1
|
Liu Y, Gong F. Natural Products From Plants Targeting Leptin Resistance for the Future Development of Anti-Obesity Agents. Phytother Res 2025; 39:1174-1189. [PMID: 39754514 DOI: 10.1002/ptr.8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
Obesity is a serious health threat, which has affected 16% of adults globally in 2022 and shows a trend toward youthfulness. Leptin, as a regulator of body weight, can suppress appetite and promote energy expenditure, making it potential in obesity treatment. Nevertheless, with the progress of relevant research, it is worth noting that monotherapy with leptin is not an effective strategy since most obese individuals are hyperleptinemic and resistant to leptin, where high levels of leptin fail to exert its weight-loss effects. Therefore, the potential to unlock the weight-loss properties of leptin using pharmacology to improve resistance has provided a new direction for this field. However, most synthetic medicines have retreated from the market due to their undesirable side effects, while natural products are increasingly sought after for drug development due to their minimal side effects. Indeed, natural products are ideal alternatives to oral synthetic agents since a growing body of research has demonstrated their desirable effects on improving leptin resistance through potential therapeutic targets like the JAK2/STAT3 signaling pathway, protein tyrosine phosphatase 1B, the exchange proteins directly activated by cAMP/Ras-related protein 1 signaling pathway, endoplasmic reticulum stress, pro-opiomelanocortin gene, and leptin levels. This review outlines natural products that can improve leptin resistance by inhibiting or activating these targets and evaluates their efficacy in experiments and human clinical trials, offering insights for the development of anti-obesity agents. However, more high-quality clinical research is necessary to validate these findings, as current clinical evidence is constrained by heterogeneity and small sample sizes.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Iizasa E, Iwai H, Oyamada Y, Hamashima K, Nishi R, Ataka K, Amitani H, Ohinata K, Kato I, Asakawa A. A plant-derived δ opioid receptor agonist rubiscolin-6 ameliorates sickness behavior in mice with cancer cachexia. J Funct Foods 2024; 119:106297. [DOI: 10.1016/j.jff.2024.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
3
|
Nakajima T, Shobako M, Kaneko K, Kurabayashi A, Sato M, Ohinata K. Ovomemolins: Egg-derived peptides that improved cognitive decline after oral administration in mice. FASEB Bioadv 2024; 6:177-188. [PMID: 38974115 PMCID: PMC11226991 DOI: 10.1096/fba.2023-00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 07/09/2024] Open
Abstract
Eggs not only contain all the molecules necessary to nurture new life but are also rich in nutrients such as high-quality protein. For example, epidemiologic studies have shown that egg intake is positively correlated with cognitive function. Thus, we specifically examined the effect of ovalbumin, a major protein present in egg whites, on cognitive function. First, we found that an orally administered enzymatic digest of ovalbumin improves cognitive function in mice fed a high-fat diet. Then, we narrowed down candidate peptides based on the prediction of peptide production according to enzyme-substrate specificity and comprehensive peptide analysis of the digest. We found that three peptides, namely ILPEY, LYRGGLEP, and ILELP, improve cognitive function after oral administration. We also showed that ILPEY, LYRGGLEP, and ILELP were present in the digest and named them ovomemolins A (OMA), B, and C, respectively. Notably, ovomemolins are the first peptides derived from egg whites that have been shown to improve cognitive function. The cognitive improvement induced by OMA, the most abundant of the peptides in the digest, was inhibited by methyllycaconitine, an antagonist of α7nAChR, which is known to be related to memory. These results suggest that OMA improves cognitive function through the acetylcholine system. After OMA administration, brain-derived neurotrophic factor (BDNF) mRNA expression and the number of 5-bromo-2'-deoxyuridine-positive cells suggested that OMA increases hippocampal BDNF expression and neurogenesis.
Collapse
Affiliation(s)
- Takanobu Nakajima
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Maiko Shobako
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | | | - Masaru Sato
- Department of Applied GenomicsKazusa DNA Research InstituteKisarazuJapan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
4
|
Eckert F, Meyer N, Monzel E, Bouvret E, Chataigner M, Hellhammer J. Efficacy of a fish hydrolysate supplement on sleep quality: A randomized, double-blind, placebo-controlled, crossover clinical trial. Clin Nutr ESPEN 2024; 60:48-58. [PMID: 38479939 DOI: 10.1016/j.clnesp.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND & AIMS Sleep disturbances are widespread in modern societies and linked to a variety of diseases, creating an urgent need for the development of products that help combat sleep difficulties. One suitable nutritional supplement may be a fish hydrolysate composed of low molecular weight peptides. METHODS This two-arm, double-blind, randomized, placebo-controlled crossover study investigated the effect of a 4-week fish hydrolysate intervention on sleep in a healthy German population reporting poor sleep quality, assessed with the Pittsburgh Sleep Quality Index (PSQI). Further sleep parameters were measured using an online diary and a wrist wearable device. Additionally, questionnaires related to stress, anxiety, depression, and well-being were evaluated and salivary cortisol and product satisfaction were assessed. RESULTS The 4-week fish hydrolysate supplementation significantly improved subjective sleep quality measured with the PSQI-score (p = .002). Moreover, individuals reported improvements in sleep efficacy and a reduction in sleep disturbances and daytime sleepiness during fish hydrolysate intake (p = .013, p = .046, p = .004 respectively), but not during placebo phase (all p > .05). No significant intra-individual differences were found between fish hydrolysate and placebo supplementation (p > .05). CONCLUSIONS Although no significant intra-individual differences were found between fish hydrolysate and placebo supplementation, the significant improvement in subjective sleep quality from baseline to treatment phase suggests that fish hydrolysate is a safe nutritional supplement to support individuals with self-reported sleep problems. CLINICAL TRIAL REGISTRATION The study is registered at ClinicalTrials.gov with the Identifier NCT04983355.
Collapse
Affiliation(s)
- Franziska Eckert
- Contract Research Institute daacro, Max-Planck-Straße 22, 54296 Trier, Germany.
| | - Nadin Meyer
- Contract Research Institute daacro, Max-Planck-Straße 22, 54296 Trier, Germany
| | - Elena Monzel
- Contract Research Institute daacro, Max-Planck-Straße 22, 54296 Trier, Germany
| | - Elodie Bouvret
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France
| | | | - Juliane Hellhammer
- Contract Research Institute daacro, Max-Planck-Straße 22, 54296 Trier, Germany
| |
Collapse
|
5
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
6
|
Kaneko K, Tokuyama Y, Taniguchi E, Abe S, Nakato J, Iwakura H, Sato M, Kurabayashi A, Suzuki H, Ito A, Higuchi Y, Nakayama R, Uchiyama K, Takahashi H, Ohinata K. Rice Endoplasmic Protein-Derived Peptides, Rice-Ghretropins A and B, Stimulate Ghrelin Release in MGN3-1 Cells and Increase Plasma Acylated Ghrelin and Food Intake in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:421-429. [PMID: 36580688 DOI: 10.1021/acs.jafc.2c05965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we demonstrated that novel rice-derived bioactive peptides promote the secretion of ghrelin, an endogenous orexigenic hormone secreted from the stomach. The enzymatic digest of rice endosperm protein with subtilisin, a microorganism-derived enzyme, stimulated acylated ghrelin secretion in the ghrelin-releasing cell line MGN3-1 and increased food intake after oral administration in mice. By performing a comprehensive analysis based on structure-activity relationships, we selected candidate peptides from over 30,000 peptides in the rice digest. Among them, we found that QAFEPIRSV and TNPWHSPRQGSF, corresponding to the amino acid sequence of the rice endoplasmic proteins glutelin A1 or A2(52-60) and B1 or B2(31-42), respectively, stimulated acylated ghrelin release in MGN3-1 cells. We named them rice-ghretropins A and B. Pyroglutamate formation of rice-ghretropin A, [pyr1]-rice-ghretropin A, also promoted ghrelin secretion. Furthermore, oral administration of rice-ghretropins increased food intake, plasma ghrelin concentration, and small intestinal transit in mice. In addition, the subtilisin digest of the rice protein significantly increased food intake for 4 h in 9 month-old (control: 0.61 ± 0.049 g; digest: 0.83 ± 0.059 g) and 24 month-old mice (control: 0.52 ± 0.067 g; digest: 1.01 ± 0.064 g). In summary, we found that novel bioactive peptides, namely, rice-ghretropins, from the enzymatic digest of rice endosperm stimulated acylated ghrelin secretion and increased food intake. This is the first report of rice-derived exogenous bioactive peptides that increase acylated ghrelin secretion.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tokuyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Eriko Taniguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shimon Abe
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junya Nakato
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| | - Masaru Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Atsushi Kurabayashi
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Akira Ito
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Yuki Higuchi
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Ryoko Nakayama
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Kimiko Uchiyama
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Hajime Takahashi
- Rice Research Institute, Kameda Seika CO., LTD. 3-1-1Kameda-kogyodanchi, Konan, Niigata, Niigata 950-0198, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Kaneko K, Takekuma Y, Goto T, Ohinata K. An orally active plant Rubisco-derived peptide increases neuronal leptin responsiveness. Sci Rep 2022; 12:8599. [PMID: 35597815 PMCID: PMC9124197 DOI: 10.1038/s41598-022-12595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrient excess, such as the intake of a high-fat diet, reduces hypothalamic responses to exogenously administered leptin and induces dietary obesity; however, orally active components that attenuate neural leptin dysregulation have yet to be identified. We herein demonstrated that YHIEPV, derived from the pepsin-pancreatin digestion of the green leaf protein Rubisco, increased the leptin-induced phosphorylation of STAT3 in ex vivo hypothalamic slice cultures. We also showed that YHIEPV mitigated palmitic acid-induced decreases in leptin responsiveness. Furthermore, orally administered YHIEPV promoted leptin-induced reductions in body weight and food intake in obese mice. In addition, dietary-induced body weight gain was significantly less in mice orally or centrally administered YHIEPV daily than in saline-control mice. Cellular leptin sensitivity and the levels of proinflammatory-related factors, such as IL1β and Socs-3, in the hypothalamus of obese mice were also restored by YHIEPV. YHIEPV blocked cellular leptin resistance induced by forskolin, which activates Epac-Rap1 signaling, and reduced the level of the GTP-bound active form of Rap1 in the brains of obese mice. Collectively, the present results demonstrated that the orally active peptide YHIEPV derived from a major green leaf protein increased neural leptin responsiveness and reduced body weight gain in mice with dietary obesity.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan. .,Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan.
| | - Yukihiro Takekuma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
8
|
Kaneko K. Appetite regulation by plant-derived bioactive peptides for promoting health. Peptides 2021; 144:170608. [PMID: 34265369 DOI: 10.1016/j.peptides.2021.170608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Appetite is closely regulated not only by gut hormonal and neuronal peptides but also by exogenous peptides derived from food proteins. Food proteins are now recognized to contain many thousands of bioactive compounds that provide additional health benefits beyond their nutritional effects. Bioactive peptides are beneficial to the life and/or to regulate physiological functions. Although animal protein products have been widely applied in the food industry, exploring the possibilities of developing functional foods based on plant protein-derived peptides is considered attractive for achieving sustainable development goals. In addition, peptides from plant proteins have the potential to treat numerous diseases or risk factors and may therefore facilitate a healthy life expectancy. In this review, we discuss the identified plant-based bioactive peptides and their appetite regulating effects. Plant-based bioactive peptides may provide new opportunities to discover novel approaches that can improve and prevent diseases in a sustainable environment.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
9
|
Mizushige T. Neuromodulatory peptides: Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins. Peptides 2021; 142:170569. [PMID: 33984426 DOI: 10.1016/j.peptides.2021.170569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Mental disorders are a severe health problem, and the number of patients is growing worldwide. Increased anxiety and decreased motivation due to excessive mental stress further accelerated the severity of the problem. Enzymatic digestion of food proteins produces bioactive peptides with various physiological functions, some of which exhibit neuromodulatory effects with oral administration. Recently, studies reported that some peptides produced from plant proteins such as soybeans, leaves, and grains exhibit emotional regulatory functions such as strong anxiolytic-like and antidepressant-like effects comparable to pharmaceuticals. Conventionally, researchers investigated bioactive peptides by fractionation of protein hydrolysates and structure-activity relationship. As a novel methodology for analyzing bioactive peptides, the information obtained by peptidomics simultaneous analysis of the digested fractions of proteins using mass spectrometry has been effectively utilized. Some small-sized peptides such as dipeptides and tripeptides released food-derived proteins show emotional regulating effects. Moreover, some middle-sized peptides produced after intestinal digestion may exhibit the emotional regulating effect via the vagus nerve, and the importance of the gut-brain axis is also focused. As the central mechanism of emotional regulation, it has been found that these plant-derived peptides regulated monoamine neurotransmitter signaling and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Takafumi Mizushige
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
10
|
Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem 2021; 366:130494. [PMID: 34293544 DOI: 10.1016/j.foodchem.2021.130494] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Bioactive peptides have recently gained more research attention as potential therapies for the management of bodily disorders and metabolic syndromes of delicate health importance. On another note, there is a rising trend on a global scale for the consumption and adoption of fruit and vegetables for the fulfilment of dietary and health needs. Furthermore, fruits and vegetables are being more studied as base materials for the isolation of biologically functional components and accordingly, they have been investigated for their concomitant bioactive peptides. This review focuses on isolation and bio-functional properties of bioactive peptides from fruits and vegetables. This manuscript is potential in serving as a material collection for fundamental consultancy on peptides derived from fruits and vegetables, and further canvasses the necessitation for the use of these food materials as primal matter for such.
Collapse
|
11
|
Dinel AL, Lucas C, Le Faouder J, Bouvret E, Pallet V, Layé S, Joffre C. Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Discovery of monoamine oxidase A inhibitory peptides from hairtail (Trichiurus japonicus) using in vitro simulated gastrointestinal digestion and in silico studies. Bioorg Chem 2020; 101:104032. [DOI: 10.1016/j.bioorg.2020.104032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
|
13
|
Cui X, Lin Q, Liang Y. Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Front Aging Neurosci 2020; 12:209. [PMID: 32760268 PMCID: PMC7372124 DOI: 10.3389/fnagi.2020.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) has become a major disease contributing to human death and is thought to be closely related to the aging process. The rich antioxidant substances in plants have been shown to play a role in delaying aging, and in recent years, significant research has focused on also examining their potential role in AD onset and progression. Many plant-derived antioxidant research studies have provided insights for the future treatment and prevention of AD. This article reviews various types of plant-derived antioxidants with anti-aging effects on neurons. Also it distinguishes the different types of active substances that exhibit different degrees of protection for the nervous system and summarizes the mechanism thereof. Plant-derived antioxidants with neuroprotective functions can protect various components of the nervous system in a variety of ways and can have a positive impact on interventions to prevent and alleviate AD. Furthermore, when considering neuroprotective agents, glial cells also contribute to the defense of the nervous system and should not be ignored.
Collapse
Affiliation(s)
- Xiaoji Cui
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Koyama D, Sasai M, Matsumura S, Inoue K, Ohinata K. A milk-derived pentapeptide reduces blood pressure in advanced hypertension in a CCK system-dependent manner. Food Funct 2020; 11:9489-9494. [DOI: 10.1039/d0fo01122c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Orally administered KFWGK exhibits potent and long-lasting antihypertensive effects in SHR with advanced hypertension, at which known hypotensive drugs are sometimes less effective. The minimum effective dose of KFWGK was 5 μg kg−1.
Collapse
Affiliation(s)
- Daiki Koyama
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Masaki Sasai
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Shigenobu Matsumura
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology
- Graduate School of Agriculture
- Kyoto University
- Kyoto 611-0011
- Japan
| |
Collapse
|
15
|
Nagai A, Mizushige T, Matsumura S, Inoue K, Ohinata K. Orally administered milk-derived tripeptide improved cognitive decline in mice fed a high-fat diet. FASEB J 2019; 33:14095-14102. [DOI: 10.1096/fj.201900621r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Akitoshi Nagai
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takafumi Mizushige
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Japan
| | - Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Ser-Tyr and Asn-Ala, vasorelaxing dipeptides found by comprehensive screening, reduce blood pressure via different age-dependent mechanisms. Aging (Albany NY) 2019; 11:9492-9499. [PMID: 31685714 PMCID: PMC6874431 DOI: 10.18632/aging.102400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022]
Abstract
To understand the changes in physiological responses due to aging, a number of bioactive probes based on different signal transduction pathways are necessary. In this study, we comprehensively and systematically investigated changes in blood vessel function with age using a 336-dipeptide library. In the early stage of hypertension, the most potent vasorelaxant dipeptide was Ser-Tyr (SY) in the mesenteric artery isolated from spontaneously hypertensive rats (SHR). SY-induced vasorelaxation and anti-hypertensive effects were blocked by L-NAME, an inhibitor of nitric oxide synthase (NOS), suggesting that SY activates the NO system. On the other hand, the patterns of dipeptides with vasorelaxation activity in early and advanced stages of hypertension were different. In the advanced stage, the most potent vasorelaxing dipeptide was Asn-Ala (NA). Orally administered NA (1.5 mg/kg) reduced the blood pressure in the advanced stage, at which drugs were sometimes less effective, and the anti-hypertensive effects lasted for 6 hr. The NA-induced vasorelaxation and anti-hypertensive activity was blocked by lorglumide, an antagonist of the cholecystokinin CCK1 receptor, suggesting that NA activated the CCK system. Taken together, in the early and advanced stages of hypertension, SY and NA exhibited vasorelaxing and anti-hypertensive effects via the NO and CCK systems, respectively.
Collapse
|