1
|
McGill Percy KC, Liu Z, Qi X. Mitochondrial dysfunction in Alzheimer's disease: Guiding the path to targeted therapies. Neurotherapeutics 2025; 22:e00525. [PMID: 39827052 PMCID: PMC12047401 DOI: 10.1016/j.neurot.2025.e00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, marked by the accumulation of amyloid-β (Aβ) plaques and tau tangles. Emerging evidence suggests that mitochondrial dysfunction plays a pivotal role in AD pathogenesis, driven by impairments in mitochondrial quality control (MQC) mechanisms. MQC is crucial for maintaining mitochondrial integrity through processes such as proteostasis, mitochondrial dynamics, mitophagy, and precise communication with other subcellular organelles. In AD, disruptions in these processes lead to bioenergetic failure, gene dysregulation, the accumulation of damaged mitochondria, neuroinflammation, and lipid homeostasis impairment, further exacerbating neurodegeneration. This review elucidates the molecular pathways involved in MQC and their pathological relevance in AD, highlighting recent discoveries related to mitochondrial mechanisms underlying neurodegeneration. Furthermore, we explore potential therapeutic strategies targeting mitochondrial dysfunction, including gene therapy and pharmacological interventions, offering new avenues for slowing AD progression. The complex interplay between mitochondrial health and neurodegeneration underscores the need for innovative approaches to restore mitochondrial function and mitigate the onset and progression of AD.
Collapse
Affiliation(s)
- Kyle C McGill Percy
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zunren Liu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Research and Therapeutics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Ho KYL, Ou AYJ, Samuelson N, Tanentzapf G. Novel features of Drosophila hematopoiesis uncovered by long-term live imaging. Dev Biol 2025; 517:286-300. [PMID: 39536928 DOI: 10.1016/j.ydbio.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Stem cells are subject to continuous regulation to ensure that the correct balance between stem cell differentiation and self-renewal is maintained. The dynamic and ongoing nature of stem cell regulation, as well as the complex signaling microenvironment in which stem cells are typically found, means that studying them in their endogenous environment in real time has multiple advantages over static fixed-sample approaches. We recently described a method for long-term, ex-vivo, live imaging of the blood progenitors in the Drosophila larval hematopoietic organ, the Lymph Gland (LG). This methodology has allowed us to analyze multiple aspects of fly hematopoiesis, in real time, in a manner that could not be carried out previously. Here, we describe novel insights derived from our quantitative live imaging approach. These insights include: the identification of extensive filopodia in the progenitors and description of their morphology and dynamics; visualization and quantitative analysis of JAK/STAT signaling in progenitors by the simultaneous tracking of thousands of vesicles containing internalized Domeless receptors; quantitative analysis of the location, morphology, and dynamics of mitochondria in blood progenitors; long-term tracking of patterns of cell division and migration of mature blood cell in the LG; long-term tracking of multiple cell behaviors in the distal committed progenitors; analysis of Ca2+ signaling of blood progenitors in the secondary lobes of the LG. Together, these observations illustrate the power of imaging fly hematopoiesis in real time and identify many previously undescribed processes and behaviors in the LG that are likely to play important roles in the regulation of progenitor differentiation and self-renewal.
Collapse
Affiliation(s)
- Kevin Y L Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Annie Y J Ou
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada; School of Kinesiology, University of British Columbia, Vancouver, V6T 1Z1, Canada; Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Nicholas Samuelson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Yang L, Bu X, Lu X, Wan J, Zhang X, Zhang W, Zhong L. SERS-based long-term mitochondrial pH monitoring during differentiation of human induced pluripotent stem cells to neural progenitor cells. BIOMEDICAL OPTICS EXPRESS 2024; 15:2926-2936. [PMID: 38855674 PMCID: PMC11161384 DOI: 10.1364/boe.519931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
As one of the important organelles in the process of cell differentiation, mitochondria regulate the whole process of differentiation by participating in energy supply and information transmission. Mitochondrial pH value is a key indicator of mitochondrial function. Therefore, real-time monitoring of mitochondrial pH value during cell differentiation is of great significance for understanding cell biochemical processes and exploring differentiation mechanisms. In this study, Surface-enhanced Raman scattering (SERS) technology was used to achieve the real-time monitoring of mitochondrial pH during induced pluripotent stem cells (iPSCs) differentiation into neural progenitor cells (NPCs). The results showed that the variation trend of mitochondrial pH in normal and abnormal differentiated batches was different. The mitochondrial pH value of normal differentiated cells continued to decline from iPSCs to embryoid bodies (EB) day 4, and continued to rise from EB day 4 to the NPCs stage, and the mitochondrial microenvironment of iPSCs to NPCs differentiation became acidic. In contrast, the mitochondrial pH value of abnormally differentiated cells declined continuously during differentiation. This study improves the information on acid-base balance during cell differentiation and may provide a basis for further understanding of the changes and regulatory mechanisms of mitochondrial metabolism during cell differentiation. This also helps to improve more accurate and useful differentiation protocols based on the microenvironment within the mitochondria, improving the efficiency of cell differentiation.
Collapse
Affiliation(s)
- Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Alsudayri A, Perelman S, Brewer M, Chura A, McDevitt M, Drerup C, Ye L. Gut microbiota regulate maturation and mitochondrial function of the nutrient-sensing enteroendocrine cell. Development 2024; 151:dev202544. [PMID: 38577841 PMCID: PMC11112165 DOI: 10.1242/dev.202544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Enteroendocrine cells (EECs) are crucial for sensing ingested nutrients and regulating feeding behavior. How gut microbiota regulate the nutrient-sensing EEC activity is unclear. Our transcriptomic analysis demonstrates that commensal microbiota colonization significantly increases the expression of many genes associated with mitochondrial function. Using new methods to image EEC cytoplasmic and mitochondrial Ca2+ activity in live zebrafish, our data revealed that it is dynamically regulated during the EEC development process. Mature EECs display an increased mitochondrial-to-cytoplasmic Ca2+ ratio. Mitochondria are evenly distributed in the cytoplasm of immature EECs. As EECs mature, their mitochondria are highly localized at the basal membrane where EEC vesicle secretion occurs. Conventionalized (CV) EECs, but not germ-free (GF) EECs, exhibit spontaneous low-amplitude Ca2+ fluctuation. The mitochondrial-to-cytoplasmic Ca2+ ratio is significantly higher in CV EECs. Nutrient stimulants, such as fatty acid, increase cytoplasmic Ca2+ in a subset of EECs and promote a sustained mitochondrial Ca2+ and ATP increase. However, the nutrient-induced EEC mitochondrial activation is nearly abolished in GF zebrafish. Together, our study reveals that commensal microbiota are crucial in supporting EEC mitochondrial function and maturation.
Collapse
Affiliation(s)
- Alfahdah Alsudayri
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shane Perelman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Melissa Brewer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Annika Chura
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Madelyn McDevitt
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Catherine Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lihua Ye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Guo W, Wang Y, Qi G, Wang J, Ren J, Jin Y, Wang E. Dual-signal readout sensing of ATP content in single dental pulp stem cells during differentiation via functionalized glass nanopipettes. Anal Chim Acta 2024; 1293:342200. [PMID: 38331549 DOI: 10.1016/j.aca.2024.342200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024]
Abstract
Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.
Collapse
Affiliation(s)
- Wenting Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Lei Q, Xiang K, Cheng L, Xiang M. Human retinal organoids with an OPA1 mutation are defective in retinal ganglion cell differentiation and function. Stem Cell Reports 2024; 19:68-83. [PMID: 38101398 PMCID: PMC10828684 DOI: 10.1016/j.stemcr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Autosomal dominant optic atrophy (ADOA), mostly caused by heterozygous OPA1 mutations and characterized by retinal ganglion cell (RGC) loss and optic nerve degeneration, is one of the most common types of inherited optic neuropathies. Previous work using a two-dimensional (2D) differentiation model of induced pluripotent stem cells (iPSCs) has investigated ADOA pathogenesis but failed to agree on the effect of OPA1 mutations on RGC differentiation. Here, we use 3D retinal organoids capable of mimicking in vivo retinal development to resolve the issue. We generated isogenic iPSCs carrying the hotspot OPA1 c.2708_2711delTTAG mutation and found that the mutant variant caused defective initial and terminal differentiation and abnormal electrophysiological properties of organoid-derived RGCs. Moreover, this variant inhibits progenitor proliferation and results in mitochondrial dysfunction. These data demonstrate that retinal organoids coupled with gene editing serve as a powerful tool to definitively identify disease-related phenotypes and provide valuable resources to further investigate ADOA pathogenesis and screen for ADOA therapeutics.
Collapse
Affiliation(s)
- Qiannan Lei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Alsudayri A, Perelman S, Chura A, Brewer M, McDevitt M, Drerup C, Ye L. Gut microbiota promotes enteroendocrine cell maturation and mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.558332. [PMID: 37961164 PMCID: PMC10635018 DOI: 10.1101/2023.09.27.558332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The enteroendocrine cells (EECs) in the intestine are crucial for sensing ingested nutrients and regulating feeding behavior. The means by which gut microbiota regulates the nutrient-sensing EEC activity is unclear. Our transcriptomic analysis of the EECs from germ-free (GF) and conventionalized (CV) zebrafish revealed that commensal microbiota colonization significantly increased the expression of many genes that are associated with mitochondrial function. Using in vivo imaging and 3D automated cell tracking approach, we developed new methods to image and analyze the EECs' cytoplasmic and mitochondrial calcium activity at cellular resolution in live zebrafish. Our data revealed that during the development, shortly after gut microbiota colonization, EECs briefly increased cytoplasm and mitochondrial Ca2+, a phenomenon we referred to as "EEC awakening". Following the EEC awakening, cytoplasmic Ca2+ levels but not mitochondrial Ca2+ level in the EECs decreased, resulting in a consistent increase in the mitochondrial-to-cytoplasmic Ca2+ ratio. The increased mitochondrial-to-cytoplasmic Ca2+ ratio is associated with the EEC maturation process. In immature EECs, we further discovered that their mitochondria are evenly distributed in the cytoplasm. When EECs mature, their mitochondria are highly localized in the basal lateral membrane where EEC vesicle secretion occurs. Furthermore, CV EECs, but not GF EECs, exhibit spontaneous low-amplitude calcium fluctuation. The mitochondrial-to-cytoplasm Ca2+ ratio is significantly higher in CV EECs. When stimulating the CV zebrafish with nutrients like fatty acids, nutrient stimulants increase cytoplasmic Ca2+ in a subset of EECs and promote a sustained mitochondrial Ca2+ increase. However, the nutrient induced EEC mitochondrial activation is nearly abolished in GF zebrafish. Together, our study reveals that commensal microbiota are critical in supporting EEC mitochondrial function and maturation. Selectively manipulating gut microbial signals to alter EEC mitochondrial function will provide new opportunities to change gut-brain nutrient sensing efficiency and feeding behavior.
Collapse
Affiliation(s)
- Alfahdah Alsudayri
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| | - Shane Perelman
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| | - Annika Chura
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| | - Melissa Brewer
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| | - Madelyn McDevitt
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| | - Catherine Drerup
- Department of Integrative Biology, University of Wisconsin-Madison
| | - Lihua Ye
- Department of Neuroscience, the Ohio State University Wexner Medical Center
| |
Collapse
|
8
|
Venit T, Sapkota O, Abdrabou WS, Loganathan P, Pasricha R, Mahmood SR, El Said NH, Sherif S, Thomas S, Abdelrazig S, Amin S, Bedognetti D, Idaghdour Y, Magzoub M, Percipalle P. Positive regulation of oxidative phosphorylation by nuclear myosin 1 protects cells from metabolic reprogramming and tumorigenesis in mice. Nat Commun 2023; 14:6328. [PMID: 37816864 PMCID: PMC10564744 DOI: 10.1038/s41467-023-42093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.
Collapse
Affiliation(s)
- Tomas Venit
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Oscar Sapkota
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Wael Said Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Palanikumar Loganathan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Syed Raza Mahmood
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Nadine Hosny El Said
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shimaa Sherif
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Salah Abdelrazig
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Shady Amin
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Davide Bedognetti
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box, 129188, Abu Dhabi, United Arab Emirates.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
Guo J, Ye W, Wu X, Huang H, Li B, Sun Z, Ren Z, Yang Z. TNF-α activates RELA expression via TNFRSF1B to upregulate OPA1 expression and inhibit chondrogenic differentiation of human adipose stem cells. J Orthop Surg Res 2023; 18:430. [PMID: 37312126 DOI: 10.1186/s13018-023-03846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α), one of the pro-inflammatory cytokines mediating the local inflammatory process in joints, inhibits cartilage formation and has a detrimental effect on stem cell-based cartilage regeneration for the treatment of osteoarthritis (OA). However, the mechanisms behind this inhibitory effect are still poorly understood. Mitochondrial morphological changes mediated by mitochondrial fusion and fission are highly plastic, are quite sensitive to environmental stimuli and play a crucial role in maintaining cell structure and function. In our study, chondrogenic differentiated human adipose stem cells (hADSCs) were exposed to TNF-α and the effect of TNF-α on the ability of hADSCs to chondrogenic differentiate and on mitochondrial fusion and fission was observed and analyzed. The aim was to investigate the role and mechanisms of mitochondrial fusion and fission regulation in the chondrogenic differentiation of hADSCs under normal conditions and under exposure to TNF-α. METHODS We used flow cytometry to identify hADSCs immunophenotypes CD29, CD44, CD34, CD45, and HLA-DR. Alcian blue staining and Sirius red staining were used to observe the formation of proteoglycans and collagen during the chondrogenic differentiation of hADSCs, respectively. The mRNA and protein expression levels of the cartilage formation marker SOX9, type II collagen (COL2A1), and Aggrecan were measured by real-time fluorescent quantitative PCR (RT-qPCR) and western blot, respectively. The fluorescent probes MitoTracker® Red CMXRos and JC-1 were used to visualize mitochondria morphology and detect mitochondrial membrane electricity (MMP). Affymetrix PrimeView™ chips were used for gene expression profiling. RESULTS The results showed that the chondrogenic differentiation of hADSCs was inhibited in the presence of TNF-α that optic atrophy 1 (OPA1) expression was significantly upregulated and mitochondria were prolonged and interconnected during this process. Gene microarray and RT-qPCR data showed that the presence of TNF-α led to increased expression of TNFα receptor 2 (TNFRSF1B) and RELA during chondrogenic differentiation of hADSCs. CONCLUSIONS TNF-α inhibits chondrogenic differentiation of human adipose stem cells by activating RELA expression through TNFRSF1B upregulating OPA1 expression thereby increasing mitochondrial fusion.
Collapse
Affiliation(s)
- Jiajia Guo
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wang Ye
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xinglin Wu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhijing Ren
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
10
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
11
|
Cheramangalam RN, Anand T, Pandey P, Balasubramanian D, Varghese R, Singhal N, Jaiswal SN, Jaiswal M. Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC. PLoS Genet 2023; 19:e1010493. [PMID: 37098042 PMCID: PMC10162545 DOI: 10.1371/journal.pgen.1010493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/05/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Cells under mitochondrial stress often co-opt mechanisms to maintain energy homeostasis, mitochondrial quality control and cell survival. A mechanistic understanding of such responses is crucial for further insight into mitochondrial biology and diseases. Through an unbiased genetic screen in Drosophila, we identify that mutations in lrpprc2, a homolog of the human LRPPRC gene that is linked to the French-Canadian Leigh syndrome, result in PINK1-Park activation. While the PINK1-Park pathway is well known to induce mitophagy, we show that PINK1-Park regulates mitochondrial dynamics by inducing the degradation of the mitochondrial fusion protein Mitofusin/Marf in lrpprc2 mutants. In our genetic screen, we also discover that Bendless, a K63-linked E2 conjugase, is a regulator of Marf, as loss of bendless results in increased Marf levels. We show that Bendless is required for PINK1 stability, and subsequently for PINK1-Park mediated Marf degradation under physiological conditions, and in response to mitochondrial stress as seen in lrpprc2. Additionally, we show that loss of bendless in lrpprc2 mutant eyes results in photoreceptor degeneration, indicating a neuroprotective role for Bendless-PINK1-Park mediated Marf degradation. Based on our observations, we propose that certain forms of mitochondrial stress activate Bendless-PINK1-Park to limit mitochondrial fusion, which is a cell-protective response.
Collapse
Affiliation(s)
| | - Tarana Anand
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Priyanka Pandey
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | | | - Reshmi Varghese
- CSIR–Centre For Cellular and Molecular Biology, Hyderabad, India
| | - Neha Singhal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India
| |
Collapse
|
12
|
Romero-Guevara R, Nicolaou O, Petracca B, Shaheed S, Sutton C, Frangou E, Afami M, Kyriacou K, Ioannides A, Xinaris C. Patient-derived podocyte spheroids reveal new insights into the etiopathogenesis of Alport syndrome. Front Cell Dev Biol 2023; 11:1111424. [PMID: 36936689 PMCID: PMC10018139 DOI: 10.3389/fcell.2023.1111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Alport syndrome (AS) is a rare disease characterized by defective glomerular basement membranes, caused by mutations in COL4A3, COL4A4, and COL4A5, which synthesize collagen type IV. Patients present with progressive proteinuria, hematuria and podocyte loss. There is currently no cure for Alport syndrome, and this is mainly due to its complex and variable pathogenesis, as well as the lack of models that can faithfully mimic the human phenotype. Here we have developed a novel human culture model of Alport syndrome and used it to study the effects of different mutations on podocyte development and biology. First, we established a differentiation protocol that allowed us to generate podocyte spheroids from patient-derived human induced pluripotent stem cells (hiPSCs). We have then carried out discovery proteomics and demonstrated that a total of 178 proteins were differentially expressed between Alport (AS1 and AS3) and control (LT) podocytes. GO analysis indicated alterations in several metabolic pathways, such as oxidative phosphorylation, RNA maturation, chromatin condensation, and proliferation. Although functional assays showed no changes in lactate production and mitochondrial potential compared to healthy controls, immunofluorescence and electron microscopy analysis showed key morphological changes related to the phenotypical maturation of Alport podocytes. Moreover, the studied mutations led to persistent proliferation, increased reactive oxygen species (ROS) production and the concomitant expression of peroxisome proliferator-activated receptors α and γ (PPARα and PPARγ) in podocytes. These data on patient-derived podocytes provide evidence that collagen mutations, in addition to playing a central role in the defective development of the glomerular filtration barrier, cause significant alterations in podocyte development and metabolism very early in development, even before the formation of the filtering apparatus. In conclusion, our study provides a new methodological platform for the differentiation of podocytes and to study human podocytopathies in a personalized manner, and reveals new insights into the etiopathogenesis and pathobiology of Alport syndrome.
Collapse
Affiliation(s)
- Ricardo Romero-Guevara
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Orthodoxia Nicolaou
- Department of Cancer Genetics, Therapeutics, and Ultrastructural Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Benedetta Petracca
- Laboratory of Organ Regeneration, Department of Molecular Medicine, Institute of Pharmacological Research “Mario Negri”, Bergamo, Italy
| | - Sadr Shaheed
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Sutton
- School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | - Eleni Frangou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
- Department of Nephrology, Limassol General Hospital, Nicosia, Cyprus
| | - Marina Afami
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Cancer Genetics, Therapeutics, and Ultrastructural Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Adonis Ioannides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Christodoulos Xinaris
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
- Laboratory of Organ Regeneration, Department of Molecular Medicine, Institute of Pharmacological Research “Mario Negri”, Bergamo, Italy
- *Correspondence: Christodoulos Xinaris, ,
| |
Collapse
|
13
|
Li J, Zhang S, Zhang Y, Dai Y, Zhang Y, Yang A, Hong F, Pan Y. Atg9A-mediated mitophagy is required for decidual differentiation of endometrial stromal cells. Reprod Biol 2022; 22:100707. [DOI: 10.1016/j.repbio.2022.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
14
|
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos. Int J Mol Sci 2022; 23:ijms231710145. [PMID: 36077543 PMCID: PMC9456037 DOI: 10.3390/ijms231710145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Collapse
|
15
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
16
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci 2022; 79:239. [PMID: 35416520 PMCID: PMC11072423 DOI: 10.1007/s00018-022-04261-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.
Collapse
Affiliation(s)
- Paula G Slater
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.
| | - Miguel E Domínguez-Romero
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Verónica Eisner
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Departamento de Biología Celular Y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| |
Collapse
|
19
|
Lee SY, An HJ, Kim JM, Sung MJ, Kim DK, Kim HK, Oh J, Jeong HY, Lee YH, Yang T, Kim JH, Lim HJ, Lee S. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis. Stem Cell Res Ther 2021; 12:589. [PMID: 34823575 PMCID: PMC8614054 DOI: 10.1186/s13287-021-02656-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background PTEN-induced kinase 1 (PINK1) is a serine/threonine-protein kinase in mitochondria that is critical for mitochondrial quality control. PINK1 triggers mitophagy, a selective autophagy of mitochondria, and is involved in mitochondrial regeneration. Although increments of mitochondrial biogenesis and activity are known to be crucial during differentiation, data regarding the specific role of PINK1 in osteogenic maturation and bone remodeling are limited. Methods We adopted an ovariectomy model in female wildtype and Pink1−/− mice. Ovariectomized mice were analyzed using micro-CT, H&E staining, Masson’s trichrome staining. RT-PCR, western blot, immunofluorescence, alkaline phosphatase, and alizarin red staining were performed to assess the expression of PINK1 and osteogenic markers in silencing of PINK1 MC3T3-E1 cells. Clinical relevance of PINK1 expression levels was determined via qRT-PCR analysis in normal and osteoporosis patients. Results A significant decrease in bone mass and collagen deposition was observed in the femurs of Pink1−/− mice after ovariectomy. Ex vivo, differentiation of osteoblasts was inhibited upon Pink1 downregulation, accompanied by impaired mitochondrial homeostasis, increased mitochondrial reactive oxygen species production, and defects in mitochondrial calcium handling. Furthermore, PINK1 expression was reduced in bones from patients with osteoporosis, which supports the practical role of PINK1 in human bone disease. Conclusions In this study, we demonstrated that activation of PINK1 is a requisite in osteoblasts during differentiation, which is related to mitochondrial quality control and low reactive oxygen species production. Enhancing PINK1 activity might be a possible treatment target in bone diseases as it can promote a healthy pool of functional mitochondria in osteoblasts. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02656-4.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Hyun-Ju An
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea.,Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Jin Man Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min-Ji Sung
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Do Kyung Kim
- CHA Graduate School of Medicine, 120 Hyeryong-ro, Pocheon, 11160, Republic of Korea
| | - Hyung Kyung Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, College of Medicine, Seoul, 05278, Republic of Korea
| | - Jongbeom Oh
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Hye Yun Jeong
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Yu Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Taeyoung Yang
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Jun Han Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea
| | - Ha Jeong Lim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, 13496, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, South Korea.
| |
Collapse
|
20
|
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, Chamling X, Tian S, Sullivan ML, Calderon MJ, Fitting CS, Weiss J, Jayagopal A, Handa JT, Sahel JA, Zigler JS, Kinchington PR, Zack DJ, Sinha D. BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy 2021; 17:3140-3159. [PMID: 33404293 PMCID: PMC8526037 DOI: 10.1080/15548627.2020.1871204] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Retinal ganglion cell axons are heavily myelinated (98%) and myelin damage in the optic nerve (ON) severely affects vision. Understanding the molecular mechanism of oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes will be essential for developing new therapeutic approaches for ON demyelinating diseases. To this end, we developed a new method for isolation and culture of ON-derived oligodendrocyte lineage cells and used it to study OPC differentiation. A critical aspect of cellular differentiation is macroautophagy/autophagy, a catabolic process that allows for cell remodeling by degradation of excess or damaged cellular molecules and organelles. Knockdown of ATG9A and BECN1 (pro-autophagic proteins involved in the early stages of autophagosome formation) led to a significant reduction in proliferation and survival of OPCs. We also found that autophagy flux (a measure of autophagic degradation activity) is significantly increased during progression of oligodendrocyte differentiation. Additionally, we demonstrate a significant change in mitochondrial dynamics during oligodendrocyte differentiation, which is associated with a significant increase in programmed mitophagy (selective autophagic clearance of mitochondria). This process is mediated by the mitophagy receptor BNIP3L (BCL2/adenovirus E1B interacting protein 3-like). BNIP3L-mediated mitophagy plays a crucial role in the regulation of mitochondrial network formation, mitochondrial function and the viability of newly differentiated oligodendrocytes. Our studies provide novel evidence that proper mitochondrial dynamics is required for establishment of functional mitochondria in mature oligodendrocytes. These findings are significant because targeting BNIP3L-mediated programmed mitophagy may provide a novel therapeutic approach for stimulating myelin repair in ON demyelinating diseases.Abbreviations: A2B5: a surface antigen of oligodendrocytes precursor cells, A2B5 clone 105; ACTB: actin, beta; APC: an antibody to label mature oligodendrocytes, anti-adenomatous polyposis coli clone CC1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9A: autophagy related 9A; AU: arbitrary units; BafA1: bafilomycin A1; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CASP3: caspase 3; CNP: 2',3'-cyclic nucleotide 3'-phosphodiesterase; Ctl: control; COX8: cytochrome c oxidase subunit; CSPG4/NG2: chondroitin sulfate proteoglycan 4; DAPI: 4'6-diamino-2-phenylindole; DNM1L: dynamin 1-like; EGFP: enhanced green fluorescent protein; FACS: fluorescence-activated cell sorting; FIS1: fission, mitochondrial 1; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary growth factor; GFP: green fluorescent protein; HsESC: human embryonic stem cell; IEM: immunoelectron microscopy; LAMP1: lysosomal-associated membrane protein 1; LC3B: microtubule-associated protein 1 light chain 3; MBP: myelin basic protein; MFN2: mitofusin 2; Mito-Keima: mitochondria-targeted monomeric keima-red; Mito-GFP: mitochondria-green fluorescent protein; Mito-RFP: mitochondria-red fluorescent protein; MitoSOX: red mitochondrial superoxide probe; MKI67: antigen identified by monoclonal antibody Ki 67; MMP: mitochondrial membrane potential; O4: oligodendrocyte marker O4; OLIG2: oligodendrocyte transcription factor 2; ON: optic nerve; OPA1: OPA1, mitochondrial dynamin like GTPase; OPC: oligodendrocyte progenitor cell; PDL: poly-D-lysine; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; RGC: retinal ganglion cell; ROS: reactive oxygen species; RT-PCR: real time polymerase chain reaction; SEM: standard error of the mean; SOD2: superoxide dismutase 2, mitochondrial; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin, beta; TUBB3: tubulin, beta 3 class III.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shenghe Tian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mara L.G. Sullivan
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Joseph Calderon
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S. Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - James T. Handa
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J. Samuel Zigler
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul R. Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, Wilmer Eye Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Naia L, Pinho CM, Dentoni G, Liu J, Leal NS, Ferreira DMS, Schreiner B, Filadi R, Fão L, Connolly NMC, Forsell P, Nordvall G, Shimozawa M, Greotti E, Basso E, Theurey P, Gioran A, Joselin A, Arsenian-Henriksson M, Nilsson P, Rego AC, Ruas JL, Park D, Bano D, Pizzo P, Prehn JHM, Ankarcrona M. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol 2021; 19:57. [PMID: 33761951 PMCID: PMC7989211 DOI: 10.1186/s12915-021-00979-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Luana Naia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina M Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Giacomo Dentoni
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Lígia Fão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Niamh M C Connolly
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | | | | | - Makoto Shimozawa
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Per Nilsson
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Biochemistry, University of Coimbra, Coimbra, Portugal
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Jochen H M Prehn
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Conte E, Pannunzio A, Imbrici P, Camerino GM, Maggi L, Mora M, Gibertini S, Cappellari O, De Luca A, Coluccia M, Liantonio A. Gain-of-Function STIM1 L96V Mutation Causes Myogenesis Alteration in Muscle Cells From a Patient Affected by Tubular Aggregate Myopathy. Front Cell Dev Biol 2021; 9:635063. [PMID: 33718371 PMCID: PMC7952532 DOI: 10.3389/fcell.2021.635063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Sara Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | | | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Mauro Coluccia
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
23
|
Gonzalez-Ibanez AM, Ruiz LM, Jensen E, Echeverria CA, Romero V, Stiles L, Shirihai OS, Elorza AA. Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Front Cell Dev Biol 2020; 8:592035. [PMID: 33330472 PMCID: PMC7719720 DOI: 10.3389/fcell.2020.592035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is the most robust cellular differentiation and proliferation system, with a production of ∼2 × 1011 cells per day. In this fine-tuned process, the hematopoietic stem cells (HSCs) generate erythroid progenitors, which proliferate and mature into erythrocytes. During erythropoiesis, mitochondria are reprogrammed to drive the differentiation process before finally being eliminated by mitophagy. In erythropoiesis, mitochondrial dynamics (MtDy) are expected to be a key regulatory point that has not been described previously. We described that a specific MtDy pattern occurs in human erythropoiesis from EPO-induced human CD34+ cells, characterized predominantly by mitochondrial fusion at early stages followed by fission at late stages. The fusion protein MFN1 and the fission protein FIS1 are shown to play a key role in the progression of erythropoiesis. Fragmentation of the mitochondrial web by the overexpression of FIS1 (gain of fission) resulted in both the inhibition of hemoglobin biosynthesis and the arrest of erythroid differentiation, keeping cells in immature differentiation stages. These cells showed specific mitochondrial features as compared with control cells, such as an increase in round and large mitochondrial morphology, low mitochondrial membrane potential, a drop in the expression of the respiratory complexes II and IV and increased ROS. Interestingly, treatment with the mitochondrial permeability transition pore (mPTP) inhibitor, cyclosporin A, rescued mitochondrial morphology, hemoglobin biosynthesis and erythropoiesis. Studies presented in this work reveal MtDy as a hot spot in the control of erythroid differentiation, which might signal downstream for metabolic reprogramming through regulation of the mPTP.
Collapse
Affiliation(s)
- Alvaro M Gonzalez-Ibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lina M Ruiz
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Erik Jensen
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Valentina Romero
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
24
|
Balcázar M, Cañizares S, Borja T, Pontón P, Bisiou S, Carabasse E, Bacilieri A, Canavese C, Diaz RF, Cabrera F, Caicedo A. Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Front Bioeng Biotechnol 2020; 8:919. [PMID: 32903493 PMCID: PMC7438394 DOI: 10.3389/fbioe.2020.00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
The perception of mitochondria as only the powerhouse of the cell has dramatically changed in the last decade. It is now accepted that in addition to being essential intracellularly, mitochondria can promote cellular repair when transferred from healthy to damaged cells. The artificial mitochondria transfer/transplant (AMT/T) group of techniques emulate this naturally occurring process and have been used to develop therapies to treat a range of diseases including cardiac and neurodegenerative. Mitochondria accumulate damage with time, resulting in cellular senescence. Skin cells and its mitochondria are profoundly affected by ultraviolet radiation and other factors that induce premature and accelerated aging. In this article, we propose the basis to use AMT/T to treat skin aging by transferring healthy mitochondria to senescent cells, possibly revitalizing them. We provide insightful information about how skin structure, components, and cells could age rapidly depending on the amount of damage received. Arguments are shown in favor of the use of AMT/T to treat aging skin and its cells, among them the possibility to stop free radical production, add new genetic material, and provide an energetic boost to help cells prolong their viability over time. This article intends to present one of the many aspects in which mitochondria could be used as a universal treatment for cell and tissue damage and aging.
Collapse
Affiliation(s)
- Micaela Balcázar
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Stalin Cañizares
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Tatiana Borja
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Patricia Pontón
- Servicio de Patología, Hospital Voz Andes, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sirivanh Bisiou
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Eva Carabasse
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Angela Bacilieri
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Celia Canavese
- Université de Montpellier, Faculté de Medicine, Montpellier, France
| | - Ramiro F Diaz
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Francisco Cabrera
- Escuela de Medicina Veterinaria, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA and Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Mito-Act Research Consortium, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
25
|
Navarro-Espíndola R, Takano-Rojas H, Suaste-Olmos F, Peraza-Reyes L. Distinct Contributions of the Peroxisome-Mitochondria Fission Machinery During Sexual Development of the Fungus Podospora anserina. Front Microbiol 2020; 11:640. [PMID: 32351478 PMCID: PMC7175800 DOI: 10.3389/fmicb.2020.00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and peroxisomes are organelles whose activity is intimately associated and that play fundamental roles in development. In the model fungus Podospora anserina, peroxisomes and mitochondria are required for different stages of sexual development, and evidence indicates that their activity in this process is interrelated. Additionally, sexual development involves precise regulation of peroxisome assembly and dynamics. Peroxisomes and mitochondria share the proteins mediating their division. The dynamin-related protein Dnm1 (Drp1) along with its membrane receptors, like Fis1, drives this process. Here we demonstrate that peroxisome and mitochondrial fission in P. anserina depends on FIS1 and DNM1. We show that FIS1 and DNM1 elimination affects the dynamics of both organelles throughout sexual development in a developmental stage-dependent manner. Moreover, we discovered that the segregation of peroxisomes, but not mitochondria, is affected upon elimination of FIS1 or DNM1 during the division of somatic hyphae and at two central stages of sexual development—the differentiation of meiocytes (asci) and of meiotic-derived spores (ascospores). Furthermore, we found that FIS1 and DNM1 elimination results in delayed karyogamy and defective ascospore differentiation. Our findings reveal that sexual development relies on complex remodeling of peroxisomes and mitochondria, which is driven by their common fission machinery.
Collapse
Affiliation(s)
- Raful Navarro-Espíndola
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harumi Takano-Rojas
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Suaste-Olmos
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
André E, De Pauw A, Verdoy R, Brusa D, Bouzin C, Timmermans A, Bertrand L, Balligand JL. Changes of Metabolic Phenotype of Cardiac Progenitor Cells During Differentiation: Neutral Effect of Stimulation of AMP-Activated Protein Kinase. Stem Cells Dev 2019; 28:1498-1513. [PMID: 31530214 DOI: 10.1089/scd.2019.0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac progenitor cells (CPCs) in the adult mammalian heart, as well as exogenous CPCs injected at the border zone of infarcted tissue, display very low differentiation rate into cardiac myocytes and marginal repair capacity in the injured heart. Emerging evidence supports an obligatory metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) during stem cells differentiation, suggesting that pharmacological modulation of metabolism may improve CPC differentiation and, potentially, healing properties. In this study, we investigated the metabolic transition underlying CPC differentiation toward cardiac myocytes. In addition, we tested whether activators of adenosine monophosphate-activated protein kinase (AMPK), known to promote mitochondrial biogenesis in other cell types would also improve CPC differentiation. Stem cell antigen 1 (Sca1+) CPCs were isolated from adult mouse hearts and their phenotype compared with more mature neonatal rat cardiac myocytes (NRCMs). Under normoxia, glucose consumption and lactate release were significantly higher in CPCs than in NRCMs. Both parameters were increased in hypoxia together with increased abundance of Glut1 (glucose transporter), of the monocarboxylic transporter Mct4 (lactate efflux mediator) and of Pfkfb3 (key regulator of glycolytic rate). CPC proliferation was critically dependent on glucose and glutamine availability in the media. Oxygen consumption analysis indicates that, compared with NRCMs, CPCs exhibited lower basal and maximal respirations with lower Tomm20 protein expression and mitochondrial DNA content. This CPC metabolic phenotype profoundly changed upon in vitro differentiation, with a decrease of glucose consumption and lactate release together with increased abundance of Tnnt2, Pgc-1α, Tomm20, and mitochondrial DNA content. Proliferative CPCs express both alpha1 and -2 catalytic subunits of AMPK that is activated by A769662. However, A769662 or resveratrol (an activator of Pgc-1α and AMPK) did not promote either mitochondrial biogenesis or CPC maturation during their differentiation. We conclude that although CPC differentiation is accompanied with an increase of mitochondrial oxidative metabolism, this is not potentiated by activation of AMPK in these cells.
Collapse
Affiliation(s)
- Emilie André
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurélia De Pauw
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Roxane Verdoy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- I2P Imaging Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Aurélie Timmermans
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
27
|
Anderson AJ, Jackson TD, Stroud DA, Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 2019; 9:190126. [PMID: 31387448 PMCID: PMC6731593 DOI: 10.1098/rsob.190126] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Thomas D Jackson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
28
|
Li D, Wang J, Jin Z, Zhang Z. Structural and evolutionary characteristics of dynamin-related GTPase OPA1. PeerJ 2019; 7:e7285. [PMID: 31328044 PMCID: PMC6622160 DOI: 10.7717/peerj.7285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022] Open
Abstract
OPA1 is a dynamin-related GTPase that controls mitochondrial fusion, cristae remodeling, energetics and mtDNA maintenance. However, the molecular architecture of OPA1 is poorly understood. Here we modeled the structure of human OPA1 by the threading approach. We found that the C-terminal region of the OPA1 protein had multiple functional domains, while the N-terminal region was rich in alpha helices and did not include specific domains. For the short soluble forms of OPA1, we observed that there were obvious hydrophobic regions near the two cleavage sites and the N-terminal was positively charged after cleavage. The blue native analysis revealed that the protein could form stable homodimers. In addition, the evolutionary conservation of the C-terminal region, where most of the known mutated disease-related sites were located, was significantly higher than that of the N-terminal region. These findings provided new insights into the structure and biochemical function of OPA1.
Collapse
Affiliation(s)
- Dandan Li
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jinlan Wang
- Physical Examination Office of Shandong Province, Health Commission of Shandong Province, Jinan, China
| | - Zichen Jin
- Department of Chemistry, University of Minnesota, Minnesota, MN, USA
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
30
|
Mazaki Y, Takada S, Nio-Kobayashi J, Maekawa S, Higashi T, Onodera Y, Sabe H. Mitofusin 2 is involved in chemotaxis of neutrophil-like differentiated HL-60 cells. Biochem Biophys Res Commun 2019; 513:708-713. [PMID: 30987827 DOI: 10.1016/j.bbrc.2019.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Neutrophils rapidly migrate to infection sites after the recognition of invaders. During chemotaxis, neutrophils require energy supplied by mitochondria oxidative phosphorylation (OXPHOS), whereas neutrophils rely heavily on glycolysis under normal conditions. Mitochondrial OXPHOS correlates with mitochondrial morphology. Here, we examined the mitochondrial morphology of neutrophil-like differentiated HL-60 cells after chemoattractant N-formyl-Met-Leu-Phe (fMLP) stimulation. We found that mitochondrial morphology changes to a tubular form after fMLP stimulation. Mitochondrial OXPHOS activity and mitochondrial complex II significantly increased after fMLP stimulation. On the other hand, the silencing of mitochondrial fusion protein mitofusin 2 (MFN2) suppresses mitochondrial morphological changes. Furthermore, MFN2 silencing suppressed OXPHOS activation and chemotaxis after fMLP stimulation. These results suggest that MFN2 is involved in chemotaxis of differentiated HL-60 cells depending on mitochondria.
Collapse
Affiliation(s)
- Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Shingo Takada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
31
|
Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells Int 2019; 2019:9757201. [PMID: 31089338 PMCID: PMC6476046 DOI: 10.1155/2019/9757201] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Stem cells have the unique capacity to differentiate into many cell types during embryonic development and postnatal growth. Through coordinated cellular behaviors (self-renewal, proliferation, and differentiation), stem cells are also pivotal to the homeostasis, repair, and regeneration of many adult tissues/organs and thus of great importance in regenerative medicine. Emerging evidence indicates that mitochondria are actively involved in the regulation of stem cell behaviors. Mitochondria undergo specific dynamics (biogenesis, fission, fusion, and mitophagy) during stem cell self-renewal, proliferation, and differentiation. The alteration of mitochondrial dynamics, fine-tuned by stem cell niche factors and stress signaling, has considerable impacts on stem cell behaviors. Here, we summarize the recent research progress on (1) how mitochondrial dynamics controls stem cell behaviors, (2) intrinsic and extrinsic factors that regulate mitochondrial dynamics, and (3) pharmacological regulators of mitochondrial dynamics and their therapeutic potential. This review emphasizes the metabolic control of stemness and differentiation and may shed light on potential new applications in stem cell-based therapy.
Collapse
|
32
|
Chen Y, Xiong S, Zhao F, Lu X, Wu B, Yang B. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. J Biomed Mater Res A 2019; 107:1253-1263. [PMID: 30701665 DOI: 10.1002/jbm.a.36634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/30/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress could cause damage to lipids, proteins and DNA, which is induced by the imbalance between the production of reactive oxygen species (ROS) and the biological system ability to counteract or detoxify their harmful effects. The oxidative stress damage significantly contributes to a number of diseases. Magnesium (Mg) is endowed with a novel function of removing excess ROS by releasing H2 during the degradation. In this study, in order to explore the property of anti-oxidative damage of Mg metal, rat bone marrow mesenchymal stem cells (MSCs) oxidative damaged by ultraviolet (UV) radiation was employed to co-culture with Mg metal. The effect of Mg metal on the response of antioxidant enzymes and mitochondria in MSCs was studied. We found that Mg metal could reduce the cellular oxidative stress damage and elevate the activities of antioxidant enzymes to maintain redox homeostasis. In addition, Mg metal could reduce the risk of UV-induced cell apoptosis by increasing the ratio of Bcl-2/Bax, elevating the mitochondrial membrane potential and blocking the release of cytochrome c. This finding showed Mg metal might have the potential for treating diseases caused by oxidative stress damage. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1253-1263, 2019.
Collapse
Affiliation(s)
- Yangmei Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Shibing Xiong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Fenghua Zhao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Xugang Lu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Boyao Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China
| | - Bangcheng Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China.,National Engineering Research Center for Biomaterials, Chengdu 610064, China.,Sichuan Guojia Biomaterials Co., Ltd, Chengdu, Sichuan 610064, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
33
|
Zhang L, Li S, Wang R, Chen C, Ma W, Cai H. RETRACTED: Cytokine augments the sorafenib-induced apoptosis in Huh7 liver cancer cellby inducing mitochondrial fragmentation and activating MAPK-JNKsignalling pathway. Biomed Pharmacother 2019; 110:213-223. [DOI: 10.1016/j.biopha.2018.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022] Open
|
34
|
Rahman MH, Xiao Q, Zhao S, Qu F, Chang C, Wei AC, Ho YP. Demarcating the membrane damage for the extraction of functional mitochondria. MICROSYSTEMS & NANOENGINEERING 2018; 4:39. [PMID: 31057927 PMCID: PMC6311452 DOI: 10.1038/s41378-018-0037-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/11/2018] [Accepted: 10/19/2018] [Indexed: 05/02/2023]
Abstract
Defective mitochondria have been linked to several critical human diseases such as neurodegenerative disorders, cancers and cardiovascular disease. However, the detailed characterization of mitochondria has remained relatively unexplored, largely due to the lack of effective extraction methods that may sufficiently retain the functionality of mitochondria, particularly when limited amount of sample is considered. In this study, we explore the possibility of modulating hydrodynamic stress through a cross-junction geometry at microscale to selectively disrupt the cellular membrane while mitochondrial membrane is secured. The operational conditions are empirically optimized to effectively shred the cell membranes while keeping mitochondria intact for the model mammalian cell lines, namely human embryonic kidney cells, mouse muscle cells and neuroblastoma cells. Unsurprisingly, the disruption of cell membranes with higher elastic moduli (neuroblastoma) requires elevated stress. This study also presents a comparative analysis of total protein yield and concentrations of extracted functional mitochondria with two commercially available mitochondria extraction approaches, the Dounce Homogenizer and the Qproteome® Mitochondria Isolation Kit, in a range of cell concentrations. Our findings show that the proposed "microscale cell shredder" yields at least 40% more functional mitochondria than the two other approaches and is able to preserve the morphological integrity of extracted mitochondria, particularly at low cell concentrations (5-20 × 104 cells/mL). Characterized by its capability of rapidly processing a limited quantity of samples (200 μL), demarcating the membrane damage through the proposed microscale cell shredder represents a novel strategy to extract subcellular organelles from clinical samples.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Fuyang Qu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University,
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University,
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
35
|
Ding X, Sun W, Chen J. IL-2 augments the sorafenib-induced apoptosis in liver cancer by promoting mitochondrial fission and activating the JNK/TAZ pathway. Cancer Cell Int 2018; 18:176. [PMID: 30459526 PMCID: PMC6234789 DOI: 10.1186/s12935-018-0671-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sorafenib is the standard targeted drug used to treat hepatocellular carcinoma (HCC), but the therapeutic response between individuals varies markedly. Recently, cytokine-based immunotherapy has been a topic of intense discussion in the fight against cancer. The aim of this study was to explore whether cytokine IL-2 could augment the anti-tumour effects of sorafenib on HCC. Methods HepG2 and Huh7 cells were co-treated with sorafenib and IL-2 in vitro, and cellular viability and death were analysed through the MTT assay, TUNEL staining, LDH release assay, and western blotting. Mitochondrial function was measured via ELISA, immunofluorescence, and western blotting. Pathway blockers were used to establish the role of the JNK-TAZ pathways in regulating cancer cell phenotypes. Results Our data demonstrated that sorafenib treatment increased the HCC apoptotic rate, repressed cell proliferation, and inhibited migratory responses, and these effects were enhanced by IL-2 supplementation. Mechanistically, the combination of IL-2 and sorafenib interrupted mitochondrial energy metabolism by downregulating mitochondrial respiratory proteins. In addition, IL-2 and sorafenib co-treatment promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, elevated mitochondrial ROS production, increased leakage of mitochondrial pro-apoptotic factors, and activation of the mitochondrial death pathway. A molecular investigation revealed that mitochondrial fission was required for the IL-2/sorafenib-mediated mitochondrial dysfunction. Mitochondrial fission was triggered by sorafenib and was largely amplified by IL-2 supplementation. Finally, we found that IL-2/sorafenib regulated mitochondrial fission via the JNK-TAZ pathways; blockade of the JNK-TAZ pathways abrogated the inhibitory effects of L-2/sorafenib on cancer survival, growth and mobility. Conclusions Altogether, these data strongly suggest that additional supplementation with IL-2 enhances the anti-tumour activity of sorafenib by promoting the JNK-TAZ-mitochondrial fission axis. This finding will pave the way for new treatment modalities to control HCC progression by optimizing sorafenib-based therapy.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Wei Sun
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| | - Jinglong Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, No 8, Jingshundong Street Chaoyang District, Beijing, 100015 China
| |
Collapse
|
36
|
Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, Belenguer P, Rampon C, Miquel MC. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 2018; 36:257-267. [PMID: 30215161 DOI: 10.1007/s12640-018-9942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France. .,Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Physiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|