1
|
Zhu W, Wei Z, Ma Y, Ren M, Fu X, Li M, Zhang C, Wang J, Guo S. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H 2 Generation from Direct Seawater Electrolysis through Decoupling Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202319798. [PMID: 38353370 DOI: 10.1002/anie.202319798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Direct saline (seawater) electrolysis is a well-recognized system to generate active chlorine species for the chloride-mediated electrosynthesis, environmental remediation and sterilization over the past few decades. However, the large energy consumption originated from the high cell voltage of traditional direct saline electrolysis system, greatly restricts its practical application. Here, we report an acid-saline hybrid electrolysis system for energy-saving co-electrosynthesis of active chlorine and H2. We demonstrate that this system just requires a low cell voltage of 1.59 V to attain 10 mA cm-2 with a large energy consumption decrease of 27.7 % compared to direct saline electrolysis system (2.20 V). We further demonstrate that such acid-saline hybrid electrolysis system could be extended to realize energy-saving and sustainable seawater electrolysis. The acidified seawater in this system can absolutely avoid the formation of Ca/Mg-based sediments that always form in the seawater electrolysis system. We also prove that this system in the half-flow mode can realize real-time preparation of active chlorine used for sterilization and pea sprout production.
Collapse
Affiliation(s)
- Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziyi Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiyue Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meirong Ren
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Droevendaalsesteeg 2, 6708, PB Wageningen, The Netherlands
| | - Xue Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaojun Guo
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Zayed N, Munjaković H, Aktan MK, Simoens K, Bernaerts K, Boon N, Braem A, Pamuk F, Saghi M, Van Holm W, Fidler A, Gašperšič R, Teughels W. Electrolyzed Saline Targets Biofilm Periodontal Pathogens In Vitro. J Dent Res 2024; 103:243-252. [PMID: 38185942 DOI: 10.1177/00220345231216660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Preventing the development and recurrence of periodontal diseases often includes antimicrobial mouthrinses to control the growth of the periodontal pathogens. Most antimicrobials are nonselective, targeting the symbiotic oral species as well as the dysbiosis-inducing ones. This affects the overall microbial composition and metabolic activity and consequently the host-microbe interactions, which can be detrimental (associated with inflammation) or beneficial (health-associated). Consequently, guiding the antimicrobial effect for modulating the microbial composition to a health-associated one should be considered. For such an approach, this study investigated electrolyzed saline as a novel rinse. Electrolyzed saline was prepared from sterile saline using a portable electrolysis device. Multispecies oral homeostatic and dysbiotic biofilms were grown on hydroxyapatite discs and rinsed daily with electrolyzed saline (EOS). Corresponding positive (NaOCl) and negative (phosphate-buffered saline) controls were included. After 3 rinses, biofilms were analyzed with viability quantitative polymerase chain reaction and scanning electron microscopy. Supernatants of rinsed biofilms were used for metabolic activity analysis (high-performance liquid chromatography) through measuring organic acid content. In addition, human oral keratinocytes (HOKs) were exposed to EOS to test biocompatibility (cytotoxicity and inflammation induction) and also to rinsed biofilms to assess their immunogenicity after rinsing. Rinsing the dysbiotic biofilms with EOS could reduce the counts of the pathobionts (>3 log10 Geq/mm2 reduction) and avert biofilm dysbiosis (≤1% pathobiont abundance), leading to the dominance of commensal species (≥99%), which altered both biofilm metabolism and interleukin 8 (IL-8) induction in HOKs. EOS had no harmful effects on homeostatic biofilms. The scanning electron micrographs confirmed the same. In addition, tested concentrations of EOS did not have any cytotoxic effects and did not induce IL-8 production in HOKs. EOS showed promising results for diverting dysbiosis in in vitro rinsed biofilms and controlling key periopathogens, with no toxic effects on commensal species or human cells. This novel rinsing should be considered for clinical applications.
Collapse
Affiliation(s)
- N Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - H Munjaković
- Department of Oral Medicine and Periodontology, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - M K Aktan
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Leuven, Belgium
| | - K Simoens
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - K Bernaerts
- Chemical and Biochemical Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven, Belgium
| | - N Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - A Braem
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, Leuven, Belgium
| | - F Pamuk
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - M Saghi
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - W Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Gent, Belgium
| | - A Fidler
- Department of Endodontic and Restorative Dentistry, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - R Gašperšič
- Department of Oral Medicine and Periodontology, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - W Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
3
|
Kubo M, Eda R, Maehana S, Fuketa H, Shinkai N, Kawamura N, Kitasato H, Hanaki H. Virucidal efficacy of hypochlorous acid water for aqueous phase and atomization against SARS-CoV-2. JOURNAL OF WATER AND HEALTH 2024; 22:601-611. [PMID: 38557574 DOI: 10.2166/wh.2024.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.
Collapse
Affiliation(s)
- Makoto Kubo
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan E-mail:
| | - Ryotaro Eda
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shotaro Maehana
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroshi Fuketa
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Norihiro Shinkai
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Naohisa Kawamura
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, The Omura Satoshi Memorial Institution, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
4
|
Virucidal Activities of Acidic Electrolyzed Water Solutions with Different pH Values against Multiple Strains of SARS-CoV-2. Appl Environ Microbiol 2023; 89:e0169922. [PMID: 36511659 PMCID: PMC9888296 DOI: 10.1128/aem.01699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a threat to human health. Acidic electrolyzed water (AEW) has recently been suggested to demonstrate virucidal activity. Many types of AEW with different pH values, generated by the electrolysis of different chemicals, such as sodium chloride, potassium chloride, and hydrochloric acid, are commercially available. In this study, we compared the virucidal activities of these types of AEW against SARS-CoV-2, including the ancestral strain and variant Alpha, Beta, Gamma, Delta, and Omicron strains. Virus solution (viral titer, 6.9 log10 50% tissue culture infective dose [TCID50]/mL) was mixed with AEW (free available chlorine concentration, 34.5 ppm) at mixing ratios of 1:9, 1:19, and 1:49. At mixing ratios of 1:9 and 1:19, AEW with a pH of 2.8 showed stronger virucidal activities than AEW with a pH of 4.1 to 6.5 against the SARS-CoV-2 ancestral strain in 20 s. From the strongest to the weakest virucidal activity, the AEW pH levels were as follows: pH 2.8, pH 4.1 to 5.4, pH 6.4 to 6.5. At a ratio of 1:49, the viral titers of viruses treated with all AEW solutions at pH 2.8 to 6.5 were almost below the detection limit, which was 1.25 log10 TCID50/mL. The virus inactivation efficiency of AEW was reduced in the presence of fetal bovine serum and other substances contained in the virus solution used in this study. AEW with pH values of 2.8 to 6.5 showed virucidal activity against all of the tested SARS-CoV-2 strains, including the ancestral and variant strains. These results provide useful knowledge for the effective application of AEW as a SARS-CoV-2 disinfectant. IMPORTANCE Acidic electrolyzed water (AEW) demonstrates virucidal activity against multiple viruses. Since AEW exhibits low toxicity, is inexpensive, and is environmentally friendly, it can be a useful disinfectant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the pH values of currently available AEW products vary, the impact of different pH values on SARS-CoV-2 inactivation has not previously been evaluated in detail. In this study, we compared the virucidal activities of multiple AEW solutions with different pH values, under the same experimental conditions. We found that AEW solutions with lower pH values demonstrated more potent virucidal activity. Also, we showed that the extent of virus inactivation by the AEW was based on the balance of the abundance of free available chlorine, virus, and other organic substances in the mixture. AEW exhibited rapid virucidal activity against multiple SARS-CoV-2 strains. This study demonstrated the usefulness of AEW as a disinfectant which can be applied to the inactivation of SARS-CoV-2.
Collapse
|
5
|
Boecker D, Zhang Z, Breves R, Herth F, Kramer A, Bulitta C. Antimicrobial efficacy, mode of action and in vivo use of hypochlorous acid (HOCl) for prevention or therapeutic support of infections. GMS HYGIENE AND INFECTION CONTROL 2023; 18:Doc07. [PMID: 37034111 PMCID: PMC10073986 DOI: 10.3205/dgkh000433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The objective is to provide a comprehensive overview of the rapidly developing field of the current state of research on in vivo use of hypochlorous acid (HOCl) to aid infection prevention and control, including naso-pharyngeal, alveolar, topical, and systemic HOCl applications. Also, examples are provided of dedicated applications in COVID-19. A brief background of HOCl's biological and chemical specifics and its physiological role in the innate immune system is provided to understand the effect of in vivo applications in the context of the body's own physiological defense mechanisms.
Collapse
Affiliation(s)
- Dirk Boecker
- TOTO Consulting LLC, San Jose CA, USA
- *To whom correspondence should be addressed: Dirk Boecker, TOTO Consulting LLC, San Jose CA, USA, E-mail:
| | - Zhentian Zhang
- Institute for Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Felix Herth
- Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Axel Kramer
- Institut of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Bulitta
- Institut für Medizintechnik, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Amberg-Weiden, Germany
| |
Collapse
|
6
|
Ren Z, Wang M, Heng Y, Tian M, Jiang H, Zhang J, Song Y, Zhu Y. Bactericidal effects of a low-temperature acidic electrolyzed water on quantitative suspension, packaging and contact surface in food cold chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Wang Z, Liang Z, Wei R, Wang H, Cheng F, Liu Y, Meng S. Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging. Virol Sin 2022; 37:823-830. [PMID: 36309306 PMCID: PMC9605788 DOI: 10.1016/j.virs.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhentao Liang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongguo Wei
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Hongwei Wang
- China Isotope and Radiaton Corporation, Beijing, 100089, China
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Changchun CNNC CIRC Radiation Technology Co., LTD, Changchun, 130022, China
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,Corresponding author
| |
Collapse
|
8
|
Disinfection of otorhinolaryngological endoscopes with electrolyzed acid water: A cross-sectional and multicenter study. PLoS One 2022; 17:e0275488. [PMID: 36191019 PMCID: PMC9529105 DOI: 10.1371/journal.pone.0275488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Glutaraldehyde, a germicide for reprocessing endoscopes that is important for hygiene in the clinic, might be hazardous to humans. Electrolyzed acid water (EAW) has a broad anti-microbial spectrum and safety profile and might be a glutaraldehyde alternative. We sought to assess EAW disinfection of flexible endoscopes in clinical otorhinolaryngological settings and its in vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacteria commonly isolated in otorhinolaryngology. Ninety endoscopes were tested for bacterial contamination before and after endoscope disinfection with EAW. The species and strains of bacteria were studied. The in vitro inactivation of bacteria and SARS-CoV-2 by EAW was investigated to determine the efficacy of endoscope disinfection. More than 20 colony-forming units of bacteria at one or more sampling sites were detected in 75/90 microbiological cultures of samples from clinically used endoscopes (83.3%). The most common genus detected was Staphylococcus followed by Cutibacterium and Corynebacterium at all sites including the ears, noses, and throats. In the in vitro study, more than 107 CFU/mL of all bacterial species examined were reduced to below the detection limit (<10 CFU/mL) within 30 s after contact with EAW. When SARS-CoV-2 was treated with a 99-fold volume of EAW, the initial viral titer (> 105 PFU) was decreased to less than 5 PFU. Effective inactivation of SARS-CoV-2 was also observed with a 19:1 ratio of EAW to the virus. EAW effectively reprocessed flexible endoscopes contributing to infection control in medical institutions in the era of the coronavirus disease 2019 pandemic.
Collapse
|
9
|
Komaikul J, Ruangdachsuwan S, Juntarapornchai S, Wanlayaporn D, Ketsuwan K, Masrinoul P, Yoksan S, Puthavathana P, Kitisripanya T. Effectiveness of neutral electrolyzed water in inactivating HCoV-OC43 and SARS-CoV-2 on the surfaces of plastic and the medicinal plant Centella asiatica (L.) urban. Heliyon 2022; 8:e10294. [PMID: 36032186 PMCID: PMC9391078 DOI: 10.1016/j.heliyon.2022.e10294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
Concerns have been raised about viral contamination, including in crops due to the recent coronavirus disease 2019 pandemic. Limited evidence is available to support the use of sanitizing agents for human coronavirus-contaminated medicinal plants. Thus, we aimed to investigate the persistence of infectious human coronavirus OC43 (HCoV-OC43) as a SARS-CoV-2 surrogate in storage conditions and the capability of neutral electrolyzed water (NEW) to inactivate coronavirus, including in fresh plants such as C. asiatica. The levels of infectious HCoV-OC43 and the triterpenoid content of C. asiatica were quantified using a plaque assay and high-performance liquid chromatography, respectively. The results showed that the persistence of HCoV-OC43 on C. asiatica leaves is identical to that on inert polystyrene. When covered and kept at room temperature with high humidity (>90% RH), HCoV-OC43 can be stable on C. asiatica leaves for at least 24 h. NEW with 197 ppm of available chlorine concentration (ACC) was effective in inactivating both infectious HCoV-OC43 and SARS-CoV-2 in suspension (≥3.68 and ≥4.34 log reduction, respectively), and inactivated dried HCoV-OC43 on the surfaces of C. asiatica leaves (≥2.31 log reduction). Soaking C. asiatica leaves for 5 min in NEW with 205 ppm of ACC or water resulted in significantly higher asiaticoside levels (37.82 ± 0.29 and 35.32 ± 0.74 mg/g dry weight, respectively), compared to the unsoaked group (29.96 ± 0.78 mg/g dry weight). These findings suggest that although coronavirus-contaminated C. asiatica leaves can pose a risk of transmission, NEW could be an option for inactivation.
Collapse
Affiliation(s)
- Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sasiporn Ruangdachsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sanjira Juntarapornchai
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Duangnapa Wanlayaporn
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kunjimas Ketsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suthee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Corresponding author.
| |
Collapse
|
10
|
Seow HC, Liao Q, Lau ATY, Leung SWS, Yuan S, Lam JKW. Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration. Int J Pharm 2022; 619:121704. [PMID: 35358643 PMCID: PMC8958263 DOI: 10.1016/j.ijpharm.2022.121704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
Abstract
Unpredictable outbreaks due to respiratory viral infections emphasize the need for new drug delivery strategies to the entire respiratory tract. As viral attack is not limited to a specific anatomic region, antiviral therapy that targets both the upper and lower respiratory tract would be most effective. This study aimed to formulate tamibarotene, a retinoid derivative previously reported to display broad-spectrum antiviral activity against influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as a novel dual particle size powder formulation that targets both the nasal cavity and the lung by a single route of intranasal administration. Spray freeze drying (SFD) and spray drying (SD) techniques were employed to prepare tamibarotene powder formulations, and cyclodextrin was used as the sole excipient to enhance drug solubility. With the employment of appropriate atomizing nozzles, particles of size above 10 μm and below 5 μm could be produced for nasal and lung deposition, respectively. The aerosol performance of the powder was evaluated using Next Generation Impactor (NGI) coupled with a glass expansion chamber and the powder was dispersed with a nasal powder device. By blending powder of two different particle sizes, a single powder formulation with dual aerosol deposition characteristic in both the nasal and pulmonary regions was produced. The aerosol deposition fractions in the nasal cavity and pulmonary region could be modulated by varying the powder mixing ratio. All dry powder formulations exhibited spherical structures, amorphous characteristics and improved dissolution profile as compared to the unformulated tamibarotene. Overall, a novel dual targeting powder formulation of tamibarotene exhibiting customizable aerosol deposition profile was developed. This exceptional formulation strategy can be adopted to deliver other antimicrobial agents to the upper and lower airways for the prevention and treatment of human respiratory infections.
Collapse
Affiliation(s)
- Han Cong Seow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Andy T Y Lau
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Caro Yu Centre for Infection, Department of Microbiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science Park, New Territories, Hong Kong SAR
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Hong Kong SAR.
| |
Collapse
|
11
|
Chen BK, Wang CK. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022; 27:1222. [PMID: 35209015 PMCID: PMC8877615 DOI: 10.3390/molecules27041222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Electrolyzed water (EW) is a new type of cleaning and disinfecting agent obtained by means of electrolysis with a dilute sodium chloride solution. It has low cost and harm to the human body and is also friendly to the environment. The anode produces acidic electrolyzed water (AEW), which is mainly used to inhibit bacterial growth and disinfect. The cathode provides basic electrolyzed water (BEW), which is implemented to promote human health. EW is a powerful multifunctional antibacterial agent with a wide range of applications in the medicine, agriculture, and food industry. Studies in vitro and in vivo show that it has an inhibitory effect on pathogenic bacteria and viruses. Therefore, EW is used to prevent chronic diseases, while it has been found to be effective against various kinds of infectious viruses. Animal experiments and clinical trials clearly showed that it accelerates wound healing, and has positive effects in oral health care, anti-obesity, lowering blood sugar, anti-cancer and anti-infectious viral diseases. This review article summarizes the application of EW in treating bacteria and viruses, the prevention of chronic diseases, and health promotion.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
12
|
Robinson TE, Moakes RJA, Grover LM. Low Acyl Gellan as an Excipient to Improve the Sprayability and Mucoadhesion of Iota Carrageenan in a Nasal Spray to Prevent Infection With SARS-CoV-2. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:687681. [PMID: 35047933 PMCID: PMC8757866 DOI: 10.3389/fmedt.2021.687681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 global pandemic, as well as the widespread persistence of influenza and the common cold, create the need for new medical devices such as nasal sprays to prevent viral infection and transmission. Carrageenan, a sulfated polysaccharide, has a broad, non-pharmacological antiviral capacity, however it performs poorly in two key areas; spray coverage and mucoadhesion. Therefore gellan, another polysaccharide, was investigated as an excipient to improve these properties. It was found that viscoelastic relaxation time was the key predictor of spray coverage, and by reducing this value from 2.5 to 0.25 s, a mix of gellan and carrageenan gave more than four times the coverage of carrageenan alone (p < 0.0001). Gellan also demonstrated enhanced adhesion to a mucus analog that increased significantly with time (p < 0.0001), suggesting the development of specific gellan–mucin interactions. This property was conferred to carrageenan on mixing the two polymers. Together, this data suggests that gellan is a promising excipient to improve both sprayability and mucoadhesion of carrageenan for use in antiviral nasal sprays.
Collapse
Affiliation(s)
- Thomas E Robinson
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Richard J A Moakes
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Gutiérrez-García R, De La Cerda-Ángeles JC, Cabrera-Licona A, Delgado-Enciso I, Mervitch-Sigal N, Paz-Michel BA. Nasopharyngeal and oropharyngeal rinses with neutral electrolyzed water prevents COVID-19 in front-line health professionals: A randomized, open-label, controlled trial in a general hospital in Mexico City. Biomed Rep 2022; 16:11. [PMID: 34987795 PMCID: PMC8719325 DOI: 10.3892/br.2021.1494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide efforts that healthcare professionals are making in the COVID-19 pandemic is well known, and the high risk of illness and death that front-line staff experience on a daily basis is a reality, despite well-defined protocols for the use of personal protective equipment. In addition, it is well known that vaccination is still faraway to be achieved worldwide and that new variants are emerging, thus additional protective measures must be explored. A prospective open-label randomized controlled clinical trial was performed on front-line medical staff from the Dr. Enrique Cabrera General Hospital in México City to evaluate the effectiveness of nasopharyngeal and oropharyngeal rinses with a neutral electrolyzed water, known as SES, to reduce the risk of COVID-19 disease among front-line, not vaccinated medical staff. A total of 170 volunteers were enrolled and equally divided in a control group and SES group. All members of the trial wore the adequate personal protection equipment at all times while performing their duties, as required by standard COVID-19 safety protocols. Additionally, the SES group participants followed a prophylactic protocol with SES (oral and nasal rinses, three times a day for 4 weeks). All participants were monitored for COVID-19 symptoms and disease in a time-frame of 4 weeks and the incidence of illness per group was registered. The relative risk of disease, associated with each treatment was calculated. The presence of COVID-19-positive cases, in the group that received the nasal and oral rinses with SES was 1.2%, while in the group that did not do the SES rinses (control group), it was 12.7% (P=0.0039 and RR=0.09405; 95% CI of 0.01231-0.7183). The prophylactic protocol was demonstrated as a protective factor, in more than 90%, for developing the disease, and without adverse effects. Nasal and oral rinses with SES may be an efficient alternative to reinforce the protective measures against COVID-19 disease and should be further investigated. The present clinical trial was retrospectively registered in the Cuban public registry of clinical trials (RPCEC) database (March 16, 2021; PREVECOVID-19: RPCEC00000357).
Collapse
Affiliation(s)
- Rafael Gutiérrez-García
- Department of Otorhinolaryngology, Dr. Enrique Cabrera General Hospital, Mexico City 01620, Mexico
| | | | - Ariana Cabrera-Licona
- Department of Research and Industrial Property, Esteripharma S.A. de C.V., Estado de México 50450, Mexico
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, Universidad de Colima, Colima 28040, Mexico.,Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Nicolas Mervitch-Sigal
- Department of Medical Direction, Esteripharma México S.A. de C.V., México City 03100, Mexico
| | - Brenda A Paz-Michel
- Department of Research and Industrial Property, Esteripharma S.A. de C.V., Estado de México 50450, Mexico.,Department of Molecular Medicine, School of Medicine, Universidad de Colima, Colima 28040, Mexico
| |
Collapse
|
14
|
Miyaoka Y, Yamaguchi M, Kadota C, Hasan MA, Kabir MH, Shoham D, Murakami H, Takehara K. Rapid in vitro virucidal activity of slightly acidic hypochlorous acid water toward aerosolized coronavirus in simulated human-dispersed droplets. Virus Res 2022; 311:198701. [PMID: 35093473 PMCID: PMC8799933 DOI: 10.1016/j.virusres.2022.198701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/26/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
The virucidal activities were evaluated by spraying slightly acidic hypochlorous acid waters (SAHWs) containing various concentrations of free available chlorine - 100, 200, 300 and 500 ppm (SAHW-100, -200, -300 and -500, respectively) - toward aerosol of an avian coronavirus (infectious bronchitis virus: IBV). The viral solution was supplemented with 0.5% fetal bovine serum (FBS) to simulate normal human droplets generated by sneezing or coughing in a real-life scenario. The virus containing 0.5% FBS was sprayed and exposed to SAHWs for a few seconds in a closed chamber, before reaching the air sampler. The results showed that IBV exposed to SAHW-100 and -200 for a few seconds decreased by 0.21 log10 and 0.80 log10, respectively, compared to the pre-exposed samples to SAHWs as controls. On the other hand, reductions of 1.16 log10 and 1.67 log10 were achieved following the exposure to SAHW-300 and -500, respectively, within a few seconds. These results suggest that SAHWs have rapid in vitro virucidal activity toward aerosolized IBV. The findings obtained for IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses. To prevent human-to-human transmissions by aerosols, the inactivation of viruses in the air by exposure to SAHWs for a few seconds seems to be an effective way.
Collapse
Affiliation(s)
- Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Chisaki Kadota
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Harumi Murakami
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
15
|
Okajima Y, Okajima M, Ikeda M, Wada Y, Shimokawa KI, Ishii F. Antiviral effect of electrolyzed reduced water on SARS-CoV-2. Drug Discov Ther 2021; 15:268-272. [PMID: 34707021 DOI: 10.5582/ddt.2021.01092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibitory activity of electrolyzed reduced water (ERW) against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the etiological agent responsible for coronavirus disease 2019 (COVID-19), was tested in vitro on Vero E6 cells using a plaque assay. Infectious virus titers of cells treated with ERW 100%, 50% and 33.3% solutions and phosphate buffered saline (PBS, negative control) and exposed to the virus suspension for 60 seconds were 2.25, 2.65, 3.21 and 7.38, respectively. ERW has a high pH and low surface tension. It is considered that the alkaline property of ERW breaks down phospholipids and proteins of envelopes. The role of pH and reducibility on the virucidal effect of ERW should be further evaluated. This study provides a foundation for utilizing ERW as an effective antiviral aqueous solution in a variety of applications.
Collapse
Affiliation(s)
| | | | - Mitsuo Ikeda
- A. I. System products, Corp., Kasugai, Aichi, Japan
| | - Yuko Wada
- Department of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Ken-Ichi Shimokawa
- Department of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Fumiyoshi Ishii
- Department of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
16
|
Meng X, Wang X, Meng S, Wang Y, Liu H, Liang D, Fan W, Min H, Huang W, Chen A, Zhu H, Peng G, Liu J, Qiu Z, Wang T, Yang L, Wei Y, Huo P, Zhang D, Liu Y. A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T WATER 2021; 1:2174-2185. [PMID: 37566346 PMCID: PMC8457323 DOI: 10.1021/acsestwater.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/06/2023]
Abstract
A novel coronavirus (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has attracted global attention due to its highly infectious and pathogenic properties. Most of current studies focus on aerosols released from infected individuals, but the presence of SARS-CoV-2 in wastewater also should be examined. In this review, we used bibliometrics to statistically evaluate the importance of water-related issues in the context of COVID-19. The results show that the levels and transmission possibilities of SARS-CoV-2 in wastewater are the main concerns, followed by potential secondary pollution by the intensive use of disinfectants, sludge disposal, and the personal safety of workers. The presence of SARS-CoV-2 in wastewater requires more attention during the COVID-19 pandemic. Thus, the most effective techniques, i.e., wastewater-based epidemiology and quantitative microbial risk assessment, for virus surveillance in wastewater are systematically analyzed. We further explicitly review and analyze the successful operation of a sewage treatment plant in Huoshenshan Hospital in China as an example and reference for other sewage treatment systems to properly ensure discharge safety and tackle the COVID-19 pandemic. This review offers deeper insight into the prevention and control of SARS-CoV-2 and similar viruses in the post-COVID-19 era from a wastewater perspective.
Collapse
Affiliation(s)
- Xianghao Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Xuye Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Shujuan Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Ying Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongju Liu
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Dawei Liang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Wenhong Fan
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongping Min
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Wenhai Huang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Anming Chen
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Haijun Zhu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Guanping Peng
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Jun Liu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Zhenhuan Qiu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Tao Wang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Linyan Yang
- School of Resources and Environmental Engineering,
East China University of Science and Technology, Shanghai
200237, P. R. China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and
Risk Assessment, Chinese Research Academy of Environmental
Science, Beijing 100012, P. R. China
| | - Peishu Huo
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Dayi Zhang
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Yu Liu
- School of Civil and Environmental Engineering,
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798
| |
Collapse
|
17
|
Takeda Y, Jamsransuren D, Makita Y, Kaneko A, Matsuda S, Ogawa H, Oh H. Inactivation Activities of Ozonated Water, Slightly Acidic Electrolyzed Water and Ethanol against SARS-CoV-2. Molecules 2021; 26:5465. [PMID: 34576934 PMCID: PMC8471879 DOI: 10.3390/molecules26185465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to compare the SARS-CoV-2-inactivation activity and virucidal mechanisms of ozonated water (OW) with those of slightly acidic electrolyzed water (SAEW) and 70% ethanol (EtOH). SARS-CoV-2-inactivation activity was evaluated in a virus solution containing 1%, 20% or 40% fetal bovine serum (FBS) with OW, SAEW or EtOH at a virus-to-test solution ratio of 1:9, 1:19 or 1:99 for a reaction time of 20 s. EtOH showed the strongest virucidal activity, followed by SAEW and OW. Even though EtOH potently inactivated the virus despite the 40% FBS concentration, virus inactivation by OW and SAEW decreased in proportion to the increase in FBS concentration. Nevertheless, OW and SAEW showed potent virucidal activity with 40% FBS at a virus-to-test solution ratio of 1:99. Real-time PCR targeting the viral genome revealed that cycle threshold values in the OW and SAEW groups were significantly higher than those in the control group, suggesting that OW and SAEW disrupted the viral genome. Western blotting analysis targeting the recombinant viral spike protein S1 subunit showed a change in the specific band into a ladder upon treatment with OW and SAEW. OW and SAEW may cause conformational changes in the S1 subunit of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan;
| | - Akihiro Kaneko
- Department of Oral Surgery, Ikegami General Hospital, 6-1-19 Ikegami Ootaku, Tokyo 146-8531, Japan;
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (D.J.); (S.M.); (H.O.)
| | - Hourei Oh
- Center of Innovation in Dental Education, Osaka Dental University, 8-1 Kuzuha Hanazono Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
18
|
Delgado-Enciso I, Paz-Garcia J, Barajas-Saucedo CE, Mokay-Ramírez KA, Meza-Robles C, Lopez-Flores R, Delgado-Machuca M, Murillo-Zamora E, Toscano-Velazquez JA, Delgado-Enciso J, Melnikov V, Walle-Guillen M, Galvan-Salazar HR, Delgado-Enciso OG, Cabrera-Licona A, Danielewicz-Mata EJ, Mandujano-Diaz PJ, Guzman-Esquivel J, Montes-Galindo DA, Perez-Martinez H, Jimenez-Villegaz JM, Hernandez-Rangel AE, Montes-Diaz P, Rodriguez-Sanchez IP, Martinez-Fierro ML, Garza-Veloz I, Tiburcio-Jimenez D, Zaizar-Fregoso SA, Gonzalez-Alcaraz F, Gutierrez-Gutierrez L, Diaz-Lopez L, Ramirez-Flores M, Guzman-Solorzano HP, Gaytan-Sandoval G, Martinez-Perez CR, Espinoza-Gómez F, Rojas-Larios F, Hirsch-Meillon MJ, Baltazar-Rodriguez LM, Barrios-Navarro E, Oviedo-Rodriguez V, Mendoza-Hernandez MA, Prieto-Diaz-Chavez E, Paz-Michel BA. Safety and efficacy of a COVID-19 treatment with nebulized and/or intravenous neutral electrolyzed saline combined with usual medical care vs. usual medical care alone: A randomized, open-label, controlled trial. Exp Ther Med 2021; 22:915. [PMID: 34306189 PMCID: PMC8281484 DOI: 10.3892/etm.2021.10347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is currently the major public health problem worldwide. Neutral electrolyzed saline solution that contains reactive chlorine and oxygen species may be an effective therapeutic. In the present study, the treatment efficacy of intravenous and/or nebulized neutral electrolyzed saline combined with usual medical care vs. usual medical care alone was evaluated in ambulatory patients with COVID-19. A prospective, 2-arm, parallel-group, randomized, open-label, multi-center, phase I-II clinical trial including 214 patients was performed. The following two outcomes were evaluated during the 20-day follow-up: i) The number of patients with disease progression; and ii) the patient acceptable symptom state. Serial severe acute respiratory syndrome coronavirus 2 naso/oro-pharyngeal detection by reverse transcription-quantitative (RT-q) PCR was performed in certain patients of the experimental group. Biochemical and hematologic parameters, as well as adverse effects, were also evaluated in the experimental group. The experimental treatment decreased the risk of hospitalization by 89% [adjusted relative risk (RR)=0.11, 95% confidence interval (CI): 0.03-0.37, P<0.001] and the risk of death by 96% (adjusted RR=0.04, 95% CI: 0.01-0.42, P=0.007) and also resulted in an 18-fold higher probability of achieving an acceptable symptom state on day 5 (adjusted RR=18.14, 95% CI: 7.29-45.09, P<0.001), compared with usual medical care alone. Overall, neutral electrolyzed saline solution was better than usual medical care alone. Of the patients analyzed, >50% were negative for the virus as detected by RT-qPCR in naso/oro-pharyngeal samples on day 4, with only a small number of positive patients on day 6. Clinical improvement correlated with a decrease in C-reactive protein, aberrant monocytes and increased lymphocytes and platelets. Cortisol and testosterone levels were also evaluated and a decrease in cortisol levels and an increase in the testosterone-cortisol ratio were observed on days 2 and 4. The experimental treatment produced no serious adverse effects. In conclusion, neutral electrolyzed saline solution markedly reduced the symptomatology and risk of progression in ambulatory patients with COVID-19. The present clinical trial was registered in the Cuban public registry of clinical trials (RPCEC) database (May 5, 2020; no. TX-COVID19: RPCEC00000309).
Collapse
Affiliation(s)
- Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Juan Paz-Garcia
- Department of Internal Medicine and Surgery, Union Hospital Center, Villa de Álvarez, Colima 28970, México
| | | | - Karen A. Mokay-Ramírez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Carmen Meza-Robles
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Rodrigo Lopez-Flores
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Marina Delgado-Machuca
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Efren Murillo-Zamora
- Department of Research, General Hospital of Zone No. 1 and Family Medicine Unit No. 19 IMSS, Villa de Alvarez, Colima 28984, México
| | | | - Josuel Delgado-Enciso
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima 28085, México
| | - Valery Melnikov
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Mireya Walle-Guillen
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Hector R. Galvan-Salazar
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Osiris G. Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima 28085, México
| | | | | | | | - José Guzman-Esquivel
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Foundation for Cancer Ethics, Education and Research of the Cancerology State Institute, Colima 28085, México
| | - Daniel A. Montes-Galindo
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Henry Perez-Martinez
- COVID-19 Respiratory Care Clinic INSABI Poliforum, Tuxtla Gutierrez, Chiapas 29040, México
| | | | | | | | - Iram P. Rodriguez-Sanchez
- Laboratory of Molecular and Structural Physiology, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León 66455, México
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, México
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, México
| | - Daniel Tiburcio-Jimenez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Sergio A. Zaizar-Fregoso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | | | | | - Luciano Diaz-Lopez
- COVID-19 Respiratory Care Clinic INSABI Poliforum, Tuxtla Gutierrez, Chiapas 29040, México
| | - Mario Ramirez-Flores
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | | | - Gustavo Gaytan-Sandoval
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Carlos R. Martinez-Perez
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | - Francisco Espinoza-Gómez
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Fabián Rojas-Larios
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Michael J. Hirsch-Meillon
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | | | - Enrique Barrios-Navarro
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
| | - Vladimir Oviedo-Rodriguez
- Department of Research, Cancerology State Institute, Colima State Health Services, Colima 28085, México
| | | | | | - Brenda A. Paz-Michel
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, México
- Department of Research, Esteripharma S.A. de C.V., Ciudad de México 03100, México
| |
Collapse
|
19
|
Takeda Y, Tamura K, Jamsransuren D, Matsuda S, Ogawa H. Severe Acute Respiratory Syndrome Coronavirus-2 Inactivation Activity of the Polyphenol-Rich Tea Leaf Extract with Concentrated Theaflavins and Other Virucidal Catechins. Molecules 2021; 26:molecules26164803. [PMID: 34443390 PMCID: PMC8402090 DOI: 10.3390/molecules26164803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is producing a large number of infections and deaths globally, the development of supportive and auxiliary treatments is attracting increasing attention. Here, we evaluated SARS-CoV-2-inactivation activity of the polyphenol-rich tea leaf extract TY-1 containing concentrated theaflavins and other virucidal catechins. The TY-1 was mixed with SARS-CoV-2 solution, and its virucidal activity was evaluated. To evaluate the inhibition activity of TY-1 in SARS-CoV-2 infection, TY-1 was co-added with SARS-CoV-2 into cell culture media. After 1 h of incubation, the cell culture medium was replaced, and the cells were further incubated in the absence of TY-1. The viral titers were then evaluated. To evaluate the impacts of TY-1 on viral proteins and genome, TY-1-treated SARS-CoV-2 structural proteins and viral RNA were analyzed using western blotting and real-time RT-PCR, respectively. TY-1 showed time- and concentration-dependent virucidal activity. TY-1 inhibited SARS-CoV-2 infection of cells. The results of western blotting and real-time RT-PCR suggested that TY-1 induced structural change in the S2 subunit of the S protein and viral genome destruction, respectively. Our findings provided basic insights in vitro into the possible value of TY-1 as a virucidal agent, which could enhance the current SARS-CoV-2 control measures.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan;
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Kyohei Tamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Japan; (K.T.); (D.J.); (S.M.)
- Correspondence: ; Tel.: +81-155-49-5893
| |
Collapse
|
20
|
Kuzniewski S. Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARS-CoV-2. REMEDIATION (NEW YORK, N.Y.) 2021; 31:97-110. [PMID: 34539159 PMCID: PMC8441782 DOI: 10.1002/rem.21691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in untreated and treated wastewater and studies have shown that the concentration of SARS-CoV-2 is proportional to the prevalence of the coronavirus disease 2019 (COVID-19) in communities. This article presents a literature review of the prevalence of SARS-CoV-2 in wastewater, its environmental fate, recommended treatment strategies for contaminated wastewater, and treatment challenges to be faced in the future. The environmental fate of SARS-CoV-2 in wastewater is not straightforward because it can be a source of infection when present in the treated wastewater depending on the permeability of the wastewater treatment plant containment area, and can also leach into aquifers, which may serve as drinking water supplies. Secondly, there are different practices that can mitigate the SARS-CoV-2 infection rate from infected feces and urine. The World Health Organization has recommended the use of ultraviolet radiation (UV), disinfection, and filtration for wastewater contaminated with SARS-CoV-2, processes also common in wastewater treatment facilities. This article discusses these strategies referencing studies performed with surrogate viruses and shows that SARS-CoV-2 treatment can be complicated due to the interference from other aqueous chemical and physical factors. Considering that COVID-19 is not the first and certainly not the last pandemic, it is imperative to develop an effective multitreatment strategy for wastewater contaminated with contagious viruses and, preferably, those that are compatible with current wastewater treatment methods.
Collapse
|
21
|
Moakes RJA, Davies SP, Stamataki Z, Grover LM. Formulation of a Composite Nasal Spray Enabling Enhanced Surface Coverage and Prophylaxis of SARS-COV-2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008304. [PMID: 34060150 PMCID: PMC8212080 DOI: 10.1002/adma.202008304] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/26/2021] [Indexed: 05/18/2023]
Abstract
Airborne pathogens pose high risks in terms of both contraction and transmission within the respiratory pathways, particularly the nasal region. However, there is little in the way of adequate intervention that can protect an individual or prevent further spread. This study reports on a nasal formulation with the capacity to combat such challenges, focusing on severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Formulation of a polysaccharide-based spray, known for its mucoadhesive properties, is undertaken and it is characterized for its mechanical, spray distribution, and antiviral properties. The ability to engineer key mechanical characteristics such as dynamic yield stresses and high coverage is shown, through systematic understanding of the composite mixture containing both gellan and λ-carrageenan. Furthermore, the spray systems demonstrate highly potent capacities to prevent SARS-CoV-2 infection in Vero cells, resulting in complete inhibition when either treating, the cells, or the virus, prior to challenging for infection. From this data, a mechanism for both prophylaxis and prevention is proposed; where entrapment within a polymeric coating sterically blocks virus uptake into the cells, inactivating the virus, and allowing clearance within the viscous medium. As such, a fully preventative spray is formulated, targeted at protecting the lining of the upper respiratory pathways against SARS-CoV-2.
Collapse
Affiliation(s)
- Richard J. A. Moakes
- Healthcare Technology InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | - Scott P. Davies
- Institute of Immunology and ImmunotherapySchool of Medicine and DentistryUniversity of BirminghamBirminghamB15 2GWUK
| | - Zania Stamataki
- Institute of Immunology and ImmunotherapySchool of Medicine and DentistryUniversity of BirminghamBirminghamB15 2GWUK
| | - Liam M. Grover
- Healthcare Technology InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
22
|
Uema M, Yonemitsu K, Momose Y, Ishii Y, Tateda K, Inoue T, Asakura H. Effect of the Photocatalyst under Visible Light Irradiation in SARS-CoV-2 Stability on an Abiotic Surface. Biocontrol Sci 2021; 26:119-125. [PMID: 34092715 DOI: 10.4265/bio.26.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
There is a worldwide attempt to develop prevention strategies against SARS-CoV-2 transmission. Here we examined the effectiveness of tungsten trioxide (WO3)-based visible light-responsive photocatalyst on the inactivation of SARS-CoV-2 under different temperatures and exposure durations. The viral titer on the photocatalyst-coated glass slides decreased from 5.93 ± 0.38 logTCID50 /mL to 3.05 ±. 25 logTCID50/mL after exposure to 3,000 lux of the visible light irradiation for 6h at 20℃. On the other hand, lighting without the photocatalyst, or the photocatalyst-coat without lighting retained viral stability. Immunoblotting and electron microscopic analyses showed the reduced amounts of spike protein on the viral surface after the photocatalyst treatment. Our data suggest a possible implication of the photocatalyst on the decontamination of SARS-CoV-2 in indoor environments, thereby preventing indirect viral spread.
Collapse
Affiliation(s)
- Masashi Uema
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Kenzo Yonemitsu
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Yoshika Momose
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences
| |
Collapse
|
23
|
Takeda Y, Matsuda S, Jamsransuren D, Ogawa H. Comparison of the SARS-CoV-2-inactivating activities of the differently manufactured hypochlorous acid water products with various pH. JOURNAL OF WATER AND HEALTH 2021; 19:448-456. [PMID: 34152297 DOI: 10.2166/wh.2021.260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of effective disinfectants is a key method of controlling the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypochlorous acid water (HAW) has a broad spectrum of virucidal activities. We previously reported that acidic electrolyzed water, one of the HAW products, had potent SARS-CoV-2-inactivating activity and showed promise as a disinfectant. However, different manufacturing methods have produced several HAW products with various pH values. Here, we compared the SARS-CoV-2-inactivating activities of various HAW products. At sufficiently high volume and residual chlorine concentration (RCC), the HAW products inactivated SARS-CoV-2 efficiently regardless of pH or manufacturing method. However, although HAW products at pH 5.0-6.4 maintained high RCC and sustained virucidal activity for 21 days, the RCC rapidly decreased in HAW products at pH ≤ 3.0. Our results may guide in choosing appropriate HAW products for different usage situations.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan E-mail:
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan E-mail:
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan E-mail:
| |
Collapse
|
24
|
Farah RI, Al-Haj Ali SN. Electrolyzed Water Generated On-Site as a Promising Disinfectant in the Dental Office During the COVID-19 Pandemic. Front Public Health 2021; 9:629142. [PMID: 33996714 PMCID: PMC8119747 DOI: 10.3389/fpubh.2021.629142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Electrolyzed water is a safe, broad-spectrum bactericidal and viricidal agent, which can be used as a potent and effective alternative disinfectant in case of supply shortages. This report describes the on-site production of slightly acidic electrolyzed water (EW) from diluted salt solution and vinegar at a dental office using a portable EW generator unit. Such measures can ensure the safe continuity of important dental service provision for our patients during the coronavirus disease 2019 (CoVID-19) pandemic.
Collapse
Affiliation(s)
- Ra'fat Ibrahim Farah
- Department of Prosthetic Dental Sciences, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Sanaa Najeh Al-Haj Ali
- Department of Orthodontic and Pediatric Dentistry, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
25
|
Mueller CA, Winter M, Renner B. A Concept for the Reduction of Mucosal SARS-CoV-2 Load using Hypochloric Acid Solutions. Drug Res (Stuttg) 2021; 71:348-350. [PMID: 33890267 DOI: 10.1055/a-1467-5956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the next few months or years, vaccination against SARS-CoV-2 infection will significantly reduce the morbidity and mortality of COVID-19. However, additional measures are needed to protect those who are still not immunized. This is even more important in view of new viral mutations that result in increased transmission rates. We propose that the use of long-standing medicinal solutions based on hypochloric acid (HOCl) and intended for application on wounds may be effective as a gargling solution or nasal irrigation in blocking transmission of the virus. Here, we propose the use of HOCl-containing solutions for blocking the transmission of SARS-CoV-2 in combination with other prevention measures. This may constitute another important cornerstone in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Christian A Mueller
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Bertold Renner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Miyaoka Y, Kabir MH, Hasan MA, Yamaguchi M, Shoham D, Murakami H, Takehara K. Virucidal activity of slightly acidic hypochlorous acid water toward influenza virus and coronavirus with tests simulating practical usage. Virus Res 2021; 297:198383. [PMID: 33705798 DOI: 10.1016/j.virusres.2021.198383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
Slightly acidic hypochlorous acid waters (SAHWs) with pH of 5.2-5.8 containing different concentrations of free available chlorine - 62, 119, 220, 300, and 540 ppm (SAHW-62, -119, -220, -300, and -540, respectively) - were evaluated for their virucidal activity toward a low pathogenic H7N1 avian influenza virus (AIV) and an infectious bronchitis virus (IBV) in suspension, abiotic carrier, and direct spray tests, with the presence of organic materials. In the carrier test, the dropping and wiping techniques were performed toward viruses on carriers. In the suspension test, SAHW-62 could decrease the viral titer of both AIV and IBV by more than 1000 times within 30 s. With the dropping technique, IBV on carriers showed high resistance to SAHW, while AIV on plastic carrier was inactivated to an effective level (≧3 log virus reduction) within 1 min. With the wiping technique, SAHW-62 could inactivate both AIV and IBV on wiped plastic carriers to an effective level within 30 s. However, SAHW-220 could not inactivate IBV in the wiping rayon sheet to an effective level. In the direct spray test, sprayed SAHW-300 within 10 min, and SAHW-540 within 20 min, inactivated AIV and IBV on the rayon sheets to undetectable level, respectively. Our study indicates that the usage of wipes with SAHW could remove viruses from plastic carriers, while viruses remained in the wipes. Besides, a small volume of sprayed SAHW was effective against the viruses on the rayon sheets for daily cleaning in the application area. The findings we obtained concerning IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses.
Collapse
Affiliation(s)
- Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Md Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Md Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan, 5290002, Israel
| | - Harumi Murakami
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
27
|
Pedreira A, Taşkın Y, García MR. A Critical Review of Disinfection Processes to Control SARS-CoV-2 Transmission in the Food Industry. Foods 2021; 10:283. [PMID: 33572531 PMCID: PMC7911259 DOI: 10.3390/foods10020283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/12/2023] Open
Abstract
Industries of the food sector have made a great effort to control SARS-CoV-2 indirect transmission, through objects or surfaces, by updating cleaning and disinfection protocols previously focused on inactivating other pathogens, as well as food spoilage microorganisms. The information, although scarce at the beginning of the COVID-19 pandemic, has started to be sufficiently reliable to avoid over-conservative disinfection procedures. This work reviews the literature to propose a holistic view of the disinfection process where the decision variables, such as type and concentration of active substances, are optimised to guarantee the inactivation of SARS-CoV-2 and other usual pathogens and spoilage microorganisms while minimising possible side-effects on the environment and animal and human health.
Collapse
Affiliation(s)
- Adrián Pedreira
- Bioprocess Engineering Group, IIM-CSIC, 36208 Vigo, Spain;
- Lab of Recycling and Valorization of Waste Materials (REVAL), IIM-CSIC, 36208 Vigo, Spain
| | - Yeşim Taşkın
- Food Engineering Department, Hacettepe University, Ankara 06800, Turkey;
| | | |
Collapse
|
28
|
Yan P, Daliri EBM, Oh DH. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021; 9:136. [PMID: 33435548 PMCID: PMC7827692 DOI: 10.3390/microorganisms9010136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
As the situation of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is still deteriorating, there has been a huge increase in the demand and use of disinfectants. Electrolyzed water (EW), as a novel broad-spectrum disinfectant and cleaner, has been widely used for several years. EW can be produced in an electrolysis chamber which contains dilute salt and tap water. It is an effective antimicrobial and antibiofilm agent, with several advantages such as on-the-spot, cheap, environmentally friendly and safe for human beings. Therefore, EW holds potential significance for high-risk settings in hospitals and other clinical facilities. EW can also be applied for wound healing, advanced tissue care, and dental clinics. The present review article highlights the latest developments and new perspectives of EW, especially in clinical fields. Furthermore, the main action modes of antibiofilm and antimicrobial will be summarized.
Collapse
Affiliation(s)
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (P.Y.); (E.B.-M.D.)
| |
Collapse
|
29
|
Kwok CS, Dashti M, Tafuro J, Nasiri M, Muntean EA, Wong N, Kemp T, Hills G, Mallen CD. Methods to disinfect and decontaminate SARS-CoV-2: a systematic review of in vitro studies. Ther Adv Infect Dis 2021; 8:2049936121998548. [PMID: 33796289 PMCID: PMC7970236 DOI: 10.1177/2049936121998548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cleaning is a major control component for outbreaks of infection. However, for the SARS-CoV-2 pandemic, there is limited specific guidance regarding the proper disinfection methods that should be used. METHODS We conducted a systematic review of the literature on cleaning, disinfection or decontamination methods in the prevention of SARS-CoV-2. RESULTS A total of 27 studies were included, reporting a variety of methods with which the effectiveness of interventions were assessed. Virus was inoculated onto different types of material including masks, nasopharyngeal swabs, serum, laboratory plates and simulated saliva, tears or nasal fluid and then interventions were applied in an attempt to eliminate the virus including chemical, ultraviolet (UV) light irradiation, and heat and humidity. At body temperature (37°C) there is evidence that the virus will not be detectable after 2 days but this can be reduced to non-detection at 30 min at 56°C, 15 min at 65°C and 2 min at 98°C. Different experimental methods testing UV light have shown that it can inactivate the virus. Light of 254-365 nm has been used, including simulated sunlight. Many chemical agents including bleach, hand sanitiser, hand wash, soap, ethanol, isopropanol, guandinium thiocynate/t-octylphenoxypolyethoxyethanol, formaldehyde, povidone-iodine, 0.05% chlorhexidine, 0.1% benzalkonium chloride, acidic electrolysed water, Clyraguard copper iodine complex and hydrogen peroxide vapour have been shown to disinfect SARS-CoV-2. CONCLUSIONS Heating, UV light irradiation and chemicals can be used to inactivate SARS-CoV-2 but there is insufficient evidence to support one measure over others in clinical practice.
Collapse
Affiliation(s)
- Chun Shing Kwok
- Department of Cardiology, Royal Stoke University
Hospital, Stoke-on-Trent, UK
- School of Medicine, Keele University,
Stoke-on-Trent, UK
| | | | - Jacopo Tafuro
- Department of Cardiology, Royal Stoke University
Hospital, Stoke-on-Trent, UK
| | - Mojtaba Nasiri
- School of Life Sciences, University of Sussex,
Brighton, UK
| | | | - Nicholas Wong
- Department of Infectious Disease, Leicester
Royal Infirmary, Leicester, UK
| | - Timothy Kemp
- Department of Infectious Disease, Royal Stoke
University Hospital, Stoke-on-Trent, UK
| | - George Hills
- Department of Infectious Disease, Leicester
Royal Infirmary, Leicester, UK
| | | |
Collapse
|
30
|
Inappropriate sales of hypochlorous acid solution in Japan: An online investigation. Infect Control Hosp Epidemiol 2020; 42:1297-1299. [PMID: 33028448 PMCID: PMC7573454 DOI: 10.1017/ice.2020.1248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Kumar M, Mohapatra S, Mazumder P, Singh A, Honda R, Lin C, Kumari R, Goswami R, Jha PK, Vithanage M, Kuroda K. Making Waves Perspectives of Modelling and Monitoring of SARS-CoV-2 in Aquatic Environment for COVID-19 Pandemic. CURRENT POLLUTION REPORTS 2020; 6:468-479. [PMID: 32953402 PMCID: PMC7486595 DOI: 10.1007/s40726-020-00161-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Prevalence of SARS-CoV-2 in the aquatic environment pertaining to the COVID-19 pandemic has been a global concern. Though SARS-CoV-2 is known as a respiratory virus, its detection in faecal matter and wastewater demonstrates its enteric involvement resulting in vulnerable aquatic environment. Here, we provide the latest updates on wastewater-based epidemiology, which is gaining interest in the current situation as a unique tool of surveillance and monitoring of the disease. Transport pathways with its migration through wastewater to surface and subsurface waters, probability of infectivity and ways of inactivation of SARS-CoV-2 are discussed in detail. Epidemiological models, especially compartmental projections, have been explained with an emphasis on its limitation and the assumptions on which the future predictions of disease propagation are based. Besides, this review covers various predictive models to track and project disease spread in the future and gives an insight into the probability of a future outbreak of the disease.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Room No. 336A, Block 5, Gandhinagar, Gujarat 382355 India
- Kiran C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Sanjeeb Mohapatra
- Environmnetal Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Ashwin Singh
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355 India
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 9201192 Japan
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, Australia
| | - Rina Kumari
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030 India
| | - Ritusmita Goswami
- Department of Environmental Science, The Assam Royal Global University, Guwahati, Assam 781035 India
| | - Pawan Kumar Jha
- Center of Environmental Science, University of Allahabad, Prayagraj, 211002 India
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, 9390398 Japan
| |
Collapse
|