1
|
Fujimoto T, Mori M, Tonosaki M, Yaoi T, Nakano K, Okamura T, Itoh K. Characterization of Dystrophin Dp71 Expression and Interaction Partners in Embryonic Brain Development: Implications for Duchenne/Becker Muscular Dystrophy. Mol Neurobiol 2025; 62:6256-6272. [PMID: 39760982 DOI: 10.1007/s12035-024-04676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters. Here, we aim to characterize the expression of the shortest product, Dp71, during embryonic brain development and to identify its interaction proteins by using Dp71-specific tag-insertion mice. We showed that Dp71 and Dp140 were major dystrophin products significantly detectable in the mouse embryonic brains and Dp71 was the only dystrophin product derived from intron-62 gene promoter in the physiological mouse brains. Although both Dp71f (exon 78-exclusive form) and Dp71d (exon 78-inclusive form) existed in the embryonic brains, Dp71f and Dp71d were dominant forms in the prenatal and postnatal periods, respectively. We histologically found that Dp71 was prominently expressed in the neuroepithelium of the dorsal and medial telencephalon, which gives rise to the primordial cerebral cortex and hippocampus. Deeper analysis using in vitro primary culture verified Dp71 expressions in Nestin-positive neural stem/progenitor, Fabp7-positive radial glia, and Gfap-positive astrocytic cell populations. Interestingly, Dp71 was downregulated upon neuronal differentiation from stem/progenitor cells into TuJ1-positive immature neurons; however, Dp71 became detectable at Gephyrin-positive inhibitory postsynapses within mature neurons. Importantly, interactome analysis revealed dystroglycan, dystrobrevins, and syntrophins as dominant Dp71-partners in the embryonic neural stem/progenitor cells. Thus, the presence of Dp71-dystroglycan macromolecular complex was clearly established at an early stage of embryonic brain development, which sheds light on relations between fetal abnormalities and intellectual disabilities in DMD/BMD.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| | - Miyuki Mori
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Madoka Tonosaki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
2
|
González-Reyes M, Aragón J, Sánchez-Trujillo A, Rodríguez-Martínez G, Duarte K, Eleftheriou E, Barnier JV, Naquin D, Thermes C, Romo-Yáñez J, Roger JE, Rendon A, Vaillend C, Montanez C. Expression of Dystrophin Dp71 Splice Variants Is Temporally Regulated During Rodent Brain Development. Mol Neurobiol 2024; 61:10883-10900. [PMID: 38802640 PMCID: PMC11584426 DOI: 10.1007/s12035-024-04232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Dystrophin Dp71 is the major product of the Duchenne muscular dystrophy (DMD) gene in the brain, and its loss in DMD patients and mouse models leads to cognitive impairments. Dp71 is expressed as a range of proteins generated by alternative splicing of exons 71 to 74 and 78, classified in the main Dp71d and Dp71f groups that contain specific C-terminal ends. However, it is unknown whether each isoform has a specific role in distinct cell types, brain regions, and/or stages of brain development. In the present study, we characterized the expression of Dp71 isoforms during fetal (E10.5, E15.5) and postnatal (P1, P7, P14, P21 and P60) mouse and rat brain development. We finely quantified the expression of several Dp71 transcripts by RT-PCR and cloning assays in samples from whole-brain and distinct brain structures. The following Dp71 transcripts were detected: Dp71d, Dp71d∆71, Dp71d∆74, Dp71d∆71,74, Dp71d∆71-74, Dp71f, Dp71f∆71, Dp71f∆74, Dp71f∆71,74, and Dp71fΔ71-74. We found that the Dp71f isoform is the main transcript expressed at E10.5 (> 80%), while its expression is then progressively reduced and replaced by the expression of isoforms of the Dp71d group from E15.5 to postnatal and adult ages. This major finding was confirmed by third-generation nanopore sequencing. In addition, we found that the level of expression of specific Dp71 isoforms varies as a function of postnatal stages and brain structure. Our results suggest that Dp71 isoforms have different and complementary roles during embryonic and postnatal brain development, likely taking part in a variety of maturation processes in distinct cell types.
Collapse
Affiliation(s)
- Mayram González-Reyes
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Alejandra Sánchez-Trujillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Kevin Duarte
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Evangelia Eleftheriou
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - José Romo-Yáñez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Jérome E Roger
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France
- CERTO-Retina France, Saclay, 91400, France
| | - Alvaro Rendon
- Institut de la Vision, Sorbonne Université-INSERM-CNRS, 17 rue Moreau, Paris, 75012, France
| | - Cyrille Vaillend
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, Saclay, 91400, France.
| | - Cecilia Montanez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
3
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
4
|
Donandt T, Todorow V, Hintze S, Graupner A, Schoser B, Walter MC, Meinke P. Nuclear Small Dystrophin Isoforms during Muscle Differentiation. Life (Basel) 2023; 13:1367. [PMID: 37374149 DOI: 10.3390/life13061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Mutations in the DMD gene can cause Duchenne or Becker muscular dystrophy (DMD/BMD) by affecting the giant isoform of dystrophin, a protein encoded by the DMD gene. The role of small dystrophin isoforms is not well investigated yet, and they may play a role in muscle development and molecular pathology. Here, we investigated the nuclear localization of short carboxy-terminal dystrophin isoforms during the in vitro differentiation of human, porcine, and murine myoblast cultures. We could not only confirm the presence of Dp71 in the nucleoplasm and at the nuclear envelope, but we could also identify the Dp40 isoform in muscle nuclei. The localization of both isoforms over the first six days of differentiation was similar between human and porcine myoblasts, but murine myoblasts behaved differently. This highlights the importance of the porcine model in investigating DMD. We could also detect a wave-like pattern of nuclear presence of both Dp71 and Dp40, indicating a direct or indirect involvement in gene expression control during muscle differentiation.
Collapse
Affiliation(s)
- Tina Donandt
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Vanessa Todorow
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Alexandra Graupner
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilians University, 81377 Munich, Germany
| |
Collapse
|
5
|
García-Cruz C, Aragón J, Lourdel S, Annan A, Roger JE, Montanez C, Vaillend C. Tissue- and cell-specific whole-transcriptome meta-analysis from brain and retina reveals differential expression of dystrophin complexes and new dystrophin spliced isoforms. Hum Mol Genet 2022; 32:659-676. [PMID: 36130212 PMCID: PMC9896479 DOI: 10.1093/hmg/ddac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023] Open
Abstract
The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.
Collapse
Affiliation(s)
| | | | - Sophie Lourdel
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Ahrmad Annan
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Jérôme E Roger
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cecilia Montanez
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cyrille Vaillend
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| |
Collapse
|
6
|
Fujimoto T, Yaoi T, Nakano K, Arai T, Okamura T, Itoh K. Generation of dystrophin short product-specific tag-insertion mouse: distinct Dp71 glycoprotein complexes at inhibitory postsynapse and glia limitans. Cell Mol Life Sci 2022; 79:109. [PMID: 35098363 PMCID: PMC11071725 DOI: 10.1007/s00018-022-04151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most severe form of dystrophinopathies, is a fatal X-linked recessive neuromuscular disorder characterized by progressive muscle degeneration and various extents of intellectual disabilities. Physiological and pathological roles of the responsible gene, dystrophin, in the brain remain elusive due to the presence of multiple dystrophin products, mainly full-length dystrophin, Dp427, and the short product, Dp71. In this study, we generated a Dp71-specific hemagglutinin (HA) peptide tag-insertion mice to enable specific detection of intrinsic Dp71 expression by anti-HA-tag antibodies. Immunohistochemical detections in the transgenic mice demonstrated Dp71 expression not only at the blood-brain barrier, where astrocytic endfeet surround the microvessels, but also at the inhibitory postsynapse of hippocampal dentate granule neurons. Interestingly, hippocampal cornu ammonis (CA)1 pyramidal neurons were negative for Dp71, although Dp427 detected by anti-dystrophin antibody was clearly present at the inhibitory postsynapse, suggesting cell-type dependent dystrophin expressions. Precise examination using the primary hippocampal culture validated exclusive localization of Dp71 at the inhibitory postsynaptic compartment but not at the excitatory synapse in neurons. We further performed interactome analysis and found that Dp71 formed distinct molecular complexes, i.e. synapse-associated Dp71 interacted with dystroglycan (Dg) and dystrobrevinβ (Dtnb), whereas glia-associated Dp71 did with Dg and dystrobrevinα (Dtna). Thus, our data indicate that Dp71 and its binding partners are relevant to the inhibitory postsynaptic function of hippocampal granule neurons and the novel Dp71-transgenic mouse provides a valuable tool to understand precise physiological expressions and functions of Dp71 and its interaction proteins in vivo and in vitro.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, 162-8655, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|