1
|
Sugata K, Takatori M, Reda O, Tan BJY, Tokunaga M, Sato T, Ueda M, Yamano Y, Utsunomiya A, Satou Y. Effect of Viral Antigen Mismatch on Antiviral T-Cell Response and Immunotherapeutic Efficacy Against Adult T-Cell Leukemia/Lymphoma. J Infect Dis 2025; 231:816-821. [PMID: 39302694 DOI: 10.1093/infdis/jiae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) transforms primary CD4 T cells in vitro within a short time; however, majority of infected individuals maintain an asymptomatic condition, suggesting that there is an equilibrium between the infected cells and the host immunity. In this study, we identified a variation in a major viral antigen epitope, HTLV-1 Tax301-309, in HLA-A24-positive individuals. Mismatch in A24/Tax301-309 multimers impaired detection of anti-Tax cytotoxic T lymphocytes (CTLs). Notably, more than half of the T-cell receptors (TCRs) of the anti-Tax CTLs did not recognize mismatched Tax301-309 peptides. These findings highlighted the importance of matching the viral antigen epitope type in T-cell-based immunotherapy against adult T-cell leukemia/lymphoma by using viral antigen Tax.
Collapse
MESH Headings
- Humans
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/genetics
- Gene Products, tax/immunology
- Gene Products, tax/genetics
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Immunotherapy/methods
- Adult
- HTLV-I Infections/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
Collapse
Affiliation(s)
- Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Omnia Reda
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St Marianna University School of Medicine, Kawasaki, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St Marianna University School of Medicine, Kawasaki, Japan
- Department of Neurology, St Marianna University School of Medicine, Kawasaki, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Horiuchi Y, Nakamura A, Imai T, Murakami T. Infection of tumor cells with Salmonella typhimurium mimics immunogenic cell death and elicits tumor-specific immune responses. PNAS NEXUS 2024; 3:pgad484. [PMID: 38213616 PMCID: PMC10783808 DOI: 10.1093/pnasnexus/pgad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Some properties of Salmonella-infected cells overlap with immunogenic cell death. In this study, we demonstrated that intracellular infection of melanoma with Salmonella typhimurium induced high immunogenicity in melanoma cells, leading to antitumor effects with melanoma-antigen-specific T-cell responses. Murine B16F10 melanoma cells were infected with tdTomato-expressing attenuated S. typhimurium (VNP20009; VNP-tdT), triggering massive cell vacuolization. VNP-tdT-infected B16F10 cells were phagocytosed efficiently, which induced the activation of antigen-presenting cells with CD86 expression in vitro. Subcutaneous coimplantation of uninfected and VNP-tdT-infected B16F10 cells into C57BL/6 mice significantly suppressed tumor growth compared with the implantation of uninfected B16F10 cells alone. Inoculation of mice with VNP-tdT-infected B16F10 cells elicited the proliferation of melanoma-antigen (gp100)-specific T cells, and it protected the mice from the second tumor challenge of uninfected B16F10 cells. These results suggest that Salmonella-infected tumor cells acquire effective adjuvanticity, leading to ideal antitumor immune responses.
Collapse
Affiliation(s)
- Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Akihiro Nakamura
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Takashi Imai
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Takashi Murakami
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
3
|
Zhang C, Zhang Y, Li Y, Lu J, Xiong S, Yue Y. Exosome-based delivery of VP1 protein conferred enhanced resistance of mice to CVB3-induced viral myocarditis. Virology 2023; 579:46-53. [PMID: 36603532 DOI: 10.1016/j.virol.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Coxsackievirus B3 (CVB3) is an important cause of viral myocarditis with no vaccine available in clinic. Herein we constructed an exosome-based anti-CVB3 vaccine (Exo-VP1), and compared its immunogenicity and immunoprotection with our previously reported recombinant VP1 protein (rVP1) vaccine. We found that compared with the 25 μg rVP1 vaccine, Exo-VP1 vaccine containing only 2 μg VP1 protein induced much stronger CVB3-specific T cell proliferation and CTL responses (with an increase of more than 70% and 40% respectively), and elicited greater splenic Th1/CTL associated cytokines (IFN-γ, TNF-α and IL-12). Furthermore, higher IgG levels with increased neutralizing titers and avidity were also evidenced in Exo-VP1 group. Consistently, Exo-VP1 group exhibited enhanced resistance to viral myocarditis than rVP1 vaccine, reflected by reduced cardiac viral loads, improved myocardial inflammation and an increased survival rate. Collectively, we reported that Exo-VP1 might present a more potent CVB3 vaccine candidate than rVP1 vaccine.
Collapse
Affiliation(s)
- Changwei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanyu Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juan Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Zhong R, Tian J, Fu M, Ma S, Liu L, Li J, Shen N, Ke J, Yang Y, Gong Y, Zhu Y, Wang Y, Gong J, Chang J, Lei P, Cheng X, Huang K, Shen G, Miao X. LINC01149 variant modulates MICA expression that facilitates hepatitis B virus spontaneous recovery but increases hepatocellular carcinoma risk. Oncogene 2020; 39:1944-1956. [PMID: 31754211 DOI: 10.1038/s41388-019-1117-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Interpreting disease-causing variants, especially in noncoding regions by genome-wide association studies (GWAS), has become one of the most challenging and demanding tasks. We hypothesized that functional lncRNAs variants in GWAS-identified loci might alter expression level of genes associated with persistent HBV infection and hepatocellular carcinoma (HCC). Integrated bioinformatics approaches were used to prioritize potentially functional variants and a two-stage case-control study (2473 HBV positive HCC patients, 2248 persistent HBV carriers and 2294 spontaneously recovered subjects) was performed to assess the roles of these variants. The rs2844512 G > C variant in LINC01149 was identified to facilitate HBV spontaneous recovery (OR = 0.84, 95% CI = 0.77-0.92) but increase the risk of HCC (OR = 1.21, 95% CI = 1.11-1.32) in combined samples. Subsequent biological assays indicated this variant created a binding site for miR-128-3p and upregulated MICA expression by serving as a miRNA sponge, which might recruit NK-cells to lyse infected cells, but release highly soluble MICA by shedding to induce NK-cells exhaustion and tumor immune evasion. These findings highlight a regulatory circuit between LINC01149 and MICA, mediating by miR-128-3p, and the important role of upregulated MICA in conferring susceptibility to persistent HBV infection and HCC.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- China/epidemiology
- DNA, Viral/analysis
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Hepatitis B/complications
- Hepatitis B/prevention & control
- Hepatitis B/virology
- Hepatitis B virus/isolation & purification
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Incidence
- Liver Neoplasms/epidemiology
- Liver Neoplasms/metabolism
- Liver Neoplasms/virology
- Polymorphism, Single Nucleotide
- Prognosis
- RNA, Long Noncoding/genetics
- Risk Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Virology, Wuhan Centers for Disease Prevention and Control, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers (Basel) 2020; 12:cancers12020256. [PMID: 31972992 PMCID: PMC7072428 DOI: 10.3390/cancers12020256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms’ tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.
Collapse
|