1
|
Liu W, Chen S, Rao X, Chen X, Yu L, Zhang J, Chen J, Cui B. Exploring the role of miR-125b-5p as a pro-inflammatory factor in Alzheimer's disease pathology. J Alzheimers Dis 2024; 102:1224-1238. [PMID: 39584931 DOI: 10.1177/13872877241297178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease, where neuroinflammation significantly influences its pathophysiology by driving the disease's pathological cascade. As a pro-inflammatory regulator, miR-125b-5p contributes to AD progression, though its precise role and mechanisms remain unclear. OBJECTIVE We aims to identify mRNAs significantly regulated by pro-inflammatory miR-125b-5p in AD and uncover key neuroinflammatory pathways. METHODS Target mRNAs regulated by miR-125b-5p were predicted using online databases and analyzed with two mRNA datasets to identify differentially expressed mRNAs (DEmRNAs). Enrichment analysis was conducted to explore their biological functions and pathways. The significance of DEmRNAs expression in AD-related inflammatory pathways was verified by the Wilcoxon test, predictive accuracy was assessed via area under the curves (AUCs), and novel mRNAs were identified through positive control analysis. RESULTS A total of 613 miR-125b-5p target mRNAs were identified, and 44 DEmRNAs were detected to be regulated by miR-125b-5p in two datasets. The 44 target DEmRNAs associated with AD include three key pathways: insulin signaling (EXOC7, FLOT2, MKNK2), phosphatidylinositol signaling (IP6K1, MTMR3), and phospholipase D signaling (CYTH1, GAB2). Correlation analysis indicated strong correlations among 7 mRNAs, all showing significant differential expression, with AUCs above 0.5, confirming their predictive value. Three mRNAs (EXOC7, IP6K1, CYTH1) were identified as novel AD-related genes. MiR-125b-5p binding sites in the 3'-UTRs of these 7 mRNAs suggest their potential roles in AD-related inflammation and signaling pathways. CONCLUSIONS This study investigates the pro-inflammatory miR-125b-5p's role in the pathological processes of AD, highlighting its regulation of key target mRNAs and critical pathways.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Sophia Chen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bohan Cui
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Huang W, Jiang M, Wang X, Pan D, Chen W, Fan L. Non-Sugar Sweetener Rubusoside Alleviates Lipid Metabolism Disorder In Vivo and In Vitro by Targeting PPARγ/α, Lgals3, and Mknk2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25601-25619. [PMID: 39508235 DOI: 10.1021/acs.jafc.4c06018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Rubusoside─a high-sweetened, nonsugar sweetener─is mainly extracted from Rubus chingii var. suavissimus (S. Lee) L. T. Lu or Rubus suavissimus S. Lee (Chinese sweet leaf tea). We previously reported that rubusoside regulates lipid metabolism disorder in Syrian golden hamsters on a high-fat diet (HFD). This study aimed to reveal the underlying mechanisms through which rubusoside alleviates lipid metabolism disorder in vivo and in vitro. First, we analyzed the therapeutic properties of rubusoside in alleviating HFD-induced lipid metabolism disorder in C57BL/6J mice. Then, we analyzed the adipogenic effect of rubusoside in normal and Lgals3/Mknk2-overexpressing 3T3-L1 cells by exploring the mechanisms on peroxisome proliferator-activated receptor-γ/α (PPARγ/α), galectin-3 (Lgals3), mitogen-activated protein kinase interacting serine/threonine kinase-2 (Mknk2), p38 mitogen-activated protein kinase (p38MAPK), and extracellular regulated protein kinases 1/2 (ERK1/2) with RT-qPCR and Western blot. Our results showed a rubusoside-mediated reduction of HFD-induced weight gain, dyslipidemia, and decelerated hepatic steatosis and adipose tissue expansion in mice as well as improved adipogenesis in 3T3-L1 cells. Mechanistically, rubusoside up-regulated the PPARγ/α expression while down-regulating Lgals3 and Mknk2 expression in vivo and in vitro. Furthermore, rubusoside attenuated the adipogenic activity of PPARγ through increasing its site-specific phosphorylation mediated by p38MAPK and ERK1/2. Taken together, our findings suggest that rubusoside alleviates lipid metabolism disorder through multiple pathways and thus holds potential for future development.
Collapse
Affiliation(s)
- Wanfang Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Manjing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Xue Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Wenya Chen
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, No. 13, Wuhe Avenue, Nanning, Guangxi 530200, China
| |
Collapse
|
3
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
4
|
Du C, Yan Q, Wang Y, Ren L, Lu H, Han M, Wu Y, Wang Y, Ye M. Circular RNA AGAP1 Stimulates Immune Escape and Distant Metastasis in Renal Cell Carcinoma. Mol Biotechnol 2024; 66:454-466. [PMID: 37202649 DOI: 10.1007/s12033-023-00747-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/02/2023] [Indexed: 05/20/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most representative subtype of renal cancer, with a highly aggressive phenotype and extremely poor prognosis. Immune escape is one of the main reasons for ccRCC growth and metastasis, in which circular RNAs (circRNAs) play critical roles. Therefore, this research studied circAGAP1-associated mechanisms in immune escape and distant metastasis in ccRCC. circAGAP1/miR-216a-3p/MKNK2 was overexpressed or down-regulated by cell transfection. EdU assay, colony formation assay, scratch assay, Transwell assay, immunoblotting, and flow cytometry were used to evaluate cell proliferation, migration, invasion, EMT, and immune escape, respectively. Dual-luciferase reporting assay and RIP assay were used to evaluate the targeting relationship between circAGAP1/miR-216a-3p/MKNK2. Xenotransplantation in nude mice was used to evaluate the growth of ccRCC tumors in vivo. Here, circAGAP1 high expression was positively correlated with higher histological grade and distant metastasis and was a prognostic indicator for ccRCC. Depleting circAGAP1 effectively hampered the proliferative, invasive, and migratory capacities, EMT, and immune escape of ccRCC cells. Correspondingly, silencing circAGAP1 delayed tumor growth, distant metastasis, and immune escape in vivo. Mechanistically, circAGAP1 sponged the tumor suppressor miR-216a-3p, thereby preventing miR-216a-3p from inhibiting MAPK2. Collectively, our findings demonstrate that circAGAP1 exerts a tumor suppressor function through miR-216a-3p/MKNK2 during the immune escape and distant metastasis in ccRCC, and suggest that circAGAP1 may be a novel prognostic marker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- ChangGuo Du
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - QunFeng Yan
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - YaHui Wang
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - Lei Ren
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - Hao Lu
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - Ming Han
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - Yao Wu
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - YanBin Wang
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China
| | - MingBao Ye
- Department of Urology Surgery, The First People's Hospital of Xianyang, No. 10 Biyuan Road, Qindu District, Xianyang City, 712099, Shaanxi Province, China.
| |
Collapse
|
5
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Arias C, Salazar LA. Ethanolic Extract of Propolis Modulates Autophagy-Related microRNAs in Osteoarthritic Chondrocytes. Int J Mol Sci 2023; 24:14767. [PMID: 37834215 PMCID: PMC10573165 DOI: 10.3390/ijms241914767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a multifactorial joint disease characterized by degeneration, and aging stands as a significant risk factor. Autophagy, a crucial cellular homeostasis mechanism, is influenced by aging and closely linked to cartilage health. This correlation between autophagy, cell death, and OA underscores its relevance in disease progression. MicroRNAs have emerged as autophagy regulators, with miRNA-based interventions showing promise in preclinical models. Remarkably, the ethanolic extract of propolis exhibits positive effects on autophagy-related proteins and healthy cartilage markers in an in vitro osteoarthritis model. The aim of this brief report was to evaluate through in silico analysis and postulate five microRNAs that could regulate autophagy proteins (AKT1, ATG5, and LC3) and assess whether the ethanolic extract of propolis could regulate the expression of these microRNAs. Among the examined miRNAs (miR-19a, miR-125b, miR-181a, miR-185, and miR-335), the ethanolic extract of propolis induced significant changes in four of them. Specifically, miR-125b responded to EEP by counteracting IL-1β-induced effects, while miR-181a, miR-185, and miR-335 exhibited distinct patterns of expression under EEP treatment. These findings unveil a potential link between miRNAs, EEP, and autophagy modulation in OA, offering promising therapeutic insights. Nevertheless, further validation and clinical translation are warranted to substantiate these promising observations.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
8
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Wang L, Shi L, Liang Y, Ng JKW, Yin CH, Wang L, Hou J, Wang Y, Fung CSH, Chiu PKF, Ng CF, Tsui SKW. Dissecting the effects of METTL3 on alternative splicing in prostate cancer. Front Oncol 2023; 13:1227016. [PMID: 37675218 PMCID: PMC10477979 DOI: 10.3389/fonc.2023.1227016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Although the role of METTL3 has been extensively studied in many cancers, its role in isoform switching in prostate cancer (PCa) has been poorly explored. To investigate its role, we applied standard RNA-sequencing and long-read direct RNA-sequencing from Oxford Nanopore to examine how METTL3 affects alternative splicing (AS) in two PCa cell lines. By dissecting genome-wide METTL3-regulated AS events, we noted that two PCa cell lines (representing two different PCa subtypes, androgen-sensitive or resistant) behave differently in exon skipping and intron retention events following METTL3 depletion, suggesting AS heterogeneity in PCa. Moreover, we revealed that METTL3-regulated AS is dependent on N6-methyladenosine (m6A) and distinct splicing factors. Analysis of the AS landscape also revealed cell type specific AS signatures for some genes (e.g., MKNK2) involved in key functions in PCa tumorigenesis. Finally, we also validated the clinical relevance of MKNK2 AS events in PCa patients and pointed to the possible regulatory mechanism related to m6A in the exon14a/b region and SRSF1. Overall, we characterize the role of METTL3 in regulating PCa-associated AS programs, expand the role of METTL3 in tumorigenesis, and suggest that MKNK2 AS events may serve as a new potential prognostic biomarker.
Collapse
Affiliation(s)
- Lin Wang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ling Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Judy Kin-Wing Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chan Hoi Yin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yiwei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cathy Sin-Hang Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Ka-Fung Chiu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi-Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Peng B, Li J, Yan Y, Liu Y, Liang Q, Liu W, Thakur A, Zhang K, Xu Z, Wang J, Zhang F. Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response. Front Pharmacol 2023; 14:1162045. [PMID: 37063265 PMCID: PMC10102359 DOI: 10.3389/fphar.2023.1162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients.
Collapse
Affiliation(s)
- Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Aass KR, Nedal TMV, Tryggestad SS, Haukås E, Slørdahl TS, Waage A, Standal T, Mjelle R. Paired miRNA- and messenger RNA-sequencing identifies novel miRNA-mRNA interactions in multiple myeloma. Sci Rep 2022; 12:12147. [PMID: 35840794 PMCID: PMC9287335 DOI: 10.1038/s41598-022-16448-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple myeloma (MM) is an incurable cancer of terminally differentiated plasma cells that proliferate in the bone marrow. miRNAs are promising biomarkers for risk stratification in MM and several miRNAs are shown to have a function in disease pathogenesis. However, to date, surprisingly few miRNA-mRNA interactions have been described for and functionally validated in MM. In this study, we performed miRNA-seq and mRNA-seq on CD138 + cells isolated from bone marrow aspirates of 86 MM patients to identify novel interactions between sRNAs and mRNAs. We detected 9.8% significantly correlated miRNA-mRNA pairs of which 5.17% were positively correlated and 4.65% were negatively correlated. We found that miRNA-mRNA pairs that were predicted by in silico target-prediction algorithms were more negatively correlated than non-target pairs, indicating functional miRNA targeting and that correlation between miRNAs and mRNAs from patients can be used to identify miRNA-targets. mRNAs for negatively correlated miRNA-mRNA target pairs were associated with gene ontology terms such as autophagy, protein degradation and endoplasmic stress response, reflecting important processes in MM. Targets for two specific miRNAs, miR-125b-5p and miR-365b-3p, were functionally validated in MM cell line transfection experiments followed by RNA-sequencing and qPCR. In summary, we identified functional miRNA-mRNA target pairs by correlating miRNA and mRNA data from primary MM cells. We identified several target pairs that are of potential interest for further studies. The data presented here may serve as a hypothesis-generating knowledge base for other researchers in the miRNA/MM field. We also provide an interactive web application that can be used to exploit the miRNA-target interactions as well as clinical parameters associated to these target-pairs.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Synne Stokke Tryggestad
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Einar Haukås
- grid.412835.90000 0004 0627 2891Department of Hematology, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Tobias S. Slørdahl
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Anders Waage
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Therese Standal
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Robin Mjelle
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Zhang Q, Ding J, Wang Y, He L, Xue F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol Rep 2022; 47:102. [PMID: 35362546 DOI: 10.3892/or.2022.8313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum‑based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor‑associated macrophages (TAMs) and cancer‑associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jiashan Ding
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linsheng He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|