1
|
Simpson MA. Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling. Cells 2025; 14:139. [PMID: 39851567 PMCID: PMC11763598 DOI: 10.3390/cells14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| |
Collapse
|
2
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
3
|
Margaret MS, Melrose J. Impaired instructive and protective barrier functions of the endothelial cell glycocalyx pericellular matrix is impacted in COVID-19 disease. J Cell Mol Med 2024; 28:e70033. [PMID: 39180511 PMCID: PMC11344469 DOI: 10.1111/jcmm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 08/26/2024] Open
Abstract
The aim of this study was to review the roles of endothelial cells in normal tissue function and to show how COVID-19 disease impacts on endothelial cell properties that lead to much of its associated symptomatology. This places the endothelial cell as a prominent cell type to target therapeutically in the treatment of this disorder. Advances in glycosaminoglycan analytical techniques and functional glycomics have improved glycosaminoglycan mimetics development, providing agents that can more appropriately target various aspects of the behaviour of the endothelial cell in-situ and have also provided polymers with potential to prevent viral infection. Thus, promising approaches are being developed to combat COVID-19 disease and the plethora of symptoms this disease produces. Glycosaminoglycan mimetics that improve endothelial glycocalyx boundary functions have promising properties in the prevention of viral infection, improve endothelial cell function and have disease-modifying potential. Endothelial cell integrity, forming tight junctions in cerebral cell populations in the blood-brain barrier, prevents the exposure of the central nervous system to circulating toxins and harmful chemicals, which may contribute to the troublesome brain fogging phenomena reported in cognitive processing in long COVID disease.
Collapse
Affiliation(s)
- M. Smith Margaret
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Arthropharm Australia Pharmaceuticals Pty LtdBondi JunctionSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Northern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical SchoolNorthern, The University of SydneySydneyNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| |
Collapse
|
4
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
5
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Spataro S, Guerra C, Cavalli A, Sgrignani J, Sleeman J, Poulain L, Boland A, Scapozza L, Moll S, Prunotto M. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J 2023; 290:3946-3962. [PMID: 35997767 DOI: 10.1111/febs.16600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.
Collapse
Affiliation(s)
- Sofia Spataro
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS - BIP), Karlsruhe Institute for Technology (KIT), Germany
| | - Lina Poulain
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| |
Collapse
|
7
|
Sato S, Miyazaki M, Fukuda S, Mizutani Y, Mizukami Y, Higashiyama S, Inoue S. Human TMEM2 is not a catalytic hyaluronidase, but a regulator of hyaluronan metabolism via HYBID (KIAA1199/CEMIP) and HAS2 expression. J Biol Chem 2023:104826. [PMID: 37196767 DOI: 10.1016/j.jbc.2023.104826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Cutaneous hyaluronan (HA) is depolymerized to intermediate sizes in the extracellular matrix, and further fragmented in the regional lymph nodes. Previously, we showed that the HA-binding protein involved in HA depolymerization (HYBID), also known as KIAA1199/CEMIP, is responsible for the first step of HA depolymerization. Recently, mouse transmembrane 2 (mTMEM2) with high structural similarity to HYBID was proposed to be a membrane-bound hyaluronidase. However, we showed that knockdown of human TMEM2 (hTMEM2) conversely promoted HA depolymerization in normal human dermal fibroblasts (NHDFs). Therefore, we examined the HA-degrading activity and function of hTMEM2 using HEK293T cells. We found that human HYBID and mTMEM2, but not hTMEM2, degraded extracellular HA, indicating that hTMEM2 does not function as a catalytic hyaluronidase. Analysis of the HA-degrading activity of chimeric TMEM2 in HEK293T cells suggested the importance of the mouse GG domain. Therefore, we focused on the amino acid residues that are conserved in active mouse and human HYBID and mTMEM2, but are substituted in hTMEM2. The HA-degrading activity of mTMEM2 was abolished when its His248 and Ala303 were simultaneously replaced by the corresponding residues of inactive hTMEM2 (Asn248 and Phe303). In NHDFs, enhancement of hTMEM2 expression by proinflammatory cytokines decreased HYBID expression and increased hyaluronan synthase 2 (HAS2)-dependent HA production. The effects of proinflammatory cytokines were abrogated by hTMEM2 knockdown. Moreover, a decreased HYBID expression by interleukin-1β and transforming growth factor-β was canceled by hTMEM2 knockdown. In conclusion, these results indicate that hTMEM2 is not a catalytic hyaluronidase, but a regulator of HA metabolism.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan
| | - Megumi Miyazaki
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan
| | - Shinji Fukuda
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusaku, Nagoya, Aichi 464-8650, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, and; Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| |
Collapse
|
8
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
9
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
SALL4 activates PI3K/AKT signaling pathway through targeting PTEN, thus facilitating migration, invasion and proliferation of hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:10081-10092. [PMID: 36575044 PMCID: PMC9831741 DOI: 10.18632/aging.204446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
This study aims to explore the specific mechanisms of SALL4 on the migration, invasion and proliferation of HCC. HepG2 and SMMC-7721 cells were transfected with SALL4 NC, mimics and inhibitors. The proliferation capability and cell cycle progression of HCC cells were detected through CCK8 assay and flow cytometry, and their migration and invasion capabilities were detected by wound healing assay and Transwell assay. In SALL4 inhibitor NC group and SALL4 inhibitor group, the PTEN inhibitor SF1670 was added, and the expression levels of PI3K/AKT, migration, invasion and proliferation-related proteins were detected by Western blotting. Results showed that after up-regulation of SALL4, the migration distance of HCC cells increased, the numbers of migrated cells and the number of colonies formed significantly rosed, and there were fewer cells in G1 phase but significantly more cells in S phase, thereby down-regulation of SALL4, the opposite results. The results of Western blotting revealed that after SF1670, the specific PTEN inhibitor was added in SALL4 inhibitor group and SALL4 inhibitor NC group, the protein expression of PTEN in HCC cells significantly declined, while the protein expressions of p-PI3K, p-AKT, MMP2, MMP9, CyclinD, CyclinA1, PCNA and P62 significantly rose. In conclusion, SALL4 activates the PI3K/AKT signaling pathway through targeting PTEN, thereby facilitating the migration, invasion and proliferation of HCC cells.
Collapse
|
11
|
Fell CW, Hagelkruys A, Cicvaric A, Horrer M, Liu L, Li JSS, Stadlmann J, Polyansky AA, Mereiter S, Tejada MA, Kokotović T, Achuta VS, Scaramuzza A, Twyman KA, Morrow MM, Juusola J, Yan H, Wang J, Burmeister M, Choudhury B, Andersen TL, Wirnsberger G, Holmskov U, Perrimon N, Žagrović B, Monje FJ, Moeller JB, Penninger JM, Nagy V. FIBCD1 is an endocytic GAG receptor associated with a novel neurodevelopmental disorder. EMBO Mol Med 2022; 14:e15829. [PMID: 35916241 PMCID: PMC9449597 DOI: 10.15252/emmm.202215829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Astrid Hagelkruys
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Marion Horrer
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Lucy Liu
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Joshua Shing Shun Li
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Johannes Stadlmann
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Institute of BiochemistryUniversity of Natural Resource and Life SciencesViennaAustria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Stefan Mereiter
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Miguel Angel Tejada
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Research Unit on Women's Health‐Institute of Health Research INCLIVAValenciaSpain
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Venkat Swaroop Achuta
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Angelica Scaramuzza
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | | | | | - Huifang Yan
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Jingmin Wang
- Department of PediatricsPeking University First HospitalBeijingChina
- Joint International Research Center of Translational and Clinical ResearchBeijingChina
| | - Margit Burmeister
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMIUSA
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Biswa Choudhury
- Department of Cellular and Molecular MedicineUCSDLa JollaCAUSA
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of PathologyOdense University HospitalOdenseDenmark
- Pathology Research Unit, Department of Clinical Research and Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Gerald Wirnsberger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Apeiron Biologics AG, Vienna BioCenter CampusViennaAustria
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolHoward Hughes Medical InstituteBostonMAUSA
| | - Bojan Žagrović
- Department of Structural and Computational Biology, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Centre for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Jesper Bonnet Moeller
- Cancer and Inflammation Research, Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced StudyUniversity of Southern DenmarkOdenseDenmark
| | - Josef M Penninger
- VBC – Vienna BioCenter CampusIMBA, Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
12
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
13
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
14
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
15
|
Chen Y, Zhou H, Jiang WJ, Wang JF, Tian Y, Jiang Y, Xia BR. The role of CEMIP in tumors: An update based on cellular and molecular insights. Biomed Pharmacother 2021; 146:112504. [PMID: 34922110 DOI: 10.1016/j.biopha.2021.112504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/17/2023] Open
Abstract
CEMIP was initially identified as an inner-ear specific protein in which three-point mutations cause folding changes in protein structure associated with non-syndromic hearing loss. CEMIP was also involved in other cellular activities, such as hyaluronan depolymerization independent of CD44 and other hyaluronidases. Growing evidence has demonstrated that CEMIP is involved in the progression of various tumors. However, whether the oncogenic effects of CEMIP relies on its enzymatic activity remain elusive. CEMIP is significantly related to metastasis and poor prognosis in patients with various tumors, suggesting that CEMIP is a potential, highly specific diagnostic tumor marker. Most preclinical experiments have shown that the overexpression of CEMIP in tumors mainly affects the adhesion, metastasis, and invasion of tumor cells and EMT. Other studies have also demonstrated that CEMIP can promote a variety of tumor processes by affecting tumor proliferation, dedifferentiation, and the tumor microenvironment. In terms of molecular mechanisms, existing research has shown that CEMIP mainly affects the WNT and EGFR signaling pathways. In addition, a variety of miRNAs have been shown to inhibit CEMIP in tumors. This paper elaborates on the clinical characteristics and regulatory dysfunction of CEMIP in different cancers. CEMIP provides a new potential target for therapy of multiple tumors, which is worthy of further study.
Collapse
Affiliation(s)
- Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Hu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Wen-Jing Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Jia-Fei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Yan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Bai-Rong Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life, Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.
| |
Collapse
|
16
|
Sindelar M, Jilkova J, Kubala L, Velebny V, Turkova K. Hyaluronidases and hyaluronate lyases: From humans to bacteriophages. Colloids Surf B Biointerfaces 2021; 208:112095. [PMID: 34507069 DOI: 10.1016/j.colsurfb.2021.112095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a non-sulfated negatively-charged linear polymer distributed in most parts of the human body, where it is located around cells in the extracellular matrix of connective tissues and plays an essential role in the organization of tissue architecture. Moreover, hyaluronan is involved in many biological processes and used in many clinical, cosmetic, pharmaceutic, and biotechnological applications worldwide. As interest in hyaluronan applications increases, so does interest in hyaluronidases and hyaluronate lyases, as these enzymes play a major part in hyaluronan degradation. Many hyaluronidases and hyaluronate lyases produced by eukaryotic cells, bacteria, and bacteriophages have so far been described and annotated, and their ability to cleave hyaluronan has been experimentally proven. These enzymes belong to several carbohydrate-active enzyme families, share very low sequence identity, and differ in their cleaving mechanisms and in their structural and functional properties. This review presents a summary of annotated and characterized hyaluronidases and hyaluronate lyases isolated from different sources belonging to distinct protein families, with a main focus on the binding and catalytic residues of the discussed enzymes in the context of their biochemical properties. In addition, the application potential of individual groups of hyaluronidases and hyaluronate lyases is evaluated.
Collapse
Affiliation(s)
- Martin Sindelar
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jana Jilkova
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lukas Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Kristyna Turkova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691, Brno, Czech Republic.
| |
Collapse
|
17
|
Liao HX, Zhang ZH, Chen HL, Huang YM, Liu ZL, Huang J. CircHYBID regulates hyaluronan metabolism in chondrocytes via hsa-miR-29b-3p/TGF-β1 axis. Mol Med 2021; 27:56. [PMID: 34058990 PMCID: PMC8165762 DOI: 10.1186/s10020-021-00319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hyaluronan (HA) metabolism by chondrocytes is important for cartilage development and homeostasis. However, information about the function of circular RNAs (circRNAs) in HA metabolism is limited. We therefore profiled the role of the novel HA-related circRNA circHYBID in the progression of osteoarthritis (OA). Methods CircHYBID function in HA metabolism in chondrocytes was investigated using gain-of-function experiments, and circHYBID mechanism was confirmed via bioinformatics analysis and luciferase assays. The expression of circHYBID–hsa-miR-29b-3p–transforming growth factor (TGF)-β1 axis was examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. CircHYBID, TGF-β1, and HA levels in cartilage samples were evaluated using qRT-PCR and pathological examination. Enzyme-linked immunosorbent assay was used to assess HA accumulation in chondrocyte supernatant. Results CircHYBID expression was significantly downregulated in damaged cartilage samples compared with that in the corresponding intact cartilage samples. CircHYBID expression was positively correlated with alcian blue score. Interleukin-1β stimulation in chondrocytes downregulated circHYBID expression and decreased HA accumulation. Gain-of-function experiments revealed that circHYBID overexpression in chondrocytes increased HA accumulation by regulating HA synthase 2 and HYBID expression. Further mechanism analysis showed that circHYBID upregulated TGF-β1 expression by sponging hsa-miR-29b-3p. Conclusions Our results describe a novel HA-related circRNA that could promote HA synthesis and accumulation. The circHYBID–hsa-miR-29b-3p–TGF-β1 axis may play a powerful regulatory role in HA metabolism and OA progression. Thus, these findings will provide new perspectives for studies on OA pathogenesis, and circHYBID may serve as a potential target for OA therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00319-x.
Collapse
Affiliation(s)
- Hong-Xing Liao
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China.
| | - Zhi-Hui Zhang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Hui-Lin Chen
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Ying-Mei Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Zhan-Liang Liu
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| | - Jian Huang
- Orthopedic Center, Meizhou People's Hospital, Huangtang Road No.63, Meizhou, 514000, Guangdong, People's Republic of China
| |
Collapse
|
18
|
Ye J, Qi L, Liang J, Zong K, Liu W, Li R, Feng R, Zhai W. Lenvatinib induces anticancer activity in gallbladder cancer by targeting AKT. J Cancer 2021; 12:3548-3557. [PMID: 33995632 PMCID: PMC8120192 DOI: 10.7150/jca.50292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Gallbladder cancer (GBC) is characterized by poor prognosis, early metastasis, and high recurrence rates, which seriously threaten human health. The effect of lenvatinib, a widely used drug in anti-hepatocellular carcinoma in China, on GBC progress, as well as its underlying molecular mechanism, remains unclear. Therefore, the present study investigated the effect of lenvatinib on human GBC GBC-SD and NOZ cells and its underlying mechanisms. A series of experiments, including cell proliferation, clone formation, wound healing, and cell migration and invasion assays, as well as flow cytometry, were performed to investigate the anticancer effect of lenvatinib on GBC. Western blotting was used to detect alterations in protein expression of CKD2, CKD4, cyclin D1, caspase-9, matrix metalloproteinase (MMP)-2, cell migration-inducing protein (CEMIP) and phospho-AKT (p-AKT). In addition, the chemosensitivity of lenvatinib-treated GBC cells to gemcitabine (GEM) and whether the activation of phosphoinositide 3 kinase (PI3K)/AKT contributed to the chemoresistance were determined. Finally, the anticancer effect of lenvatinib in vivo was detected using a xenograft mouse model. These data showed that treatment with lenvatinib inhibited cell proliferation, colony formation ability, migration, induced apoptosis, regulated cell cycle and resulted in decreased resistance to GEM. Treatment with lenvatinib decreased the expression of MMP-2, CEMIP, CDK2, CDK4 and cyclin D1, and increased the expression of cleaved caspase-9, which was mediated by the inactivation of the PI3K/AKT pathway in vitro. In addition, lenvatinib inhibited autophagy in GBC-SD and NOZ cells. Besides, Lenvatinib suppressed GBC cell growth in vivo by targeting p-AKT. In combination, the present data indicated that lenvatinib plays a potential anticancer role in GBC by downregulating the expression of p-AKT.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jialu Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ke Zong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Wentao Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| | - Ruo Feng
- Department of Histology and Embryology, Medical College of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Key Lab of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Tsuji S, Nakamura S, Yamada T, de Vega S, Okada Y, Inoue S, Shimazawa M, Hara H. HYBID derived from tumor cells and tumor-associated macrophages contribute to the glioblastoma growth. Brain Res 2021; 1764:147490. [PMID: 33887254 DOI: 10.1016/j.brainres.2021.147490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most malignant tumor of the brain associated with poor prognosis and outcome, and hence there is an urgent need to develop novel treatments for glioblastoma. In this study, we focused on hyaluronan binding protein (HYBID, as known as CEMIP/KIAA1199), a protein involved in hyaluronan depolymerization in chondrocytes and synoviocytes. We previously reported that Hybid-deficient (KO) mice show accumulation of hyaluronan in the brain, and memory impairment. To elucidate the role of HYBID in glioblastoma pathogenesis, we knocked down HYBID in human glioblastoma cells using siRNAs and developed a murine orthotopic xenograft model in the Hybid KO mice. Downregulation of HYBID in glioblastoma cells resulted in inhibition of cell proliferation and migration, and increased cell death. The growth of glioblastoma cells implanted in the mouse brain was suppressed in Hybid KO mice compared to that in the wild-type mice. Interestingly, infiltration of macrophages in the glioblastoma tissue was decreased in Hybid KO mice. Using intraperitoneal macrophages derived from Hybid KO mice and glioma cell supernatants, we examined the role of HYBID in macrophages in the tumor environment. We showed that HYBID contributes to macrophage migration and the release of pro-tumor factors. Moreover, we revealed that HYBID can be a poor prognostic factor in glioma patients by bioinformatics approaches. Our study provides data to support that HYBID expressed by both glioblastoma cells and tumor-associated macrophages may contribute to glioblastoma progression and suggests that HYBID may be a potential target for therapy that focuses on the tumor microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Shohei Tsuji
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuya Yamada
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan; Department of Neurosurgery, Gifu University School of Medicine, Gifu, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shintaro Inoue
- Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
20
|
Sato S, Mizutani Y, Yoshino Y, Masuda M, Miyazaki M, Hara H, Inoue S. Pro-inflammatory cytokines suppress HYBID (hyaluronan (HA) -binding protein involved in HA depolymerization/KIAA1199/CEMIP) -mediated HA metabolism in human skin fibroblasts. Biochem Biophys Res Commun 2021; 539:77-82. [PMID: 33422943 DOI: 10.1016/j.bbrc.2020.12.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/11/2023]
Abstract
In the skin, the metabolism of hyaluronan (HA) is highly regulated. Aging leads to chronic low-grade inflammation, which is characterized by elevated levels of pro-inflammatory cytokines; however, the relationship between inflammation and HA metabolism is not clear. Herein, we investigated the effects of a mixture of pro-inflammatory cytokines containing TNF-α, IL-1β, and IL-6 on HA metabolism in human skin fibroblasts. Treatment with the cytokine mixture for 24 h suppressed HA depolymerization via downregulation of HYBID (HA-binding protein involved in HA depolymerization/KIAA1199/CEMIP) and promoted HA synthesis via upregulation of HAS2 in human skin fibroblasts. Moreover, HAS2-dependent HA synthesis was driven mainly by IL-1β with partial contribution from TNF-α. Transmembrane protein 2 (TMEM2/CEMIP2), which was previously reported as a candidate hyaluronidase, was upregulated by the cytokine mixture, suggesting that TMEM2 might not function as a hyaluronidase in human skin fibroblasts. Furthermore, the effects of the cytokine mixture on HA metabolism were observed in fibroblasts after 8 days of treatment with cytokines during three passages. Thus, we have shown that HYBID-mediated HA metabolism is negatively regulated by the pro-inflammatory cytokine mixture, providing novel insights into the relationship between inflammation and HA metabolism in the skin.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Manami Masuda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Megumi Miyazaki
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
21
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
22
|
Li C, Zou H, Xiong Z, Xiong Y, Miyagishima DF, Wanggou S, Li X. Construction and Validation of a 13-Gene Signature for Prognosis Prediction in Medulloblastoma. Front Genet 2020; 11:429. [PMID: 32508873 PMCID: PMC7249855 DOI: 10.3389/fgene.2020.00429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 01/28/2023] Open
Abstract
Background: Recent studies have identified several molecular subgroups of medulloblastoma associated with distinct clinical outcomes; however, no robust gene signature has been established for prognosis prediction. Our objective was to construct a robust gene signature-based model to predict the prognosis of patients with medulloblastoma. Methods: Expression data of medulloblastomas were acquired from the Gene Expression Omnibus (GSE85217, n = 763; GSE37418, n = 76). To identify genes associated with overall survival (OS), we performed univariate survival analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. A risk score model was constructed based on selected genes and was validated using multiple datasets. Differentially expressed genes (DEGs) between the risk groups were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein–protein interaction (PPI) analyses were performed. Network modules and hub genes were identified using Cytoscape. Furthermore, tumor microenvironment (TME) was evaluated using ESTIMATE algorithm. Tumor-infiltrating immune cells (TIICs) were inferred using CIBERSORTx. Results: A 13-gene model was constructed and validated. Patients classified as high-risk group had significantly worse OS than those as low-risk group (Training set: p < 0.0001; Validation set 1: p < 0.0001; Validation set 2: p = 0.00052). The area under the curve (AUC) of the receiver operating characteristic (ROC) analysis indicated a good performance in predicting 1-, 3-, and 5-year OS in all datasets. Multivariate analysis integrating clinical factors demonstrated that the risk score was an independent predictor for the OS (validation set 1: p = 0.001, validation set 2: p = 0.004). We then identified 265 DEGs between risk groups and PPI analysis predicted modules that were highly related to central nervous system and embryonic development. The risk score was significantly correlated with programmed death-ligand 1 (PD-L1) expression (p < 0.001), as well as immune score (p = 0.035), stromal score (p = 0.010), and tumor purity (p = 0.010) in Group 4 medulloblastomas. Correlations between the 13-gene signature and the TIICs in Sonic hedgehog and Group 4 medulloblastomas were revealed. Conclusion: Our study constructed and validated a robust 13-gene signature model estimating the prognosis of medulloblastoma patients. We also revealed genes and pathways that may be related to the development and prognosis of medulloblastoma, which might provide candidate targets for future investigation.
Collapse
Affiliation(s)
- Chang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States.,Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
24
|
Srivastava T, Sherman LS, Back SA. Dysregulation of Hyaluronan Homeostasis During White Matter Injury. Neurochem Res 2020; 45:672-683. [PMID: 31542857 PMCID: PMC7060835 DOI: 10.1007/s11064-019-02879-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Stephen A Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
- Department of Pediatrics, Division of Pediatric Neuroscience, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR, 97239-3098, USA.
| |
Collapse
|
25
|
Yoshida H, Okada Y. Role of HYBID (Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization), Alias KIAA1199/CEMIP, in Hyaluronan Degradation in Normal and Photoaged Skin. Int J Mol Sci 2019; 20:ijms20225804. [PMID: 31752258 PMCID: PMC6888145 DOI: 10.3390/ijms20225804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
Photoaged skin is characterized clinically by apparent manifestations such as wrinkles and sagging, and histologically by an accumulation of abnormal elastin and a severe loss of collagen fibers in the dermis. Quantitative and qualitative alterations in elastin and collagens are considered to be responsible for the formation of wrinkles and sagging. However, since the integrity of elastin and collagen fibers in the dermis is maintained by their interactions with hyaluronan (HA) and a proteoglycan network structure, HA degradation may be the initial process, prior to the breakdown of the fibrillary components, leading to wrinkles and sagging in photoaged skin. We have recently discovered a new HA-degrading mechanism mediated by HYBID (hyaluronan binding protein involved in hyaluronan depolymerization), alias KIAA1199/CEMIP, in human skin fibroblasts, and examined the implication of HYBID for skin photoaging. In this review, we give an overview of the characteristics of HYBID and its prospective roles in HA turnover in normal skin and excessive HA degradation in photoaged skin. In addition, we describe our data on the inhibition of HYBID activity and expression by plant extracts in skin fibroblasts; and propose novel strategies to prevent or improve photoaging symptoms, such as skin wrinkling, by inhibition of HYBID-mediated HA degradation.
Collapse
Affiliation(s)
- Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, 3-28, 5-chome, Kotobuki-cho, Odawara-shi, Kanagawa 250-0002, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (H.Y.); (Y.O.); Tel.: +81-465-34-6116 (H.Y.); +81-3-5800-7531 (Y.O.); Fax: +81-465-34-3037 (H.Y.); +81-3-5800-7532 (Y.O.)
| |
Collapse
|