1
|
Shraim R, Mooney B, Conkrite KL, Hamilton AK, Morin GB, Sorensen PH, Maris JM, Diskin SJ, Sacan A. ImmunoTar-integrative prioritization of cell surface targets for cancer immunotherapy. Bioinformatics 2025; 41:btaf060. [PMID: 39932005 PMCID: PMC11904301 DOI: 10.1093/bioinformatics/btaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 02/19/2025] Open
Abstract
MOTIVATION Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of targeted and less toxic immunotherapies, such as chimeric antigen receptor (CAR)-T cells and antibody-drug conjugates (ADCs). These therapies, effective in treating both pediatric and adult patients with solid and hematological malignancies, rely on the identification of cancer-specific surface protein targets. While technologies like RNA sequencing and proteomics exist to survey these targets, identifying optimal targets for immunotherapies remains a challenge in the field. RESULTS To address this challenge, we developed ImmunoTar, a novel computational tool designed to systematically prioritize candidate immunotherapeutic targets. ImmunoTar integrates user-provided RNA-sequencing or proteomics data with quantitative features from multiple public databases, selected based on predefined criteria, to generate a score representing the gene's suitability as an immunotherapeutic target. We validated ImmunoTar using three distinct cancer datasets, demonstrating its effectiveness in identifying both known and novel targets across various cancer phenotypes. By compiling diverse data into a unified platform, ImmunoTar enables comprehensive evaluation of surface proteins, streamlining target identification and empowering researchers to efficiently allocate resources, thereby accelerating the development of effective cancer immunotherapies. AVAILABILITY AND IMPLEMENTATION Code and data to run and test ImmunoTar are available at https://github.com/sacanlab/immunotar.
Collapse
Affiliation(s)
- Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| | - Brian Mooney
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
| | - Karina L Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Amber K Hamilton
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Gregg B Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
2
|
Zhang T, Wang YF, Montoya A, Patrascan I, Nebioglu N, Pallikonda HA, Georgieva R, King JWD, Kramer HB, Shliaha PV, Rueda DS, Merkenschlager M. Conserved helical motifs in the IKZF1 disordered region mediate NuRD interaction and transcriptional repression. Blood 2025; 145:422-437. [PMID: 39437550 PMCID: PMC7617475 DOI: 10.1182/blood.2024024787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The transcription factor (TF) Ikaros zinc finger 1 (IKZF1) is essential for B-cell development, and recurrently mutated in human B-cell acute lymphoblastic leukemia (B-ALL). IKZF1 has been ascribed both activating and repressive functions via interactions with coactivator and corepressor complexes, but the relative abundance of IKZF1-associated coregulators and their contribution to IKZF1-mediated gene regulation are not well understood. To address this, we performed an unbiased identification of IKZF1-interacting proteins in pre-B cells and found that IKZF1 interacts overwhelmingly with corepressors and heterochromatin-associated proteins. Time-resolved analysis of transcription and chromatin state identified transcriptional repression as the immediate response to IKZF1 induction. Transcriptional repression preceded transcriptional activation by several hours, manifesting as a decrease in the fraction of transcriptional bursts at the single-molecule level. Repression was accompanied by a rapid loss of chromatin accessibility and reduced levels of histone H3 lysine 27 acetylation (H3K27ac), particularly at enhancers. We identified highly conserved helical motifs within the intrinsically disordered region of IKZF1 that mediate its association with the nucleosome remodeling and deacetylase (NuRD) corepressor complex through critical "KRK" residues that bind the NuRD subunit retinoblastoma binding protein 4 (RBBP4), a mechanism shared with the TFs FOG1, BCL11A, and SALL4. Functional characterization reveals that this region is necessary for the efficient silencing of target genes and antiproliferative functions of IKZF1 in B-ALL.
Collapse
Affiliation(s)
- Tianyi Zhang
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Alex Montoya
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Ilinca Patrascan
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Nehir Nebioglu
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Husayn A. Pallikonda
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Radina Georgieva
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - James WD King
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Holger B. Kramer
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - Pavel V. Shliaha
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| | - David S. Rueda
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
- Section of Virology, Department of Infectious Disease, Imperial College London, Du Cane Road, LondonW12 0HS
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane RoadW12 0HS
| |
Collapse
|
3
|
Naranjo NM, Kennedy A, Testa A, Verrillo CE, Altieri AD, Kean R, Hooper DC, Yu J, Zhao J, Abinader O, Pickles MW, Hawkins A, Kelly WK, Mitra R, Languino LR. Neuroendocrine gene subsets are uniquely dysregulated in prostate adenocarcinoma. Cancer Biol Ther 2024; 25:2364433. [PMID: 38926911 PMCID: PMC11212568 DOI: 10.1080/15384047.2024.2364433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer has heterogeneous growth patterns, and its prognosis is the poorest when it progresses to a neuroendocrine phenotype. Using bioinformatic analysis, we evaluated RNA expression of neuroendocrine genes in a panel of five different cancer types: prostate adenocarcinoma, breast cancer, kidney chromophobe, kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma. Our results show that specific neuroendocrine genes are significantly dysregulated in these tumors, suggesting that they play an active role in cancer progression. Among others, synaptophysin (SYP), a conventional neuroendocrine marker, is upregulated in prostate adenocarcinoma (PRAD) and breast cancer (BRCA). Our analysis shows that SYP is enriched in small extracellular vesicles (sEVs) derived from plasma of PRAD patients, but it is absent in sEVs derived from plasma of healthy donors. Similarly, classical sEV markers are enriched in sEVs derived from plasma of prostate cancer patients, but weakly detectable in sEVs derived from plasma of healthy donors. Overall, our results pave the way to explore new strategies to diagnose these diseases based on the neuroendocrine gene expression in patient tumors or plasma sEVs.
Collapse
Affiliation(s)
- Nicole M. Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anne Kennedy
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cecilia E. Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adrian D. Altieri
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rhonda Kean
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D. Craig Hooper
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jindan Yu
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Zhao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Oliver Abinader
- Division of Biostatistics and Bioinformatics, Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maxwell W. Pickles
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Hawkins
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - William K. Kelly
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ramkrishna Mitra
- Division of Biostatistics and Bioinformatics, Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia R. Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Wang L, Yi X, Zhou Y, Gongga L, Yu S, Guo X, Pan X, Su X, Wang P. Hypoxia adaptation mechanism in rats' peripheral auditory system in high altitude migration: a time series transcriptome analysis. Sci Rep 2024; 14:26909. [PMID: 39505982 PMCID: PMC11541580 DOI: 10.1038/s41598-024-78169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
High altitude is characterized by low oxygen, low pressure, and high radiation. When migrates from low to high altitudes, the body's tissues and organs experience hypoxic stress and will present acoustic adaptation as the protective response. However, the mechanisms of acoustic adaptation at high altitudes remain unclear. In this study, cochlear tissues from Wistar rats were collected at 15, 30, 60, 120, and 180 days after high-altitude migration. Transcriptome sequencing was conducted and DESeq algorithm revealed expression patterns of Differentially Expressed Genes(DEGs) after high altitude migration. Day 60 is a critical stage for cochlear tissue "damage" and "repair" in high-altitude conditions. Transmission Electron Microscopy (TEM) observations of structures also support the findings. A time-series gene co-expression network algorithm was used to investigate gene regulatory patterns and key genes after migration. Immunofluorescence, immunohistochemistry, and qPCR were per-formed for key gene validation and localization. At Day 60, the peak DEG count occurs in rats migrating to high altitude, aligning with the critical phase for cochlear tissue damage and repair at high altitudes. Repair hinges on synaptic plasticity and myelination-linked processes, influencing modules M4 to M6. Module M4's activation gradually diminishes from its peak. However, the 'damage' effect is orchestrated by inflammation-related processes in modules M3 to M5, with module M3's activation also waning. Key gene module M4, pivotal for repair during this pivotal phase, encompasses Sptbn5, Cldn1, Gfra2, and Lims2 as its core genes. Immunohistochemistry reveals Sptbn5's presence in cochlear neurons, hair cells, Schwann cells and stria vascularis tissue. Cldn1 and Gfra2 predominantly localize within the cochlear neuron region. These results may suggest new directions for future research on acoustic acclimatization to high altitude.
Collapse
Affiliation(s)
- Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Xingcheng Yi
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yulai Zhou
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China
| | - Lanzi Gongga
- Tibet University Medical College, Lhasa, Tibet, 850000, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoqiang Pan
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, China
| | - Xiaoyun Su
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, 130021, China.
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Pattarachotanant N, Sukjamnong S, Rangsinth P, Chaikhong K, Sillapachaiyaporn C, Leung GPH, Hu VW, Sarachana T, Chuchawankul S, Tencomnao T, Prasansuklab A. Aquilaria crassna Extract Exerts Neuroprotective Effect against Benzo[a]pyrene-Induced Toxicity in Human SH-SY5Y Cells: An RNA-Seq-Based Transcriptome Analysis. Nutrients 2024; 16:2727. [PMID: 39203863 PMCID: PMC11357018 DOI: 10.3390/nu16162727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Benzo[a]pyrene (B[a]P) is known to inhibit neurodifferentiation and induce neurodegeneration. Agarwood or Aquilaria crassna (AC), a plant with health-promoting properties, may counteract the neurotoxic effects of B[a]P by promoting neuronal growth and survival. This study investigated the protective effect of AC leaf ethanolic extract (ACEE) on the B[a]P-induced impairment of neuronal differentiation. A transcriptomic analysis identified the canonical pathway, the biological network, and the differentially expressed genes (DEGs) that are changed in response to neuronal differentiation and neurogenesis. Several genes, including CXCR4, ENPP2, GAP43, GFRA2, NELL2, NFASC, NSG2, NGB, BASP1, and NEUROD1, in B[a]P-treated SH-SY5Y cells were up-regulated after treatment with ACEE. Notably, a Western blot analysis further confirmed that ACEE increased the protein levels of GAP43 and neuroglobin. B[a]P treatment led to decreased phosphorylation of Akt and increased phosphorylation of ERK in SH-SY5Y cells; however, ACEE was able to reverse these effects. Clionasterol and lupenone were identified in ACEE. Molecular docking showed that these two phytochemicals had significant interactions with CXCR4, GDNF family receptor alpha (GFRA), and retinoid X receptors (RXRs). In conclusion, ACEE may be a potential alternative medicine for the prevention of impaired neuronal differentiation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suporn Sukjamnong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kamonwan Chaikhong
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Tewarit Sarachana
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Ma J, Shi Y, Lu Q, Huang D. Inflammation-Related Gene ADH1A Regulates the Polarization of Macrophage M1 and Influences the Malignant Progression of Gastric Cancer. J Inflamm Res 2024; 17:4647-4665. [PMID: 39045532 PMCID: PMC11264289 DOI: 10.2147/jir.s452670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/15/2024] [Indexed: 07/25/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor originating from the gastric mucosa epithelium, and there is a low survival rate of GC patients after treatment, with a poor prognostic outcome. The inflammatory response within the tumor microenvironment plays an important role in GC progression. Methods We downloaded GC-related datasets and inflammation-related genes from GEO, TCGA and MSigDB databases, performed differential analysis, protein-protein interaction analysis, immunoinfiltration analysis and Lasso analysis to screen inflammation-related hub genes affecting GC progression, and carried out qRT-PCR for validation. In order to explore the role of ADH1A, we constructed overexpressed plasmids, treated GC cells with cGMP/PKG pathway agonist 8-Br-cGMP, and tested cell functions with CCK8, EdU, Transwell, scratch assay and other experiments. On this basis, GC cells were co-cultured with monocyte THP-1 to explore the effect of ADH1A on the polarization of macrophages. Results ADH1A was significantly decreased in GC cells, and its expression trend was consistent with the results of bioinformatics analysis. Therefore, we chose ADH1A for subsequent functional validation. Overexpression of ADH1A in GC cells revealed ADH1A's role in inhibiting the activity, proliferation, migration and invasion of GC cells, promoting apoptosis and secretion of IL-6, IFN-γ, CCL5 and CSF2, and facilitating the transformation of macrophages to a pro-inflammatory M1 phenotype. ssGSEA results demonstrated the potential involvement of ADH1A in the cGMP/PKG signaling pathway, and significant changes in the expression of proteins related to the cGMP/PKG signaling pathway. The use of the cGMP/PKG signaling pathway agonist 8-Br-cGMP in ADH1A-overexpressing GC cells substantiated ADH1A's capacity to inhibit the cGMP/PKG signaling pathway, thereby suppressing the malignant progression of GC and promoting the transformation of macrophages to a pro-inflammatory M1 phenotype. Conclusion ADH1A is able to influence the malignant progression of GC and the transformation of macrophages to the pro-inflammatory M1 phenotype through the cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Jun Ma
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongkang Shi
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Qiliang Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Winnicka D, Skowera P, Stelmach M, Styka B, Lejman M. Application of the FISH method and high-density SNP arrays to assess genetic changes in neuroblastoma-research by one institute. Acta Biochim Pol 2024; 71:12821. [PMID: 39049899 PMCID: PMC11267511 DOI: 10.3389/abp.2024.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Amplification of the MYCN gene has been observed in approximately 20%-30% of tumors. It is strongly correlated with advanced-stage disease, rapid tumor progression, resistance to chemotherapy and poor outcomes independent of patient age and stage of advanced disease. MYCN amplification identifies high-risk patients. To assess neuroblastoma tumors with MYCN amplification we used paraffin-embedded tissue sections in 57 patients and intraoperative tumor imprints in 10 patients by fluorescence in situ hybridization (FISH). Positive results for MYCN amplification have been observed in twelve patients' paraffin-embedded tissue sections and in three patients' intraoperative tumor imprints, which represents 22.4% of all patients tested in the analysis. Fluorescence in situ hybridization is a highly sensitive and useful technique for detecting MYCN amplification on paraffin-embedded tissue sections of neuroblastoma tumors and intraoperative tumor imprints thus facilitating therapeutic decisions based on the presence or absence of this important biologic marker. The presence of structural changes, regardless of MYCN gene amplification status, influences the clinical behavior of neuroblastoma. High-Density SNP Arrays have emerged as the perfect tools for detecting these changes due to their exceptional accuracy, sensitivity and ability to analyze copy number and allele information. Consequently, they are proven to be highly valuable in the genomic diagnosis of immature neuroectodermal tumors.
Collapse
Affiliation(s)
| | | | - Magdalena Stelmach
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
8
|
Shraim R, Mooney B, Conkrite KL, Weiner AK, Morin GB, Sorensen PH, Maris JM, Diskin SJ, Sacan A. IMMUNOTAR - Integrative prioritization of cell surface targets for cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597422. [PMID: 38895237 PMCID: PMC11185603 DOI: 10.1101/2024.06.04.597422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of less toxic immunotherapies; however, identifying targets for immunotherapies remains a challenge in the field. To address this challenge, we developed IMMUNOTAR, a computational tool that systematically prioritizes and identifies candidate immunotherapeutic targets. IMMUNOTAR integrates user-provided RNA-sequencing or proteomics data with quantitative features extracted from publicly available databases based on predefined optimal immunotherapeutic target criteria and quantitatively prioritizes potential surface protein targets. We demonstrate the utility and flexibility of IMMUNOTAR using three distinct datasets, validating its effectiveness in identifying both known and new potential immunotherapeutic targets within the analyzed cancer phenotypes. Overall, IMMUNOTAR enables the compilation of data from multiple sources into a unified platform, allowing users to simultaneously evaluate surface proteins across diverse criteria. By streamlining target identification, IMMUNOTAR empowers researchers to efficiently allocate resources and accelerate immunotherapy development.
Collapse
Affiliation(s)
- Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| | - Brian Mooney
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Karina L. Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Amber K. Weiner
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Tang X, Chen C, Yan S, Yang A, Deng Y, Chen B, Gu J. Single-Nucleus RNA-Seq Reveals Spermatogonial Stem Cell Developmental Pattern in Shaziling Pigs. Biomolecules 2024; 14:607. [PMID: 38927011 PMCID: PMC11202124 DOI: 10.3390/biom14060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs are strictly regulated by the SSC niche. Therefore, understanding the developmental pattern of SSCs is crucial for spermatogenesis. The Shaziling pig is a medium-sized indigenous pig breed originating from central China. It is renowned for its superior meat quality and early male sexual maturity. The spermatogenic ability of the boars is of great economic importance to the pig industry. To investigate testicular development, particularly the pattern of SSC development in Shaziling pigs, we used single-cell transcriptomics to identify gene expression patterns in 82,027 individual cells from nine Shaziling pig testes at three key postnatal developmental stages. We generated an unbiased cell developmental atlas of Shaziling pig testicular tissues. We elucidated the complex processes involved in the development of SSCs within their niche in the Shaziling pig. Specifically, we identified potential marker genes and cellular signaling pathways that regulate SSC self-renewal and maintenance. Additionally, we proposed potential novel marker genes for SSCs that could be used for SSC isolation and sorting in Shaziling pigs. Furthermore, by immunofluorescence staining of testicular tissues of different developmental ages using marker proteins (UCHL1 and KIT), the developmental pattern of the spermatogonia of Shaziling pigs was intensively studied. Our research enhances the comprehension of the development of SSCs and provides a valuable reference for breeding Shaziling pigs.
Collapse
Affiliation(s)
- Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Saina Yan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Anqi Yang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yanhong Deng
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| |
Collapse
|
10
|
Liu M, Lu J, Yu C, Zhao J, Wang L, Hu Y, Chen L, Han R, Liu Y, Sun M, Wei G, Wu S. Differentiation Potential of Hypodifferentiated Subsets of Nephrogenic Rests and Its Relationship to Prognosis in Wilms Tumor. Fetal Pediatr Pathol 2024; 43:123-139. [PMID: 38217324 DOI: 10.1080/15513815.2024.2303081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Background Wilms tumor (WT) is highly curable, although anaplastic histology or relapse imparts a worse prognosis. Nephrogenic rests (NR) associated with a high risk of developing WT are abnormally retained embryonic kidney precursor cells. Methods After pseudo-time analysis using single-cell RNA sequencing (scRNA-seq) data, we generated and validated a WT differentiation-related gene (WTDRG) signature to predict overall survival (OS) in children with a poor OS. Results A differentiation trajectory from NR to WT was identified and showed that hypodifferentiated subsets of NR could differentiate into WT. Classification of WT children with anaplastic histology or relapse based on the expression patterns of WTDRGs suggested that patients with relatively high levels of hypodifferentiated NR presented a poorer prognosis. A WTDRG-based risk model and a clinically applicable nomogram was developed. Conclusions These findings may inform oncogenesis of WT and interventions directed toward poor prognosis in WT children of anaplastic histology or relapse.
Collapse
Affiliation(s)
- Maolin Liu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiandong Lu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chengjun Yu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhao
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Hu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Long Chen
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Han
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Sun
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guanghui Wei
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Department of Urology, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
12
|
Nguyen TM, Ngoc DTM, Choi JH, Lee CH. Unveiling the Neural Environment in Cancer: Exploring the Role of Neural Circuit Players and Potential Therapeutic Strategies. Cells 2023; 12:1996. [PMID: 37566075 PMCID: PMC10417274 DOI: 10.3390/cells12151996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.
Collapse
Affiliation(s)
- Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Dinh Thi Minh Ngoc
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (T.M.N.); (D.T.M.N.)
| |
Collapse
|
13
|
Yang S, Li J, Cai X. The high expression of glial cell line-derived neurotrophic factor receptor alpha Ⅱ ( GFRA2) as a predictor of poor prognosis in gastric cancer patients: A survival and regression analysis approach. Heliyon 2023; 9:e18291. [PMID: 37519699 PMCID: PMC10372394 DOI: 10.1016/j.heliyon.2023.e18291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gastric cancer has high mortality rates worldwide. Therefore, there is a need to identify prognostic biomarkers. This study evaluated the association between GFRA2 expression levels with clinicopathological features and prognosis in gastric cancer using data extracted from The Cancer Genome Atlas (TCGA) database and a series of algorithms. Survival analysis was performed using the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were used to analyze the association between different clinical features and survival. Single-sample gene set enrichment analysis (GSEA) was used to examine the correlation between GFRA2 expression and immune infiltration. The results showed that the expression of GFRA2 in tumor samples was significantly lower than that in normal samples. High expression of GFRA2 was significantly associated with histological type, histologic grade, and worse overall survival, disease-specific survival, and progression-free survival. The univariate Cox analysis showed that the expression of GFRA2 was significantly correlated with T stage, N stage, M stage, and age. The multivariate analysis identified GFRA2 expression as an independent prognostic factor for gastric cancer. GSEA showed that GFRA2 might regulate the calcium signaling pathway, focus adhesion, olfactory conduction, the extracellular matrix glycoproteins, and response to the Leishmania parasitic infection. GFRA2 showed a significant moderate positive correlation with the infiltration of mast cells. In summary, a high expression of GFRA2 may contribute to poor survival in gastric cancer patients and could be used as a potential prognostic biomarker.
Collapse
Affiliation(s)
- Shaoyu Yang
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
- Nanchang Institute of Technology, Nanchang, 330044, China
| | - Juan Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohui Cai
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
14
|
Lai F, Dai S, Zhao Y, Sun Y. Combination of PDGF-BB and adipose-derived stem cells accelerated wound healing through modulating PTEN/AKT pathway. Injury 2023:S0020-1383(23)00123-7. [PMID: 37028952 DOI: 10.1016/j.injury.2023.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 04/09/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been widely proven to facilitate wound healing. Our study aimed to estimate the influence of combined ADSCs and platelet-derived growth factor-BB (PDGF-BB) on wound healing. We utilized 4 healthy SD rats to isolate ADSCs. Platelet-rich plasma (PRP) was acquired utilizing a two-step centrifugation technology. The role of PRP, PDGF-BB, and PDGF-BB combined with a PI3k inhibitor LY294002 on the viability, migration, and PTEN/AKT pathway in ADSCs were examined utilizing CCK-8, Transwell, and western blot assays. Then, we constructed an open trauma model in SD rats. Effects of ADSCs treated with PDGF-BB on pathological changes, CD31, and PTEN/AKT pathway of wound closure were assessed by hematoxylin & eosin (H&E) staining, Masson staining, immunohistochemical, and western blot assays, respectively. PRP and PDGF-BB intensified the viability and migration of ADSCs by modulating the PTEN/AKT pathway. Interestingly, LY294002 reversed the role of PDGF-BB on ADSCs. In vivo experiments, combined intervention with ADSCs plus PDGF-BB/PRP facilitated wound closure and ameliorated histological injury. Moreover, combined intervention with ADSCs and PDGF-BB attenuated the PTEN level and elevated the CD31 level as well as the ratio of p-AKT/AKT in the skin tissues. A combination of ADSCs and PDGF-BB facilitated wound healing might associate with the regulation of the PTEN/AKT pathway.
Collapse
Affiliation(s)
- Fangyuan Lai
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Zhang YG, Jin MZ, Zhu XR, Jin WL. Reclassification of Hepatocellular Cancer With Neural-Related Genes. Front Oncol 2022; 12:877657. [PMID: 35646712 PMCID: PMC9136183 DOI: 10.3389/fonc.2022.877657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neural infiltration is a critical component of the tumor microenvironment; however, owing to technological limitations, its role in hepatocellular cancer remains obscure. Herein, we obtained the RNA-sequencing data of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas database and performed a series of bioinformatic analyses, including prognosis analysis, pathway enrichment, and immune analysis, using the R software packages, Consensus Cluster Plus and Limma. LIHC could be divided into two subtypes according to the expression of neural-related genes (NRGs); moreover, there are statistic differences in the prognosis, stage, and immune regulation between the two subtypes. The prognostic model showed that high expression of NRGs correlated with a poor survival prognosis (P<0.05). Further, CHRNE, GFRA2, GFRA3, and GRIN2D was significantly correlated with LIHC clinical prognosis, clinical stage, immune infiltration, immune response, and vital signaling pathways. There was nerve-cancer crosstalk in LIHC. A reclassification of LIHC based on NRG expression may prove beneficial to clinical practice. CHRNE, GFRA2, GFRA3, and GRIN2D may serve as potential biomarker for liver cancer prognosis or immune response.
Collapse
Affiliation(s)
- Yi-Gan Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ming-Zhu Jin
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ran Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Wei-Lin Jin, ;
| |
Collapse
|
16
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
17
|
Jiang CY, Xu X, Jian BL, Zhang X, Yue ZX, Guo W, Ma XL. Chromosome 10 abnormality predicts prognosis of neuroblastoma patients with bone marrow metastasis. Ital J Pediatr 2021; 47:134. [PMID: 34108028 PMCID: PMC8190999 DOI: 10.1186/s13052-021-01085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in children. It is known for high heterogeneity and concealed onset. In recent years, the mechanism of its occurrence and development has been gradually revealed. The purpose of this study is to summarize the clinical characteristics of children with NB and abnormal chromosome 10, and to investigate the relationship between the number and structure of chromosome 10 abnormalities and NB prognosis. METHODS Chromosome G-banding was used at the time of diagnosis to evaluate the genetics of chromosomes in patients with NB and track their clinical characteristics and prognosis. All participants were diagnosed with NB in the Medical Oncology Department of the Beijing Children's Hospital from May 2015 to December 2018 and were followed up with for at least 1 year. RESULTS Of all 150 patients with bone marrow metastases, 42 were clearly diagnosed with chromosomal abnormalities. Thirteen patients showed abnormalities in chromosome 10, and chromosome 10 was the most commonly missing chromosome. These 13 patients had higher LDH and lower OS and EFS than children with chromosomal abnormalities who did not have an abnormality in chromosome 10. Eight patients had both MYCN amplification and 1p36 deletion. Two patients had optic nerve damage and no vision, and one patient had left supraorbital metastases 5 months after treatment. CONCLUSIONS The results indicated that chromosome 10 might be a new prognostic marker for NB. MYCN amplification and 1p36 deletion may be related to chromosome 10 abnormalities in NB. Additionally, NB patients with abnormal chromosome 10 were prone to orbital metastases.
Collapse
Affiliation(s)
- Chi-Yi Jiang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Xiao Xu
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Bing-Lin Jian
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Xue Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Zhi-Xia Yue
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China
| | - Wei Guo
- MILS (Beijing) Medical Labortory, Beijing, China
| | - Xiao-Li Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing Key Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China.
| |
Collapse
|
18
|
Chen W, Hao X, Yang B, Zhang Y, Sun L, Hua Y, Yang L, Yu J, Zhao J, Hou L, Lu H. MYCN‑amplified neuroblastoma cell‑derived exosomal miR‑17‑5p promotes proliferation and migration of non‑MYCN amplified cells. Mol Med Rep 2021; 23:245. [PMID: 33537818 PMCID: PMC7893779 DOI: 10.3892/mmr.2021.11884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/07/2021] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is considered a highly prevalent extracranial solid tumor in young children, and the upregulation of N‑myc proto‑oncogene (MYCN) is closely associated with the late stages of NB and poor prognostic outcomes. The current study was designed to evaluate the effects of exosomal microRNA (miRNA/miR)‑17‑5p from MYCN‑amplified NB cells on the proliferative and migratory potential of non‑MYCN amplified NB cells. miR‑17‑5p was found to activate the PI3K/Akt signaling cascade by targeting PTEN, and the overexpression of miR‑17‑5p was found to promote cellular migration and proliferation in vitro. Further experimentation revealed that the elevated expression of miR‑17‑5p in SK‑N‑BE(2) cell‑derived exosomes significantly promoted the proliferative and migratory capacities of SH‑SY5Y cells by inhibiting PTEN. Collectively, these findings demonstrated that miR‑17‑5p derived from MYCN‑amplified NB cell exosomes promoted the migration and proliferation of non‑MYCN amplified cells, highlighting an exosome‑associated malignant role for miR‑17‑5p.
Collapse
Affiliation(s)
- Weiming Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Binyi Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuezhen Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lingyun Sun
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanan Hua
- Department of Biochemistry and Molecular Biology of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Li Yang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jiabin Yu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Zhao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongting Lu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Pediatric Surgery, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
19
|
Liu M, Li F, Liu B, Jian Y, Zhang D, Zhou H, Wang Y, Xu Z. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of esophageal squamous cell carcinoma. BMC Med Genomics 2021; 14:75. [PMID: 33691689 PMCID: PMC7944628 DOI: 10.1186/s12920-021-00928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/28/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND As a complex system participating in tumor development and progression, the tumor microenvironment was poorly understood in esophageal cancer especially squamous cell carcinoma (ESCC). METHODS ESTIMATE algorithm is used to investigate tumor-infiltrating immune cells and prognostic genes which were associated with the tumor microenvironment in ESCC. RESULTS Based on the immune and stromal scores, ESCC samples were divided into high and low score groups and 299 overlapping differentially expressed genes were identified. Functional enrichment analysis showed that these genes were mainly involved in muscle-related function. Prognostic genes including COL9A3, GFRA2, and VSIG4 were used to establish a risk prediction model using Cox regression analyses. Then multivariate analysis showed that COL9A3 was an independent discriminator of a better prognosis. Kaplan-Meier survival analysis showed that the expression of COL9A3 was significantly correlated with the overall survival of ESCC patients. The area under the curve for the risk model in predicting 1- and 3- year survival rates were 0.660 and 0.942, respectively. The risk score was negatively correlated with plasma cells, while positively correlated with the proportions of activated CD4 memory T cells, M1 Macrophages and M2 Macrophages (p < 0.001 for each comparison). Gene set enrichment analysis suggested that both immune response and immune system process gene sets were significantly enriched in high-risk group. CONCLUSIONS Our study provided a comprehensive understanding of the TME in ESCC patients. The establishment of the risk model is valuable for the early identification of high-risk patients to facilitate individualized treatment and improve the possibility of immunotherapy response.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|