1
|
Huo Z, Zhang S, Su G, Cai Y, Chen R, Jiang M, Yang D, Zhang S, Xiong Y, Zhang X. Immunohistochemical Profiling of Histone Modification Biomarkers Identifies Subtype-Specific Epigenetic Signatures and Potential Drug Targets in Breast Cancer. Int J Mol Sci 2025; 26:770. [PMID: 39859484 PMCID: PMC11765579 DOI: 10.3390/ijms26020770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models. Transcriptomic and cell growth analyses were conducted to evaluate the effects of the small-molecule G9a inhibitor in diverse BC models. Key histone biomarkers, including H3K9me2, H3K36me2, and H3K79me, were differentially expressed across BC subtypes. H3K9me2 emerged as an independent predictor for distinguishing TNBC from other less-aggressive BC subtypes, with elevated expression correlating with higher tumor grade and stage. G9a inhibition impaired cell proliferation and modulated epithelial-mesenchymal transition pathways, with the strongest impact in basal-like TNBC. The disruption of the oncogene and tumor suppressor regulation (e.g., TP53, SATB1) was observed in TNBC. This study highlights G9a's context-dependent roles in BC, supporting its potential as a therapeutic target. The findings provide a foundation for subtype-specific epigenetic therapies to improve outcomes in aggressive BC subtypes.
Collapse
Affiliation(s)
- Zirong Huo
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Sitong Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Guodong Su
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Yu Cai
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Rui Chen
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Mengju Jiang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Dongyan Yang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Shengchao Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Yuyan Xiong
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
| | - Xi Zhang
- School of Life Science, Northwest University, Xi’an 710069, China; (Z.H.); (S.Z.); (G.S.); (Y.C.); (R.C.); (M.J.); (D.Y.); (S.Z.); (Y.X.)
- School of Professional Studies, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
2
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Ryu TY, Tae IH, Han TS, Lee J, Kim K, Kang Y, Kim S, Lee HJ, Jung CR, Lim JH, Kim DS, Son MY, Cho HS. Epigenetic alterations of TP53INP1 by EHMT2 regulate the cell cycle in gastric cancer. Exp Hematol Oncol 2024; 13:86. [PMID: 39160629 PMCID: PMC11334499 DOI: 10.1186/s40164-024-00554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a type of cancer with high incidence and mortality rates. Although various chemical interventions are being developed to treat gastric cancer, there is a constant demand for research into new GC treatment targets and modes of action (MOAs) because of the low effectiveness and side effects of current treatments. METHODS Using the TCGA data portal, we identified EHMT2 overexpression in GC samples. Using RNA-seq and EHMT2-specific siRNA, we investigated the role of EHMT2 in GC cell proliferation and validated its function with two EHMT2-specific inhibitors. Through the application of 3D spheroid culture, patient-derived gastric cancer organoids (PDOs), and an in vivo model, we confirmed the role of EHMT2 in GC cell proliferation. RESULTS In this study, we found that EHMT2, a histone 3 lysine 9 (H3K9) methyltransferase, is significantly overexpressed in GC patients compared with healthy individuals. Knockdown of EHMT2 with siRNA induced G1 cell cycle arrest and attenuated GC cell proliferation. Furthermore, we confirmed that TP53INP1 induction by EHMT2 knockdown induced cell cycle arrest and inhibited GC cell proliferation. Moreover, specific EHMT2 inhibitors, BIX01294 and UNC0638, induced cell cycle arrest in GC cell lines through TP53INP1 upregulation. The efficacy of EHMT2 inhibition was further confirmed in a 3D spheroid culture system, PDOs, and a xenograft model. CONCLUSIONS Our findings suggest that EHMT2 is an attractive therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - In Hwan Tae
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
- Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yunsang Kang
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Solbi Kim
- Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Lee
- Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Tae IH, Ryu TY, Kang Y, Lee J, Kim K, Lee JM, Kim HW, Ko JH, Kim DS, Son MY, Cho HS. Negative regulation of SH2B3 by SMYD5 controls epithelial-mesenchymal transition in lung cancer. Mol Cells 2024; 47:100067. [PMID: 38723947 PMCID: PMC11143772 DOI: 10.1016/j.mocell.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The main cause of death in lung cancer patients is metastasis. Thus, efforts to suppress micrometastasis or distant metastasis in lung cancer, identify therapeutic targets and develop related drugs are ongoing. In this study, we identified SET and MYND domain-containing protein 5 (SMYD5) as a novel metastasis regulator in lung cancer and found that SMYD5 was overexpressed in lung cancer based on both RNA-sequencing analysis results derived from the TCGA portal and immunohistochemical analysis results; knockdown of SMYD5 inhibited cell migration and invasion by changing epithelial-mesenchymal transition markers and MMP9 expression in NCI-H1299 and H1703 cell lines. Additionally, SMYD5 knockdown increased Src homology 2-b3 expression by decreasing the level of H4K20 trimethylation. Furthermore, in an in vitro epithelial-mesenchymal transition system using TGF-β treatment, SMYD5 knockdown resulted in reduced cell migration and invasion in the highly invasive NCI-H1299 and H1703 cell lines. Based on these findings, we propose that SMYD5 could serve as a potential therapeutic target for lung cancer treatment and that cotreatment with an SMYD5 inhibitor and chemotherapy may enhance the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- In Hwan Tae
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yunsang Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jinkwon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kwanho Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Min Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hee-Won Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung Heon Ko
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Functional Genomics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Kim K, Ryu TY, Jung E, Han TS, Lee J, Kim SK, Roh YN, Lee MS, Jung CR, Lim JH, Hamamoto R, Lee HW, Hur K, Son MY, Kim DS, Cho HS. Epigenetic regulation of SMAD3 by histone methyltransferase SMYD2 promotes lung cancer metastasis. Exp Mol Med 2023:10.1038/s12276-023-00987-1. [PMID: 37121971 DOI: 10.1038/s12276-023-00987-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.
Collapse
Affiliation(s)
- Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eunsun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yu Na Roh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, Japan
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Şahin S, Can NN. A Schiff Base with Polymorphic Structure ( Z′ = 2): Investigations with Computational Techniques and in Silico Predictions. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2161585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Songül Şahin
- Department of Chemistry, Faculty of Art and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Nisa Nur Can
- Department of Neuroscience, Institute of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
7
|
Ryu TY, Kim K, Han TS, Lee MO, Lee J, Choi J, Jung KB, Jeong EJ, An DM, Jung CR, Lim JH, Jung J, Park K, Lee MS, Kim MY, Oh SJ, Hur K, Hamamoto R, Park DS, Kim DS, Son MY, Cho HS. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. THE ISME JOURNAL 2022; 16:1205-1221. [PMID: 34972816 PMCID: PMC9038766 DOI: 10.1038/s41396-021-01119-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.
Collapse
Affiliation(s)
- Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mi-Ok Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinhyeon Choi
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Eun-Jeong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Da Mi An
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell biology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, 104-0045, Japan
| | - Doo-Sang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Lee J, Kim K, Ryu TY, Jung CR, Lee MS, Lim JH, Park K, Kim DS, Son MY, Hamamoto R, Cho HS. EHMT1 knockdown induces apoptosis and cell cycle arrest in lung cancer cells by increasing CDKN1A expression. Mol Oncol 2021; 15:2989-3002. [PMID: 34214254 PMCID: PMC8564652 DOI: 10.1002/1878-0261.13050] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non‐neoplastic lung tissues. Through gene ontology analysis of RNA‐seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E‐cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, Japan
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|