repressed AR-V7 transcript and protein. Reciprocally, both activated Src and AR-V7 were observed to upregulate autocrine TNC gene expression in prostate cancer cells. CONCLUSION Overall, the findings reveal that prostate cancer cell interactions with the cellular and ECM components in the osteogenic microenvironment plays critical role in regulating AR-V7 associated with metastatic CRPC. Video Abstract.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - John Michael Jerome
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Truong D. Dang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Eric P. Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Joshua N. Mallam
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - David R. Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
16
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
17
|
Qian Y, Liu X, Feng Y, Li X, Xuan Y. Tenascin C regulates cancer cell glycolysis and tumor progression in prostate cancer. Int J Urol 2022; 29:578-585. [PMID: 35218089 DOI: 10.1111/iju.14830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Tenascin C is a potential biomarker of cancer-associated fibroblasts and has been significantly associated with poor prognosis in patients with prostate cancer. However, the effects of Tenascin C in prostate cancer cell glycolysis largely remain unclear. Thus, this study aimed to investigate the Tenascin C expression in prostate cancer and its correlation to glycolysis-related protein and gene expression, clinicopathological parameters, and survival of patients. METHODS We performed immunohistochemical staining for Tenascin C in 141 cases of primary prostate cancer. Based on public data sets, we explored the association of Tenascin C with angiogenesis-related genes, M2 macrophage-related gene, androgen receptor levels, PI3K/AKT/NF-κB pathway genes, and glycolytic enzyme expression. The glucose uptake, lactate production, and glycolytic enzyme levels were detected by glycolysis assay and western blotting. RESULTS Our results showed that Tenascin C expression is upregulated in prostate cancer tissues compared with benign prostatic hyperplasia tissues. High Tenascin C expression in prostate cancer cells was positively associated with lymph node metastasis, advanced clinical stage, the expression of CD105, CD206, and androgen receptor levels. The Kaplan-Meier curves showed a significant association of Tenascin C expression with the patient's overall survival. Tenascin C expression was positively associated with PI3K p85, pAKT-ser308, and NF-κB p65 protein expression in prostate cancer samples. Moreover, siRNA-mediated knockdown of Tenascin C expression inhibited cell glucose uptake, lactate production, and glycolytic-enzyme expression in prostate cancer cells in vitro. CONCLUSIONS Together, our findings suggest that Tenascin C is a prognostic marker for patients with prostate cancer and that its effects might be mediated via regulation of the glycolysis process of prostate cancer cells.
Collapse
Affiliation(s)
- Yongri Qian
- Department of Basic Medicine, Yanbian University College of Nursing, Yanji, China
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Xiaogang Li
- Department of Urology Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
18
|
Kakarla M, ChallaSivaKanaka S, Dufficy MF, Gil V, Filipovich Y, Vickman R, Crawford SE, Hayward SW, Franco OE. Ephrin B Activate Src Family Kinases in Fibroblasts Inducing Stromal Remodeling in Prostate Cancer. Cancers (Basel) 2022; 14:2336. [PMID: 35565468 PMCID: PMC9102363 DOI: 10.3390/cancers14092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Through stromal-epithelial interactions, carcinoma associated fibroblasts (CAF) play a critical role in tumor growth and progression. Activation of erythrophoyetin-producing human hepatocellular (Eph) receptors has been implicated in cancer. Eph receptor interactions with Ephrin ligands lead to bidirectional signals in the recipient and effector cells. The consequences of continuous reverse Ephrin signaling activation in fibroblasts on prostate cancer (PCa) is unknown. When compared to benign prostate fibroblast, CAF displayed higher expression of Ephrin B1, B2, and B3 ligands (EFNB1, EFNB2, and EFNB3). In this study, we found that continuous activation of EFNB1 and EFNB3 in a benign human prostate stromal cell line (BHPrS1) increased the expression of CAF markers and induced a CAF phenotype. BHPrS1EFNB1 and BHPrS1EFNB3 displayed a pro-tumorigenic secretome with multiple effects on neovascularization, collagen deposition, and cancer cell proliferation, overall increasing tumorigenicity of a premalignant prostate epithelial cell line BPH1 and PCa cell line LNCaP, both in vitro and in vivo. Inhibition of Src family kinases (SFK) in BHPrS1EFNB1 and BHPrS1EFNB3 suppressed EFNB-induced ɑ-SMA (Alpha-smooth muscle actin) and TN-C (Tenascin-C) in vitro. Our study suggests that acquisition of CAF characteristics via SFK activation in response to increased EFNB ligands could promote carcinogenesis via modulation of TME in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Chicago, IL 60201, USA; (M.K.); (S.C.); (M.F.D.); (V.G.); (Y.F.); (R.V.); (S.E.C.); (S.W.H.)
| |
Collapse
|
19
|
Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, Yu-Lee LY, Lin SH. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene 2022; 41:757-769. [PMID: 34845375 PMCID: PMC8818031 DOI: 10.1038/s41388-021-02131-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted bone morphogenetic protein 4 (BMP4). Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion, and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (Isobaric Tags for Relative and Absolute Quantitation) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced OSBs was confirmed by immunohistochemistry of MDA PCa-118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC-neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while the addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC-overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5β1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Zhu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, 11724, NY, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Metabolic Phenotyping in Prostate Cancer Using Multi-Omics Approaches. Cancers (Basel) 2022; 14:cancers14030596. [PMID: 35158864 PMCID: PMC8833769 DOI: 10.3390/cancers14030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa), one of the most frequently diagnosed cancers among men worldwide, is characterized by a diverse biological heterogeneity. It is well known that PCa cells rewire their cellular metabolism to meet the higher demands required for survival, proliferation, and invasion. In this context, a deeper understanding of metabolic reprogramming, an emerging hallmark of cancer, could provide novel opportunities for cancer diagnosis, prognosis, and treatment. In this setting, multi-omics data integration approaches, including genomics, epigenomics, transcriptomics, proteomics, lipidomics, and metabolomics, could offer unprecedented opportunities for uncovering the molecular changes underlying metabolic rewiring in complex diseases, such as PCa. Recent studies, focused on the integrated analysis of multi-omics data derived from PCa patients, have in fact revealed new insights into specific metabolic reprogramming events and vulnerabilities that have the potential to better guide therapy and improve outcomes for patients. This review aims to provide an up-to-date summary of multi-omics studies focused on the characterization of the metabolomic phenotype of PCa, as well as an in-depth analysis of the correlation between changes identified in the multi-omics studies and the metabolic profile of PCa tumors.
Collapse
|
21
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Hassan MS, Cwidak N, Awasthi N, von Holzen U. Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer. Cancer Control 2022; 29:10732748221078470. [PMID: 35442094 PMCID: PMC9024076 DOI: 10.1177/10732748221078470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Esophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs’ impact on EC growth and therapy.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Nicholas Cwidak
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Niranjan Awasthi
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Urs von Holzen
- Department of Surgery, 158720Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, South Bend, IN 46617, USA.,Goshen Center for Cancer Care, Goshen, Goshen, IN 46526, USA.,University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Guan XY, Guan XL, Jiao ZY. Improving therapeutic resistance: beginning with targeting the tumor microenvironment. J Chemother 2021; 34:492-516. [PMID: 34873999 DOI: 10.1080/1120009x.2021.2011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a serious threat to human health and life. The tumor microenvironment (TME) not only plays a key role in the occurrence, development and metastasis of cancer, but also has a profound impact on treatment resistance. To improve and solve this problem, an increasing number of strategies targeting the TME have been proposed, and great progress has been made in recent years. This article reviews the characteristics and functions of the main matrix components of the TME and the mechanisms by which each component affects drug resistance. Furthermore, this article elaborates on targeting the TME as a strategy to treat acquired drug resistance, reduce tumor metastasis, recurrence, and improve efficacy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuo-Yi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Fujita M, Suzuki H, Fukai F. Involvement of integrin-activating peptides derived from tenascin-C in colon cancer progression. World J Gastrointest Oncol 2021; 13:980-994. [PMID: 34616507 PMCID: PMC8465449 DOI: 10.4251/wjgo.v13.i9.980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Tenascin-C (TNC) is an adhesion modulatory protein present in the extracellular matrix that is highly expressed in several malignancies, including colon cancer. Although TNC is considered a negative prognostic factor for cancer patients, the substantial role of the TNC molecule in colorectal carcinogenesis and its malignant progression is poorly understood. We previously found that TNC has a cryptic functional site and that a TNC peptide containing this site, termed TNIIIA2, can potently and persistently activate beta1-integrins. In contrast, the peptide FNIII14, which contains a cryptic bioactive site within the fibronectin molecule, can inactivate beta1-integrins. This review presents the role of TNC in the development of colitis-associated colorectal cancer and in the malignant progression of colon cancer, particularly the major involvement of its cryptic functional site TNIIIA2. We propose new possible prophylactic and therapeutic strategies based on inhibition of the TNIIIA2-induced beta1-integrin activation by peptide FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| |
Collapse
|
25
|
Mao C, Dong W, Lu J, Zhang Z, Wu H, Ghavamian A, Bi D, Gao P, Liu Z, Ding S. βKlotho Inhibits Cell Proliferation by Downregulating ELK4 and Predicts Favorable Prognosis in Prostate Cancer. Cancer Manag Res 2021; 13:6377-6387. [PMID: 34408497 PMCID: PMC8366951 DOI: 10.2147/cmar.s320490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Prostate cancer (PCa) ranks as the second common malignancy in males worldwide. Although conspicuous progressions in diagnosis and treatment have been achieved in the past decades, the prognosis expectation of PCa remains unsatisfied yet. To improve the prognosis prediction of PCa, more specific biomarkers are needed. In this retrospective research, we focused on βKlotho and ETS-like transcription factor 4 (ELK4), aiming to identify potential prognostic biomarkers for PCa. Methods Western blotting was used to determine the expression of βKlotho, ELK4, and PARP in C4-2B and PC3 PCa cell lines. CCK-8 assay and colony formation assay were applied to examine the roles of βKlotho and ELK4 in the proliferation of PCa cells. The expression of βKlotho and ELK4 in PCa tissue samples was determined by immunochemistry. Pearson's χ2 test and Fisher's exact test were performed to investigate the associations among βKlotho, ELK4 and various clinical factors. Kaplan-Meier curves and Cox regression model were established to reveal the correlation among βKlotho, ELK4 expression and the prognosis of patients. Results βKlotho overexpression down-regulated the ELK4 expression, induced apoptosis and inhibited cell proliferation in both C4-2B and PC3 cells, which were reversed by ELK4 overexpression. βKlotho expression in PCa tissue samples had negative correlation with the ELK4 expression, and higher βKlotho expression was associated with lower Gleason score, absent distant metastasis and lower prostate-specific antigen (PSA) level. On the contrast, higher ELK4 expression was correlated with distant metastasis and higher PSA level. Moreover, βKlotho and ELK4 were both recognized as independent factors for the prognosis of patients with PCa. Conclusion βKlotho inhibits proliferation of prostate cancer cells by downregulating ELK4. Both βKlotho and ELK4 expressions correlate with the prognosis of PCa, which may serve as potential biomarkers for follow-up surveillance and prognostic assessments.
Collapse
Affiliation(s)
- Changlin Mao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Wei Dong
- Department of Urology, Shandong Provincial Hospital West Branch, Jinan, Shandong, 250000, People's Republic of China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Hongliang Wu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Armin Ghavamian
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Pei Gao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
26
|
Jasu J, Tolonen T, Antonarakis ES, Beltran H, Halabi S, Eisenberger MA, Carducci MA, Loriot Y, Van der Eecken K, Lolkema M, Ryan CJ, Taavitsainen S, Gillessen S, Högnäs G, Talvitie T, Taylor RJ, Koskenalho A, Ost P, Murtola TJ, Rinta-Kiikka I, Tammela T, Auvinen A, Kujala P, Smith TJ, Kellokumpu-Lehtinen PL, Isaacs WB, Nykter M, Kesseli J, Bova GS. Combined Longitudinal Clinical and Autopsy Phenomic Assessment in Lethal Metastatic Prostate Cancer: Recommendations for Advancing Precision Medicine. EUR UROL SUPPL 2021; 30:47-62. [PMID: 34337548 PMCID: PMC8317817 DOI: 10.1016/j.euros.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Systematic identification of data essential for outcome prediction in metastatic prostate cancer (mPC) would accelerate development of precision oncology. OBJECTIVE To identify novel phenotypes and features associated with mPC outcome, and to identify biomarker and data requirements to be tested in future precision oncology trials. DESIGN SETTING AND PARTICIPANTS We analyzed deep longitudinal clinical, neuroendocrine expression, and autopsy data of 33 men who died from mPC between 1995 and 2004 (PELICAN33), and related findings to mPC biomarkers reported in the literature. INTERVENTION Thirty-three men prospectively consented to participate in an integrated clinical-molecular rapid autopsy study of mPC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Data exploration with correction for multiple testing and survival analysis from the time of diagnosis to time to death and time to first occurrence of severe pain as outcomes were carried out. The effect of seven complications on the modeled probability of dying within 2 yr after presenting with the complication was evaluated using logistic regression. RESULTS AND LIMITATIONS Feature exploration revealed novel phenotypes related to mPC outcome. Four complications (pleural effusion, severe anemia, severe or controlled pain, and bone fracture) predict the likelihood of death within 2 yr. Men with Gleason grade group 5 cancers developed severe pain sooner than those with lower-grade tumors. Surprisingly, neuroendocrine (NE) differentiation was frequently observed in the setting of high serum prostate-specific antigen (PSA) levels (≥30 ng/ml). In 4/33 patients, no controlled (requiring analgesics) or severe pain was detected, and strikingly, 14/15 metastatic sites studied in these men did not express NE markers, suggesting an inverse relationship between NE differentiation and pain in mPC. Intracranial subdural metastasis is common (36%) and is usually clinically undetected. Categorization of "skeletal-related events" complications used in recent studies likely obscures the understanding of spinal cord compression and fracture. Early death from prostate cancer was identified in a subgroup of men with a low longitudinal PSA bandwidth. Cachexia is common (body mass index <0.89 in 24/31 patients) but limited to the last year of life. Biomarker review identified 30 categories of mPC biomarkers in need of winnowing in future trials. All findings require validation in larger cohorts, preferably alongside data from this study. CONCLUSIONS The study identified novel outcome subgroups for future validation and provides "vision for mPC precision oncology 2020-2050" draft recommendations for future data collection and biomarker studies. PATIENT SUMMARY To better understand variation in metastatic prostate cancer behavior, we assembled and analyzed longitudinal clinical and autopsy records in 33 men. We identified novel outcomes, phenotypes, and aspects of disease burden to be tested and refined in future trials.
Collapse
Affiliation(s)
- Juho Jasu
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - Teemu Tolonen
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Emmanuel S. Antonarakis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Susan Halabi
- Duke University Medical Center, Department of Biostatistics and Bioinformatics, Durham, NC, USA
| | - Mario A. Eisenberger
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael A. Carducci
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yohann Loriot
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Kim Van der Eecken
- Department of Medical and Forensic Pathology, Ghent University, Ghent, Belgium
| | - Martijn Lolkema
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Charles J. Ryan
- Department of Medicine, Division of Oncology, University of Minnesota, Minneapolis, MN, USA
| | - Sinja Taavitsainen
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - Silke Gillessen
- Institute of Oncology of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biosciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Cancer Science, University of Manchester, UK
| | - Gunilla Högnäs
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - Timo Talvitie
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | | | - Antti Koskenalho
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk (Antwerp), Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Teemu J. Murtola
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
- TAYS Cancer Center, Department of Urology, Tampere, Finland
| | - Irina Rinta-Kiikka
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
- TAYS Cancer Center, Department of Radiology, Tampere, Finland
| | - Teuvo Tammela
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
- TAYS Cancer Center, Department of Urology, Tampere, Finland
| | - Anssi Auvinen
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
| | - Paula Kujala
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Thomas J. Smith
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - William B. Isaacs
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - Juha Kesseli
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| | - G. Steven Bova
- Faculty of Medicine and Health Technology, Prostate Cancer Research Center, Tampere University and Tays Cancer Center, Tampere, FI-33014, Finland
| |
Collapse
|
27
|
Khanali J, Azangou-Khyavy M, Boroomand-Saboor M, Ghasemi M, Niknejad H. JAK/STAT-Dependent Chimeric Antigen Receptor (CAR) Expression: A Design Benefiting From a Dual AND/OR Gate Aiming to Increase Specificity, Reduce Tumor Escape and Affect Tumor Microenvironment. Front Immunol 2021; 12:638639. [PMID: 34177890 PMCID: PMC8220211 DOI: 10.3389/fimmu.2021.638639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
Recent advances in cancer immunotherapy have attracted great interest due to the natural capacity of the immune system to fight cancer. This field has been revolutionized by the advent of chimeric antigen receptor (CAR) T cell therapy that is utilizing an antigen recognition domain to redirect patients’ T cells to selectively attack cancer cells. CAR T cells are designed with antigen-binding moieties fused to signaling and co-stimulatory intracellular domains. Despite significant success in hematologic malignancies, CAR T cells encounter many obstacles for treating solid tumors due to tumor heterogeneity, treatment-associated toxicities, and immunosuppressive tumor microenvironment. Although the current strategies for enhancing CAR T cell efficacy and specificity are promising, they have their own limitations, making it necessary to develop new genetic engineering strategies. In this article, we have proposed a novel logic gate for recognizing tumor-associated antigens by employing intracellular JAK/STAT signaling pathway to enhance CAR T Cells potency and specificity. Moreover, this new-generation CAR T cell is empowered to secrete bispecific T cell engagers (BiTEs) against cancer-associated fibroblasts (CAFs) to diminish tumor metastasis and angiogenesis and increase T cell infiltration.
Collapse
Affiliation(s)
- Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Du Y, Miao W, Jiang X, Cao J, Wang B, Wang Y, Yu J, Wang X, Liu H. The Epithelial to Mesenchymal Transition Related Gene Calumenin Is an Adverse Prognostic Factor of Bladder Cancer Correlated With Tumor Microenvironment Remodeling, Gene Mutation, and Ferroptosis. Front Oncol 2021; 11:683951. [PMID: 34150647 PMCID: PMC8209417 DOI: 10.3389/fonc.2021.683951] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
The tumor microenvironment (TME) plays a critical regulatory role in bladder cancer (BLCA) progression and metastasis. Epithelial-mesenchymal transition (EMT) presents as an essential mechanism of tumor invasion and metastasis. Accumulating pieces of evidence indicated that several microenvironmental factors, including fibroblasts, endothelial, and immune cells, induced EMT in tumor cells. As a hallmark gene of the EMT process, calumenin (CALU) was previously reported to directly impact cancer metastasis. However, the functions and molecular mechanisms of CALU have been rarely reported in BLCA. By multi-omics bioinformatics analysis of 408 TCGA BLCA patients, we demonstrated that CALU was an independent risk factor for BLCA outcome. Subsequently, we verified the correlation of CALU with cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune cells. The results suggested a positive correlation of CALU with CAFs, CD8+ T cells and macrophages. Also, CALU was significantly associated with multiple immune checkpoint-related genes, which ultimately influenced patients' responsiveness to immunotherapy. Further, we found that the impact of CALU on BLCA prognosis might also be correlated with gene mutations and ferroptosis. Finally, we validated the roles of CALU by single-cell RNA sequencing, PCR and immunohistochemistry. In conclusion, we found that CALU affected BLCA prognosis associated with multiple mechanisms, including TME remodeling, gene mutation and ferroptosis. Further studies on CALU may provide new targets for BLCA immunotherapy and precision medicine.
Collapse
Affiliation(s)
- YiHeng Du
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - WenHao Miao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Jiang
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jin Cao
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Bo Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Yi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Jiang Yu
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - XiZhi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Suresh R, Diaz RJ. The remodelling of actin composition as a hallmark of cancer. Transl Oncol 2021; 14:101051. [PMID: 33761369 PMCID: PMC8008238 DOI: 10.1016/j.tranon.2021.101051] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Actin is a key structural protein that makes up the cytoskeleton of cells, and plays a role in functions such as division, migration, and vesicle trafficking. It comprises six different cell-type specific isoforms: ACTA1, ACTA2, ACTB, ACTC1, ACTG1, and ACTG2. Abnormal actin isoform expression has been reported in many cancers, which led us to hypothesize that it may serve as an early biomarker of cancer. We show an overview of the different actin isoforms and highlight mechanisms by which they may contribute to tumorigenicity. Furthermore, we suggest how the aberrant expression of actin subunits can confer cells with greater proliferation ability, increased migratory capability, and chemoresistance through incorporation into the normal cellular F-actin network and altered actin binding protein interaction. Studying this fundamental change that takes place within cancer cells can further our understanding of neoplastic transformation in multiple tissue types, which can ultimately aid in the early-detection, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rahul Suresh
- Montreal Neurological Institute, Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
30
|
Du Y, Jiang X, Wang B, Cao J, Wang Y, Yu J, Wang X, Liu H. The cancer-associated fibroblasts related gene CALD1 is a prognostic biomarker and correlated with immune infiltration in bladder cancer. Cancer Cell Int 2021; 21:283. [PMID: 34051818 PMCID: PMC8164301 DOI: 10.1186/s12935-021-01896-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stromal components of the tumor microenvironment contribute to bladder cancer progression, and Cancer-Associated Fibroblasts (CAFs) were reported to play an important role. Accumulating pieces of evidence indicate that CAFs participate in the crosstalk with tumor cells and have a complex interaction network with immune components. Further studies on the role of CAFs in the bladder cancer microenvironment and searching for possible specific markers are important for a deeper understanding of CAFs in bladder cancer progression and immunomodulation. METHODS In the present study, we examined the abundance of CAFs in the TCGA and GEO datasets using the MCP-COUNTER algorithm. Additionally, the expression of genes related to CAFs was analyzed through the Weighted Gene Co-expression Network Analysis (WGCNA). The CIBERSORT and ESTIMATE algorithms were used to discuss the correlation of the key CAFs-related gene and the tumor microenvironment components. Immunohistochemistry analysis in clinical samples was used to validate the results of bioinformatics analysis. RESULTS The results showed that CAFs were closely associated with the progression and prognosis of bladder cancer. WGCNA also revealed that CALD1 was a key CAFs-related gene in bladder cancer. Moreover, further in-depth analysis showed that CALD1 significantly affected the progression and prognosis of bladder cancer. The CIBERSORT and ESTIMATE algorithms demonstrated significant correlations between CALD1 and the tumor microenvironment components, including CAFs, macrophages, T cells, and multiple immune checkpoint related genes. Finally, immunohistochemistry results validated the strong association of CALD1 with CAFs and macrophages. CONCLUSIONS In the present study, we confirmed the cancer-promoting roles of CAFs in bladder cancer. Being a key gene associated with CAFs, CALD1 may promote bladder cancer progression by remodeling the tumor microenvironment. The bioinformatics methods, including the CIBERSORT, MCP-COUNTER and ESTIMATE algorithms, may provide important value for studying the tumor microenvironment.
Collapse
Affiliation(s)
- YiHeng Du
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - Xiang Jiang
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - Bo Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - Jin Cao
- Department of Pathology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - Yi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - Jiang Yu
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - XiZhi Wang
- Department of Urology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 215028, Suzhou, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine (originally named "Shanghai First Hospital"), 200080, Shanghai, China.
| |
Collapse
|
31
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy. J Control Release 2021; 332:109-126. [DOI: 10.1016/j.jconrel.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
|
33
|
Klusa D, Lohaus F, Furesi G, Rauner M, Benešová M, Krause M, Kurth I, Peitzsch C. Metastatic Spread in Prostate Cancer Patients Influencing Radiotherapy Response. Front Oncol 2021; 10:627379. [PMID: 33747899 PMCID: PMC7971112 DOI: 10.3389/fonc.2020.627379] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy and surgery are curative treatment options for localized prostate cancer (PCa) with a 5-year survival rate of nearly 100%. Once PCa cells spread into distant organs, such as bone, the overall survival rate of patients drops dramatically. The metastatic cascade and organotropism of PCa cells are regulated by different cellular subtypes, organ microenvironment, and their interactions. This cross-talk leads to pre-metastatic niche formation that releases chemo-attractive factors enforcing the formation of distant metastasis. Biological characteristics of PCa metastasis impacting on metastatic sites, burden, and latency is of clinical relevance. Therefore, the implementation of modern hybrid imaging technologies into clinical routine increased the sensitivity to detect metastases at earlier stages. This enlarged the number of PCa patients diagnosed with a limited number of metastases, summarized as oligometastatic disease. These patients can be treated with androgen deprivation in combination with local-ablative radiotherapy or radiopharmaceuticals directed to metastatic sites. Unfortunately, the number of patients with disease recurrence is high due to the enormous heterogeneity within the oligometastatic patient population and the lack of available biomarkers with predictive potential for metastasis-directed radiotherapy. Another, so far unmet clinical need is the diagnosis of minimal residual disease before onset of clinical manifestation and/or early relapse after initial therapy. Here, monitoring of circulating and disseminating tumor cells in PCa patients during the course of radiotherapy may give us novel insight into how metastatic spread is influenced by radiotherapy and vice versa. In summary, this review critically compares current clinical concepts for metastatic PCa patients and discuss the implementation of recent preclinical findings improving our understanding of metastatic dissemination and radiotherapy resistance into standard of care.
Collapse
Affiliation(s)
- Daria Klusa
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Lohaus
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giulia Furesi
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Dresden,Germany
| | - Martina Rauner
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Dresden,Germany
| | | | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Cai Z, Zhai T, Muhanhali D, Ling Y. TNRC6C Functions as a Tumor Suppressor and Is Frequently Downregulated in Papillary Thyroid Cancer. Int J Endocrinol 2021; 2021:6686998. [PMID: 33564303 PMCID: PMC7867448 DOI: 10.1155/2021/6686998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Our previous study found that trinucleotide repeat containing adaptor 6C (TNRC6C) may act as a tumor suppressor in papillary thyroid cancer (PTC). In this study, we aimed to confirm the effect of TNRC6C on PTC and investigate the underlying molecular mechanism. The difference of mRNA level of TNRC6C between PTC tissue and noncancerous thyroid tissue and the association of expression level of TNRC6C with clinicopathological features of PTC were analyzed using TCGA data. Immunohistochemical assay was performed to detect the protein expression of TNRC6C in PTC and its adjacent noncancerous tissue. Cell proliferation, migration, invasion, and apoptosis were analyzed after knockdown or overexpression of TNRC6C in BCPAP cells. RNA-sequencing was performed to find the target genes of TNRC6C, and potential targets were validated in BCPAP and TPC1 cells. Our results showed that TNRC6C was downregulated in PTC, and lower expression level of TNRC6C was associated with worse clinicopathological features. Overexpression of TNRC6C significantly inhibited proliferation, migration, and invasion of BCPAP cells and promoted its apoptosis, while knockdown of TNRC6C acted the opposite role. By analyzing RNA-sequencing data and TCGA data, 12 genes (SCD, CRLF1, APCDD1L, CTHRC1, PTPRU, ALDH1A3, VCAN, TNC, ECE1, COL1A1, CAMK2N2, and MMP14) were considered as potential target genes of TNRC6C, and most of them were associated with clinicopathological features of PTC in TCGA. All of them except CAMK2N2 were significantly downregulated after overexpressing TNRC6C. Our study demonstrated that TNRC6C functions as a tumor suppressor in PTC and may serve as a useful therapeutic target and prognostic marker for PTC patients.
Collapse
Affiliation(s)
- Zhenqin Cai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai 200032, China
| | - Tianyu Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai 200032, China
| | - Dilidaer Muhanhali
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai 200032, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
35
|
Fujita M, Sasada M, Iyoda T, Nagai R, Kudo C, Yamamoto T, Osada S, Kodama H, Fukai F. Anoikis resistance conferred by tenascin-C-derived peptide TNIIIA2 and its disruption by integrin inactivation. Biochem Biophys Res Commun 2020; 536:14-19. [PMID: 33360093 DOI: 10.1016/j.bbrc.2020.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM), the most common brain tumor in adults, has an extremely poor prognosis, which is attributed to the aggressive properties of GBM cells, such as dysregulated proliferation and disseminative migration. We recently found that peptide TNIIIA2, derived from tenascin-C (TNC), which is highly expressed in GBM, contributes to the acquisition of these aggressive properties through β1-integrin activation. In general, cancer cells often acquire an additional malignant property that confers resistance to apoptosis due to loss of adhesion to the extracellular matrix, termed anoikis resistance. Our present results show that regulation of β1-integrin activation also plays a key role in both the development and loss of anoikis resistance in GBM cells. Despite being derived from a GBM with an extremely poor prognosis, the human GBM cell line T98G was susceptible to anoikis but became anoikis resistant via treatment with peptide TNIIIA2, which is able to activate β1-integrin. The TNIIIA2-conferred anoikis resistance of T98G cells was disrupted by further addition of peptide FNIII14, which has the ability to inactivate β1-integrin. Moreover, anchorage-independent survival of GBM cells in suspension culture was abrogated by peptide FNIII14, but not by RGD and CS-1 peptides, which are antagonistic for integrins α5β1, αvβ3, and α4β1. These results suggest that GBM cells develop anoikis resistance through activation of β1-integrin by TNC-derived peptide TNIIIA2, which is abundantly released into the tumor microenvironment of GBM. Inactivation of β1-integrin may provide a promising strategy to overcome the apoptosis resistance of cancer cells, including GBM.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Reo Nagai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Chikako Kudo
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Satoshi Osada
- Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga-city, Saga, 840-8502, Japan
| | - Hiroaki Kodama
- Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga-city, Saga, 840-8502, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
36
|
Karkampouna S, De Filippo MR, Ng CKY, Klima I, Zoni E, Spahn M, Stein F, Haberkant P, Thalmann GN, Kruithof-de Julio M. Stroma Transcriptomic and Proteomic Profile of Prostate Cancer Metastasis Xenograft Models Reveals Prognostic Value of Stroma Signatures. Cancers (Basel) 2020; 12:cancers12123786. [PMID: 33334054 PMCID: PMC7768471 DOI: 10.3390/cancers12123786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
Resistance acquisition to androgen deprivation treatment and metastasis progression are a major clinical issue associated with prostate cancer (PCa). The role of stroma during disease progression is insufficiently defined. Using transcriptomic and proteomic analyses on differentially aggressive patient-derived xenografts (PDXs), we investigated whether PCa tumors predispose their microenvironment (stroma) to a metastatic gene expression pattern. RNA sequencing was performed on the PCa PDXs BM18 (castration-sensitive) and LAPC9 (castration-resistant), representing different disease stages. Using organism-specific reference databases, the human-specific transcriptome (tumor) was identified and separated from the mouse-specific transcriptome (stroma). To identify proteomic changes in the tumor (human) versus the stroma (mouse), we performed human/mouse cell separation and subjected protein lysates to quantitative Tandem Mass Tag labeling and mass spectrometry. Tenascin C (TNC) was among the most abundant stromal genes, modulated by androgen levels in vivo and highly expressed in castration-resistant LAPC9 PDX. The tissue microarray of primary PCa samples (n = 210) showed that TNC is a negative prognostic marker of the clinical progression to recurrence or metastasis. Stroma markers of osteoblastic PCa bone metastases seven-up signature were induced in the stroma by the host organism in metastatic xenografts, indicating conserved mechanisms of tumor cells to induce a stromal premetastatic signature. A 50-gene list stroma signature was identified based on androgen-dependent responses, which shows a linear association with the Gleason score, metastasis progression and progression-free survival. Our data show that metastatic PCa PDXs, which differ in androgen sensitivity, trigger differential stroma responses, which show the metastasis risk stratification and prognostic biomarker potential.
Collapse
Affiliation(s)
- Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Maria R. De Filippo
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Charlotte K. Y. Ng
- Oncogenomics Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 40, 3008 Bern, Switzerland;
| | - Irena Klima
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012 Bern, Switzerland;
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; (F.S.); (P.H.)
| | - George N. Thalmann
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland; (S.K.); (M.R.D.F.); (I.K.); (E.Z.); (G.N.T.)
- Department of Urology, Inselspital, Anna Seiler Haus, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
37
|
Tenascin-C Function in Glioma: Immunomodulation and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:149-172. [PMID: 32845507 DOI: 10.1007/978-3-030-48457-6_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First identified in the 1980s, tenascin-C (TNC) is a multi-domain extracellular matrix glycoprotein abundantly expressed during the development of multicellular organisms. TNC level is undetectable in most adult tissues but rapidly and transiently induced by a handful of pro-inflammatory cytokines in a variety of pathological conditions including infection, inflammation, fibrosis, and wound healing. Persistent TNC expression is associated with chronic inflammation and many malignancies, including glioma. By interacting with its receptor integrin and a myriad of other binding partners, TNC elicits context- and cell type-dependent function to regulate cell adhesion, migration, proliferation, and angiogenesis. TNC operates as an endogenous activator of toll-like receptor 4 and promotes inflammatory response by inducing the expression of multiple pro-inflammatory factors in innate immune cells such as microglia and macrophages. In addition, TNC drives macrophage differentiation and polarization predominantly towards an M1-like phenotype. In contrast, TNC shows immunosuppressive function in T cells. In glioma, TNC is expressed by tumor cells and stromal cells; high expression of TNC is correlated with tumor progression and poor prognosis. Besides promoting glioma invasion and angiogenesis, TNC has been found to affect the morphology and function of tumor-associated microglia/macrophages in glioma. Clinically, TNC can serve as a biomarker for tumor progression; and TNC antibodies have been utilized as an adjuvant agent to deliver anti-tumor drugs to target glioma. A better mechanistic understanding of how TNC impacts innate and adaptive immunity during tumorigenesis and tumor progression will open new therapeutic avenues to treat brain tumors and other malignancies.
Collapse
|
38
|
Angel PM, Spruill L, Jefferson M, Bethard JR, Ball LE, Hughes-Halbert C, Drake RR. Zonal regulation of collagen-type proteins and posttranslational modifications in prostatic benign and cancer tissues by imaging mass spectrometry. Prostate 2020; 80:1071-1086. [PMID: 32687633 PMCID: PMC7857723 DOI: 10.1002/pros.24031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The emergence of reactive stroma is a hallmark of prostate cancer (PCa) progression and a potential source for prognostic and diagnostic markers of PCa. Collagen is a main component of reactive stroma and changes systematically and quantitatively to reflect the course of PCa, yet has remained undefined due to a lack of tools that can define collagen protein structure. Here we use a novel collagen-targeting proteomics approach to investigate zonal regulation of collagen-type proteins in PCa prostatectomies. METHODS Prostatectomies from nine patients were divided into zones containing 0%, 5%, 20%, 70% to 80% glandular tissue and 0%, 5%, 25%, 70% by mass of PCa tumor following the McNeal model. Tissue sections from zones were graded by a pathologist for Gleason score, percent tumor present, percent prostatic intraepithelial neoplasia and/or inflammation (INF). High-resolution accurate mass collagen targeting proteomics was done on a select subset of tissue sections from patient-matched tumor or nontumor zones. Imaging mass spectrometry was used to investigate collagen-type regulation corresponding to pathologist-defined regions. RESULTS Complex collagen proteomes were detected from all zones. COL17A and COL27A increased in zones of INF compared with zones with tumor present. COL3A1, COL4A5, and COL8A2 consistently increased in zones with tumor content, independent of tumor size. Collagen hydroxylation of proline (HYP) was altered in tumor zones compared with zones with INF and no tumor. COL3A1 and COL5A1 showed significant changes in HYP peptide ratios within tumor compared with zones of INF (2.59 ± 0.29, P value: .015; 3.75 ± 0.96 P value .036, respectively). By imaging mass spectrometry COL3A1 showed defined localization and regulation to tumor pathology. COL1A1 and COL1A2 showed gradient regulation corresponding to PCa pathology across zones. Pathologist-defined tumor regions showed significant increases in COL1A1 HYP modifications compared with COL1A2 HYP modifications. Certain COL1A1 and COL1A2 peptides could discriminate between pathologist-defined tumor and inflammatory regions. CONCLUSIONS Site-specific posttranslational regulation of collagen structure by proline hydroxylation may be involved in reactive stroma associated with PCa progression. Translational and posttranslational regulation of collagen protein structure has potential for new markers to understand PCa progression and outcomes.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Melanie Jefferson
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Chanita Hughes-Halbert
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
39
|
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K, Saar M. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep 2020; 10:12575. [PMID: 32724081 PMCID: PMC7387494 DOI: 10.1038/s41598-020-69424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The unique microenvironment of the prostate plays a crucial role in the development and progression of prostate cancer (PCa). We examined the effects of cancer-associated fibroblasts (CAFs) on PCa progression using patient-derived fibroblast primary cultures in a representative orthotopic xenograft model. Primary cultures of CAFs, non-cancer-associated fibroblasts (NCAFs) and benign prostate hyperplasia-associated fibroblasts (BPHFs) were generated from patient-derived tissue specimens. These fibroblasts were coinjected together with cancer cells (LuCaP136 spheroids or LNCaP cells) in orthotopic PCa xenografts to investigate their effects on local and systemic tumor progression. Primary tumor growth as well as metastatic spread to lymph nodes and lungs were significantly stimulated by CAF coinjection in LuCaP136 xenografts. When NCAFs or BPHFs were coinjected, tumor progression was similar to injection of tumor cells alone. In LNCaP xenografts, all three fibroblast types significantly stimulated primary tumor progression compared to injection of LNCaP cells alone. CAF coinjection further increased the frequency of lymph node and lung metastases. This is the first study using an orthotopic spheroid culture xenograft model to demonstrate a stimulatory effect of patient-derived CAFs on PCa progression. The established experimental setup will provide a valuable tool to further unravel the interacting mechanisms between PCa cells and their microenvironment.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany.
| | - Turkan Hajili
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Carolina Berchem
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| |
Collapse
|
40
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
41
|
Reinhard J, Wagner N, Krämer MM, Jarocki M, Joachim SC, Dick HB, Faissner A, Kakkassery V. Expression Changes and Impact of the Extracellular Matrix on Etoposide Resistant Human Retinoblastoma Cell Lines. Int J Mol Sci 2020; 21:ijms21124322. [PMID: 32560557 PMCID: PMC7352646 DOI: 10.3390/ijms21124322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase β/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| | - Natalie Wagner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Miriam M. Krämer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Marvin Jarocki
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany; (N.W.); (M.M.K.); (M.J.); (A.F.)
| | - Vinodh Kakkassery
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (S.C.J.); (H.B.D.)
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
- Correspondence: (J.R.); (V.K.); Tel.: +49-234-32-24-314 (J.R.); +49-451-500-43911 (V.K.); Fax: +49-234-32-143-13 (J.R.); +49-451-500-43914 (V.K.)
| |
Collapse
|
42
|
Castration-induced stromal remodeling disrupts the reconstituted prostate epithelial structure. J Transl Med 2020; 100:670-681. [PMID: 31857695 DOI: 10.1038/s41374-019-0352-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
The normal prostate epithelial structure is maintained by homeostatic interactions with smooth muscle cells. However, structural alterations of the stroma are commonly observed in prostatic proliferative diseases, leading to the abnormalities of prostate epithelial structure. A decrease in the androgen level experimentally induces stromal remodeling, i.e., replacement of smooth muscle cells with fibroblasts or myofibroblasts. In this study, we investigated the effects of castration-induced stromal remodeling and subsequent aberrant activation of epithelial-stromal interactions on the reconstituted human prostate-like epithelial structure. We performed in vivo experiments using the human prostate epithelial cell line BPH-1 and fetal rat urogenital sinus mesenchyme to generate heterotypic tissue recombinants that form human prostate-like epithelial structure (i.e., solid- and canalized-epithelial cords). Host mice were castrated at 12 weeks post transplantation (castration) and implanted with a dihydrotestosterone pellet at 14 days post castration (androgen replacement treatment; ART). In the castration group, the percentages of fibrotic area and disrupted prostate epithelial structure without the basement membrane (BM) increased proportionally in a time-dependent manner, but were suppressed by ART. In the castration group, tenascin-C (TNC)-positive fibroblasts were abundant in the stroma surrounding disrupted prostate epithelial structure without the BM. TGF-β1 secretion from BPH-1 cells was increased by co-culturing with human primary cultured prostate fibroblasts. TNC mRNA expression was increased in fibroblasts co-culturing with BPH-1 cells and was suppressed by treatment with a TGF-β RI kinase inhibitor. Moreover, in the castration group, the percentage of p-Smad2-positive cells was significantly higher in the stroma surrounding disrupted prostate epithelial structure without the BM. Our results demonstrate that castration-induced stromal remodeling disrupted the reconstituted human prostate-like epithelial structure and induced the appearance of TNC-positive fibroblasts accompanied by activation of TGF-β signaling. The alteration of prostate stromal structure may be responsible for loss of the BM and epithelial cell polarity.
Collapse
|
43
|
Piao L, Li H, Feng Y, Li X, Cui Y, Xuan Y. Leucine Zipper-EF-Hand Containing Transmembrane Protein 1 Is a Potential Prognostic Biomarker and Promotes Cell Progression in Prostate Cancer. Cancer Manag Res 2020; 12:1649-1660. [PMID: 32184668 PMCID: PMC7064284 DOI: 10.2147/cmar.s236482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) is a mitochondrial protein that has been associated with the occurrence and development of malignant tumors. Previous studies have shown that LETM1 expression is increased in several types of human cancer and is associated with a poor clinical outcome. However, the role of LETM1 in prostate cancer (PCa) has not yet been determined. In this study, we investigated the clinicopathological significance of LETM1 expression and its role in PCa progression. Methods We assessed the expression of LETM1 and genes related to cancer stemness, epithelial-mesenchymal transition (EMT), cell cycle, and PI3K/Akt signaling in 133 paraffin-embedded PCa tissue samples and cancer cells by using immunohistochemistry, immunofluorescence, and Western blotting. Results LETM1 expression was significantly increased in PCa, and it was positively correlated with Gleason score, pathologic tumor (pT) stage, clinical stage, and high microvessel density. Survival analysis showed that patients with PCa with a high level of LETM1 expression exhibited a low overall survival. Cox regression analysis indicated that LETM1 is an independent poor prognostic PCa factor. Additionally, the expression of LETM1 was correlated with cancer cell stemness-associated genes, EMT-related genes, cell cycle regulatory genes, and PI3K/Akt signaling gene expression in PCa. Furthermore, knocking down LETM1 expression down-regulated the expression of stemness-related proteins, while inhibiting tumor spheroid formation, EMT-like changes, cell proliferation, migration, and invasion in PCa cells. Importantly, the PI3K inhibitor LY294002 strongly inhibited the expression of LETM1, pPI3K-p85, and pAkt (Thr308, Ser473) in PCa cells. Conclusion These results indicate that LETM1 expression is associated with cancer cell stemness, promotes EMT-like changes and cell proliferation and is a potential prognostic biomarker for PCa.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China.,Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China.,Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China
| | - Xiaogang Li
- Department of Urology, Yanbian University Affiliated Hospital, Yanji 133002, Jilin Province, People's Republic of China
| | - Yan Cui
- Department of Oncology, Yanbian University Affiliated Hospital, Yanji 133002, Jilin Province, People's Republic of China
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China.,Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, People's Republic of China
| |
Collapse
|
44
|
Pattern of expression of immune- and stroma-associated genes in blood of mice with experimental B16 melanoma. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Liot S, Aubert A, Hervieu V, Kholti NE, Schalkwijk J, Verrier B, Valcourt U, Lambert E. Loss of Tenascin-X expression during tumor progression: A new pan-cancer marker. Matrix Biol Plus 2020; 6-7:100021. [PMID: 33543019 PMCID: PMC7852205 DOI: 10.1016/j.mbplus.2020.100021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein (i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world (i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.
Collapse
Key Words
- CAF, Cancer-Associated Fibroblast
- Cancers
- D.E.G., Differentially Expressed Genes
- ECM, Extracellular Matrix
- EDS, Ehlers-Danlos syndrome
- FBG, fibrinogen
- FNIII, fibronectin type III
- GEO, Gene Expression Omnibus
- GSE, GEO Series
- HDAC1, histone deacetylase-1
- MMP, Matrix Metalloproteinase
- MPNST, Malignant Peripheral Nerve Sheath Tumors
- Meta-analysis
- Prognosis marker
- TCGA, The Cancer Genome Atlas
- TMA, Tissue MicroArray
- TME, Tumor MicroEnvironment
- TN, Tenascin
- TNC, Tenascin-C
- TNR, Tenascin-R
- TNW, Tenascin-W
- TNX, Tenascin-X
- TSS, Transcription Start Site
- Tenascin-X
- Tissue MicroArray
- lncRNA, long non-coding RNA
- mRNA and protein levels
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Valérie Hervieu
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Naïma El Kholti
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Joost Schalkwijk
- Radboud Institute for Molecular Life Sciences, Faculty of Medical Sciences, 370 Geert Grooteplein-Zuid 26 28, 6525 GA Nijmegen, Netherlands
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| |
Collapse
|
46
|
Kiebish MA, Cullen J, Mishra P, Ali A, Milliman E, Rodrigues LO, Chen EY, Tolstikov V, Zhang L, Panagopoulos K, Shah P, Chen Y, Petrovics G, Rosner IL, Sesterhenn IA, McLeod DG, Granger E, Sarangarajan R, Akmaev V, Srinivasan A, Srivastava S, Narain NR, Dobi A. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J Transl Med 2020; 18:10. [PMID: 31910880 PMCID: PMC6945688 DOI: 10.1186/s12967-019-02185-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023] Open
Abstract
Background Predicting the clinical course of prostate cancer is challenging due to the wide biological spectrum of the disease. The objective of our study was to identify prostate cancer prognostic markers in patients ‘sera using a multi-omics discovery platform. Methods Pre-surgical serum samples collected from a longitudinal, racially diverse, prostate cancer patient cohort (N = 382) were examined. Linear Regression and Bayesian computational approaches integrated with multi-omics, were used to select markers to predict biochemical recurrence (BCR). BCR-free survival was modeled using unadjusted Kaplan–Meier estimation curves and multivariable Cox proportional hazards analysis, adjusted for key pathologic variables. Receiver operating characteristic (ROC) curve statistics were used to examine the predictive value of markers in discriminating BCR events from non-events. The findings were further validated by creating a training set (N = 267) and testing set (N = 115) from the cohort. Results Among 382 patients, 72 (19%) experienced a BCR event in a median follow-up time of 6.9 years. Two proteins—Tenascin C (TNC) and Apolipoprotein A1V (Apo-AIV), one metabolite—1-Methyladenosine (1-MA) and one phospholipid molecular species phosphatidic acid (PA) 18:0-22:0 showed a cumulative predictive performance of AUC = 0.78 [OR (95% CI) = 6.56 (2.98–14.40), P < 0.05], in differentiating patients with and without BCR event. In the validation set all four metabolites consistently reproduced an equivalent performance with high negative predictive value (NPV; > 80%) for BCR. The combination of pTstage and Gleason score with the analytes, further increased the sensitivity [AUC = 0.89, 95% (CI) = 4.45–32.05, P < 0.05], with an increased NPV (0.96) and OR (12.4) for BCR. The panel of markers combined with the pathological parameters demonstrated a more accurate prediction of BCR than the pathological parameters alone in prostate cancer. Conclusions In this study, a panel of serum analytes were identified that complemented pathologic patient features in predicting prostate cancer progression. This panel offers a new opportunity to complement current prognostic markers and to monitor the potential impact of primary treatment versus surveillance on patient oncological outcome.
Collapse
Affiliation(s)
| | - Jennifer Cullen
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Prachi Mishra
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Amina Ali
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Yongmei Chen
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - David G McLeod
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | | | | | - Alagarsamy Srinivasan
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Albert Dobi
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD, USA.
| |
Collapse
|
47
|
Oatmen KE, Cull E, Spinale FG. Heart failure as interstitial cancer: emergence of a malignant fibroblast phenotype. Nat Rev Cardiol 2019; 17:523-531. [DOI: 10.1038/s41569-019-0286-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
|
48
|
Wu H, Li J, Chen J, Yin Y, Da P, Chen Q, Zhang Z, Wang J, Wang G, Qiu X. Efficacy of radiation exposure in laryngeal squamous cell carcinoma is mediated by the LAMP3/LAMC2/tenascin-C pathway. Exp Biol Med (Maywood) 2019; 244:1070-1080. [PMID: 31390898 PMCID: PMC6775573 DOI: 10.1177/1535370219867643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
The present study explored the role of LAMP3 and related molecular mechanisms in the efficacy of radiation exposure in laryngeal squamous cell carcinoma (LSCC). A lentivirus vector containing the LAMP3 gene was transfected into HEp-2 cells to construct siRNA-LAMP3 and complementation (siLAMP3+LAMP3) groups. Treatment with 4 Gy or 8 Gy radiation was administered to evaluate the role of LAMP3 in radiation therapy. Apoptosis was detected by Annexin V/propidium iodide double staining. Cell migration and invasion were measured in vitro using Transwell and Matrigel assays. Downstream genes regulated by LAMP3 were analyzed using RNA sequencing. Furthermore, a patient-derived xenograft (PDX) model of LSCC was established to verify the efficacy of radiation exposure and the associated signaling pathways downstream of LAMP3. The efficacy of radiation showed that cell proliferation was significantly inhibited by siRNA-LAMP3 knockdown. Increased apoptosis was also observed. Notably, the inhibitory effect was attenuated and apoptosis rates were decreased after LAMP3 complementation. In vitro cellular assays showed that migration and invasion were significantly suppressed by siRNA-LAMP3 knockdown and increased after LAMP3 complementation. Analysis of the efficacy of radiation exposure in the PDX model showed that LAMP3-specific knockdown inhibited tumor growth and that tumor growth was further reduced by the combined radiotherapy treatment. According to transcriptome analysis, the extracellular matrix-receptor interaction pathway is regulated by LAMP3, and further analysis revealed significant differences in key-associated molecules, including laminin subunit gamma-2 (LAMC2) and tenascin-C (TNC). Validation of the in vivo PDX model using qPCR and Western blot analyses supported the abovementioned results. The present findings suggest that reduced LAMP3 expression enhances the efficacy of radiation exposure in LSCC by regulating the LAMP3/LAMC2/TNC signaling pathway.
Collapse
Affiliation(s)
- Hao Wu
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Juanjuan Li
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Jianqiu Chen
- Department of Otolaryngology – Head and Neck Surgery, General
Hospital of Jinan Military Region, Jinan, Shandong 250031, P.R. China
| | - Yong Yin
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Peng Da
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Qingwen Chen
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Zhenxin Zhang
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| | - Jinxing Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of
Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226001,
P.R. China
| | - Guohua Wang
- Department of Physiology and Hypoxic Biomedicine, Institute of
Special Environmental Medicine, Nantong University, Nantong, Jiangsu 226001,
P.R. China
| | - Xiaoxia Qiu
- Department of Otorhinolaryngology – Head and Neck Surgery,
Nantong University Affiliated Hospital, Nantong, Jiangsu 226001, P.R.
China
| |
Collapse
|
49
|
Hawkins AG, Julian CM, Konzen S, Treichel S, Lawlor ER, Bailey KM. Microenvironmental Factors Drive Tenascin C and Src Cooperation to Promote Invadopodia Formation in Ewing Sarcoma. Neoplasia 2019; 21:1063-1072. [PMID: 31521948 PMCID: PMC6745492 DOI: 10.1016/j.neo.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
Ewing sarcoma is a bone tumor most commonly diagnosed in adolescents and young adults. Survival for patients with recurrent or metastatic Ewing sarcoma is dismal and there is a dire need to better understand the mechanisms of cell metastasis specific to this disease. Our recent work demonstrated that microenvironmental stress leads to increased Ewing sarcoma cell invasion through Src activation. Additionally, we have shown that the matricellular protein tenascin C (TNC) promotes metastasis in Ewing sarcoma. A major role of both TNC and Src is mediation of cell-cell and cell-matrix interactions resulting in changes in cell motility, invasion, and adhesion. However, it remains largely unknown, if and how, TNC and Src are linked in these processes. We hypothesized that TNC is a positive regulator of invadopodia formation in Ewing sarcoma through its ability to activate Src. We demonstrate here that both tumor cell endogenous and exogenous TNC can enhance Src activation and invadopodia formation in Ewing sarcoma. We found that microenvironmental stress upregulates TNC expression and this is dampened with application of the Src inhibitor dasatinib, suggesting that TNC expression and Src activation cooperate to promote the invasive phenotype. This work reports the impact of stress-induced TNC expression on enhancing cell invadopodia formation, provides evidence for a feed forward loop between TNC and Src to promote cell metastatic behavior, and highlights a pathway by which microenvironment-driven TNC expression could be therapeutically targeted in Ewing sarcoma.
Collapse
Affiliation(s)
- Allegra G Hawkins
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Claire M Julian
- Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15224
| | - Sonja Konzen
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Sydney Treichel
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elizabeth R Lawlor
- Department of Pediatrics, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Kelly M Bailey
- Department of Pediatrics, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15224.
| |
Collapse
|
50
|
Hagiwara K, Harimoto N, Yokobori T, Muranushi R, Hoshino K, Gantumur D, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Tanaka H, Watanabe A, Kubo N, Araki K, Hosouchi Y, Shirabe K. High Co-expression of Large Tenascin C Splice Variants in Stromal Tissue and Annexin A2 in Cancer Cell Membranes is Associated with Poor Prognosis in Pancreatic Cancer. Ann Surg Oncol 2019; 27:924-930. [PMID: 31463696 DOI: 10.1245/s10434-019-07708-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic cancer tissue contains abundant stromal components, including extracellular matrix proteins such as tenascin C (TNC), which exists as large (TNC-L) and non-large splice variants. Here, we examined human pancreatic cancer specimens for the expression of total TNC (TNC-ALL) and TNC-L in the stroma and annexin A2 (ANXA2), a cell surface receptor for TNC, and evaluated their significance as prognostic markers for pancreatic cancer. METHODS Expression of ANXA2, TNC-ALL, and TNC-L was examined in 106 pancreatic cancer tissues from patients who underwent curative resection and who had not received prior therapy or surgery. Protein expression was measured by immunohistochemistry and scored on a semi-quantitative scale. The relationships between protein expression, clinicopathological factors, and prognosis were evaluated by Cox proportional hazards analysis. RESULTS TNC-ALL and TNC-L were detected mainly in the stroma, whereas ANXA2 was predominantly expressed in cancer cell membranes. TNC-ALL was also expressed in non-tumor pancreatic tissue. High levels of stromal TNC-L and membranous ANXA2, but not stromal TNC-ALL, were independently associated with cancer progression and poor prognosis. Moreover, high co-expression of stromal TNC-L and membranous ANXA2 was a superior indicator of poor prognosis compared with detection of TNC-ALL, TNC-L, or ANXA2 alone. CONCLUSIONS Our data suggest that co-expression of stromal TNC-L and membranous ANXA2 is a poor prognostic marker compared with detection of TNC-L or ANXA2 alone for pancreatic cancer patients. Additionally, targeting of crosstalk between stromal TNC and cancer cell ANXA2 could be a promising therapeutic strategy to overcome refractory pancreatic cancer.
Collapse
Affiliation(s)
- Kei Hagiwara
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norifumi Harimoto
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan.
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Japan.,Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Ryo Muranushi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Kouki Hoshino
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Dorgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Yamanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norihiro Ishii
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Mariko Tsukagoshi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan.,Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Japan
| | - Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Tanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Akira Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Norio Kubo
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Yasuo Hosouchi
- Department of Surgery and Laparoscopic Surgery, Gunma Prefecture Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|