1
|
Di Giulio V, Canciello A, Carletti E, De Luca A, Giordano A, Morrione A, Berardinelli J, Russo V, Solari D, Cavallo LM, Barboni B. The dual nature of KLHL proteins: From cellular regulators to disease drivers. Eur J Cell Biol 2025; 104:151483. [PMID: 40101609 DOI: 10.1016/j.ejcb.2025.151483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The Kelch-like (KLHL) protein family, characterized by its conserved BTB, BACK, and Kelch domains, serves as substrate adaptors for Cullin 3-RING ligases (CRL3), facilitating the ubiquitination and degradation of specific target proteins. Through this mechanism, KLHL proteins regulate numerous physiological processes, including cytoskeletal organization, oxidative stress response, and cell cycle progression. Dysregulation of KLHL proteins-via mutations or abnormal expression-has been implicated in various pathological conditions, including neurodegenerative disorders, cancer, cardiovascular diseases, and hereditary syndromes. This review provides a comprehensive overview of the physiological and pathological roles of KLHL proteins, emphasizing their specific substrates and mechanisms of action. By integrating structural and mechanistic insights with translational research, this review underscores the potential of KLHL proteins as promising therapeutic targets, offering new opportunities to combat a wide spectrum of complex diseases.
Collapse
Affiliation(s)
- Verdiana Di Giulio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonella De Luca
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), G. D'Annunzio University Chieti-Pescara, Chieti 66100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States; Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jacopo Berardinelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Domenico Solari
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Luigi Maria Cavallo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Naples "Federico II", Naples 80138, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| |
Collapse
|
2
|
Pividori M, Ritchie MD, Milone DH, Greene CS. An efficient, not-only-linear correlation coefficient based on clustering. Cell Syst 2024; 15:854-868.e3. [PMID: 39243756 PMCID: PMC11951854 DOI: 10.1016/j.cels.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Identifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations. CCC outperforms standard methods by revealing biologically meaningful patterns that linear-only coefficients miss and is faster than state-of-the-art coefficients such as the maximal information coefficient. When applied to human gene expression data from genotype-tissue expression (GTEx), CCC identified robust linear relationships and nonlinear patterns, such as sex-specific differences, that are undetectable by standard methods. Highly ranked gene pairs were enriched for interactions in integrated networks built from protein-protein interactions, transcription factor regulation, and chemical and genetic perturbations, suggesting that CCC can detect functional relationships missed by linear-only approaches. CCC is a highly efficient, next-generation, not-only-linear correlation coefficient for genome-scale data. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Milton Pividori
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego H Milone
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe CP3000, Argentina
| | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Center for Health AI, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Li R, Li Y, Wang Z, Suo R, Ma R, Zhang J. miR-181-5p/KLHL5 Promoted Proliferation and Migration of Gastric Cancer Through Activating METTL3-Mediated m6A Process. Mol Biotechnol 2024; 66:2415-2425. [PMID: 37733183 DOI: 10.1007/s12033-023-00877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
KLHL5 was a member of kelch-repeat protein family and was involved in the initiation of progression of a plethora of cancers. However, its specific role in gastric cancer was not explicitly illustrated. In this context, we aimed to investigate the biological role and mechanisms about KLHL5 in gastric cancer. qRT-PCR and western blot were used to investigate the expression of KLHL5 and EMT biomarkers. Wound healing assay, CCK-8, and Transwell assay were used to investigate the biological function of KLHL5. We found that KLHL5 was highly expressed in gastric cancer both in vivo and in vitro; besides, its high expression led to a shorter overall survival. Following statistical analysis showed that KLHL5 was associated with M stage. As for molecular experiments, we found that KLHL5 knockdown significantly reduced the proliferation, migration, and invasion ability of gastric cancer cell line MKN45 and SGC-7901. Furthermore, we found that miR-181-5p targeted KLHL5 to regulate m6A level through METTL3. In addition, KLHL5 knockdown could significantly reduce the lung metastasis rate in mice. In conclusion, we found that miR-181-5p/KLHL5 could promote the proliferation, migration, and invasion of gastric cancer by activating m6A process through regulating METTL3.
Collapse
Affiliation(s)
- Rong Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yixing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Zhiyu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ruiyang Suo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ruining Ma
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Fu AB, Xiang SF, He QJ, Ying MD. Kelch-like proteins in the gastrointestinal tumors. Acta Pharmacol Sin 2023; 44:931-939. [PMID: 36266566 PMCID: PMC10104798 DOI: 10.1038/s41401-022-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
Collapse
Affiliation(s)
- An-Bo Fu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310002, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Sen-Feng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Yuan H, Wei S, Ren Z, Li F, Liu B, Liu R, Zhang X. KLHL21/CYLD signaling confers aggressiveness in bladder cancer through inactivating NF-κB signaling. Int Immunopharmacol 2023; 114:109202. [PMID: 36538852 DOI: 10.1016/j.intimp.2022.109202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Bladder carcinoma (BC) is one of the most commonly diagnosed malignant cancers worldwide. Kelch-like protein 21 (KLHL21) has been shown to be involved in a number of human tumors. The study aimed to investigate the effects and mechanism of KLHL21 on BC progression. We found that KLHL21 expression was significantly decreased in human BC tissues and cell lines compared with the paired normal samples, and patients with lower KLHL21 expression exhibited poorer overall survival. In vitro studies then showed that KLHL21 over-expression significantly reduced the proliferation, migration and invasion in BC cells, while KLHL21 knockdown markedly accelerated the proliferative, migratory and invasive properties of BC cells. Animal studies confirmed that KLHL21 exhibited anti-tumor function in the xenograft mouse models, as indicated by the reduced tumor growth rates, and mice with KLHL21 knockdown showed the opposite tumor growth profile. Additionally, we found that KLHL21 negatively mediated the nuclear factor-κB (NF-κB) signaling activation, as well as its down-streaming molecules involved in the biological regulation of cell survival, death and migratory processes. Mechanistically, cylindromatosis (CYLD) expression levels were significantly up-regulated in BC cells over-expressing KLHL21, but were down-regulated upon KLHL21 knockdown. We further uncovered that KLHL21 directly interacted with CYLD in BC cells. Of note, we found that KLHL21 mainly in cytoplasm could restrain CYLD degradation by prohibiting its ubiquitination in BC cells. More importantly, our in vitro experiments displayed that KLHL21-inhibited progression and NF-κB/p65 activation in BC cells were completely abolished by CYLD deletion, revealing that CYLD expression was required for KLHL21 to perform its anti-tumor function in BC. Collectively, all these findings uncovered that KLHL21/CYLD axis may be a promising therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Hongyi Yuan
- Department of Urology Surgery, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province 054000, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Zongtao Ren
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Feng Li
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Rui Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China.
| |
Collapse
|
7
|
Cullin 3 Exon 9 Deletion in Familial Hyperkalemic Hypertension Impairs Cullin3-Ring-E3 Ligase (CRL3) Dynamic Regulation and Cycling. Int J Mol Sci 2022; 23:ijms23095151. [PMID: 35563538 PMCID: PMC9105235 DOI: 10.3390/ijms23095151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Cullin 3 (CUL3) is the scaffold of Cullin3 Ring E3-ligases (CRL3s), which use various BTB-adaptor proteins to ubiquitinate numerous substrates targeting their proteasomal degradation. CUL3 mutations, responsible for a severe form of familial hyperkalemia and hypertension (FHHt), all result in a deletion of exon 9 (amino-acids 403-459) (CUL3-∆9). Surprisingly, while CUL3-∆9 is hyperneddylated, a post-translational modification that typically activates CRL complexes, it is unable to ubiquitinate its substrates. In order to understand the mechanisms behind this loss-of function, we performed comparative label-free quantitative analyses of CUL3 and CUL3-∆9 interactome by mass spectrometry. It was observed that CUL3-∆9 interactions with COP9 and CAND1, both involved in CRL3 complexes’ dynamic assembly, were disrupted. These defects result in a reduction in the dynamic cycling of the CRL3 complexes, making the CRL3-∆9 complex an inactive BTB-adaptor trap, as demonstrated by SILAC experiments. Collectively, the data indicated that the hyperneddylated CUL3-∆9 protein is inactive as a consequence of several structural changes disrupting its dynamic interactions with key regulatory partners.
Collapse
|
8
|
Li C, Li R, Hu X, Zhou G, Jiang G. Tumor-promoting mechanisms of macrophage-derived extracellular vesicles-enclosed microRNA-660 in breast cancer progression. Breast Cancer Res Treat 2022; 192:353-368. [PMID: 35084622 DOI: 10.1007/s10549-021-06433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Breast cancer metastasis is the main cause of cancer-related death in women worldwide. Current therapies have remarkably improved the prognosis of breast cancer patients but still fail to manage metastatic breast cancer. Here, the present study was set to explore the role of microRNA (miR)-660 from tumor-associated macrophages (TAMs) in breast cancer, particularly in metastasis. MATERIALS AND METHODS We collected breast cancer tissues and isolated their polarized macrophages as well as extracellular vesicles (EVs), in which we measured the expression of miR-660, Kelch-like Protein 21 (KLHL21), and nuclear factor-κB (NF-κB) p65. Breast cancer cells were transfected with miR-660 mimic, miR-660 inhibitor, and sh-KLHL21 and then the cells were co-cultured with EVs or TAMs followed by detection of invasion and migration. Finally, mouse model of breast cancer was established to detect the effect of miR-660 or KLHL21 on metastasis by measuring the lymph node metastasis (LNM) foci in femur and lung. RESULTS KLHL21 was poorly expressed, whereas miR-660 was highly expressed in breast cancer tissues and cells. Of note, low KLHL21 expression or high miR-660 expression was related to poor overall survival. EVs-contained miR-660 was identified to bind to KLHL21, reducing the binding between KLHL21 and inhibitor kappa B kinase β (IKKβ) to activate the NF-κB p65 signaling pathway. Interestingly, EV-loaded miR-660 from TAMs could be internalized by breast cancer cells. Moreover, silencing of KLHL21 increased the number of lung LNM foci in vivo, while EVs-contained miR-660 promoted cancerous cell invasion and migration. DISCUSSION Taken altogether, our work shows that TAMs-EVs-shuttled miR-660 promotes breast cancer progression through KLHL21-mediated IKKβ/NF-κB p65 axis.
Collapse
Affiliation(s)
- Changchun Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China
| | - Ruiqing Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xingchi Hu
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guangjun Zhou
- Department of Thyroid and Breast Surgery, Yancheng City No. 1 People's Hospital, Yancheng, 224001, People's Republic of China
| | - Guoqing Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
9
|
Kong J, Shen S, Zhang Z, Wang W. Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark 2020; 27:505-517. [PMID: 32116234 DOI: 10.3233/cbm-190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary malignancy worldwide. However, the molecular mechanisms of its tumorigenesis and progression are still largely unclear. OBJECTIVE This study aimed to explore the hub genes and pathways associated with CCA prognosis by coexpression analysis. METHODS A coexpression network complex was constructed using the top 20% most variant genes in the GSE89748 dataset to find modules associated with prognosis related clinical trait-histology. The hub genes in the clinically significant modules were defined as candidates if they were common in both the coexpression network and protein-protein interaction (PPI) network. Afterwards, survival analysis, expression level analysis and a series of bioinformatic analysis were used to validate the hub genes. RESULTS Twenty-five modules were obtained, and the cyan, light cyan and red modules regarded as closely associated with histology were selected. Subsequently, combining the PPI network complexes and coexpression networks, we screened 20 candidates. After expression and survival analysis, 10 real hub genes (LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2, PTGES3, HEATR1 and ILF2) were finally identified. Additionally, functional enrichment analysis revealed that the hub genes were mainly enriched in cell cycle-related pathways. CONCLUSIONS Overall, this study identified 10 hub genes and cell cycle-related pathways were closely related to CCA development, progression and prognosis, which may contribute to CCA diagnosis and treatment.
Collapse
|
10
|
Coppola U, Kamal AK, Stolfi A, Ristoratore F. The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Front Cell Dev Biol 2020; 8:569601. [PMID: 33043001 PMCID: PMC7517041 DOI: 10.3389/fcell.2020.569601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ashwani Kumar Kamal
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
11
|
Liu T, Zhu G, Yan W, Lv Y, Wang X, Jin G, Cui M, Lin Z, Ren X. Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma. J Pharmacol Exp Ther 2020; 373:279-289. [PMID: 32102917 DOI: 10.1124/jpet.119.263202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT: Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro.
Collapse
Affiliation(s)
- Tesi Liu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Zhu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Wendi Yan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - You Lv
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Minghua Cui
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| |
Collapse
|
12
|
Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 2019; 148:104404. [DOI: 10.1016/j.phrs.2019.104404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
13
|
Guo W, Zhu L, Zhu R, Chen Q, Wang Q, Chen JQ. A four-DNA methylation biomarker is a superior predictor of survival of patients with cutaneous melanoma. eLife 2019; 8:e44310. [PMID: 31169496 PMCID: PMC6553943 DOI: 10.7554/elife.44310] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cutaneous melanoma (CM) is a life-threatening form of skin cancer. Prognostic biomarkers can reliably stratify patients at initial melanoma diagnosis according to risk, and may inform clinical decisions. Here, we performed a retrospective, cohort-based study analyzing genome-wide DNA methylation of 461 patients with CM from the TCGA database. Cox regression analyses were conducted to establish a four-DNA methylation signature that was significantly associated with the overall survival (OS) of patients with CM, and that was validated in an independent cohort. Corresponding Kaplan-Meier analysis displayed a distinct separation in OS. The ROC analysis confirmed that the predictive signature performed well. Notably, this signature exhibited much higher predictive accuracy in comparison with known biomarkers. This signature was significantly correlated with immune checkpoint blockade (ICB) immunotherapy-related signatures, and may have potential as a guide for measures of responsiveness to ICB immunotherapy.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liucun Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Rui Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
14
|
Li YR, Peng RR, Gao WY, Liu P, Chen LJ, Zhang XL, Zhang NN, Wang Y, Du L, Zhu FY, Wang LL, Li CR, Zeng WT, Li JM, Hu F, Zhang D, Yang ZX. The ubiquitin ligase KBTBD8 regulates PKM1 levels via Erk1/2 and Aurora A to ensure oocyte quality. Aging (Albany NY) 2019; 11:1110-1128. [PMID: 30786262 PMCID: PMC6402520 DOI: 10.18632/aging.101802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Tight control of energy metabolism is essential for normal cell function and organism survival. PKM (pyruvate kinase, muscle) isoforms 1 and 2 originate from alternative splicing of PKM pre-mRNA. They are key enzymes in oxidative phosphorylation and aerobic glycolysis, respectively, and are essential for ATP generation. The PKM1:PKM2 expression ratio changes with development and differentiation, and may also vary under metabolic stress and other conditions. Until now, there have been no reports about the function and regulation of PKM isozymes in oocytes. Here, we demonstrate that PKM1 or PKM2 depletion significantly disrupts ATP levels and mitochondrial integrity, and exacerbates free-radical generation and apoptosis in mouse oocytes. We also show that KBTBD8, a female fertility factor in the KBTBD ubiquitin ligase family, selectively regulates PKM1 levels through a signaling cascade that includes Erk1/2 and Aurora A kinases as intermediates. Finally, using RNA sequencing and protein network analysis, we identify several regulatory proteins that may be govern generation of mature PKM1 mRNA. These results suggest KBTBD8 affects PKM1 levels in oocytes via a KBTBD8→Erk1/2→Aurora A axis, and may also affect other essential processes involved in maintaining oocyte quality.
Collapse
Affiliation(s)
- Yan-Ru Li
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Equal contribution
| | - Rui-Rui Peng
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Equal contribution
| | - Wen-Yi Gao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Equal contribution
| | - Peng Liu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Reproductive Medical Center, Huzhou Maternity and Child Health Care Hospital, Huzhou 313000, Zhejiang, P.R. China
- Equal contribution
| | - Liang-Jian Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Equal contribution
| | - Xiao-Lan Zhang
- Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, P.R. China
- Equal contribution
| | - Na-Na Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Yang Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Lei Du
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
- Department of Center for Medical Experiments, Third Xiang-Ya Hospital of Central South University, Changsha 410013, Hunan, P.R. China
| | - Feng-Yu Zhu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Li-Li Wang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Cong-Rong Li
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Wen-Tao Zeng
- Animal Core Facility, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Jian-Min Li
- Animal Core Facility, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Fan Hu
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| | - Zhi-Xia Yang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, P.R. China
| |
Collapse
|