1
|
Li Y, Guo M, Li L, Yang F, Xiong L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem Photobiol 2025; 101:392-403. [PMID: 39030789 DOI: 10.1111/php.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Photoaging, caused by ultraviolet (UV) radiation, is characterized by the senescence of skin cells and reduction of collagens. Although rice fermentation is widely used in the cosmetics, its impact on skin photoaging is still not well understood. Herein, we investigated the possible effectiveness of Maifuyin, a fermented rice product, and its components, succinic acid (SA), and choline, for safeguarding UVA-exposed human dermal fibroblasts (HDFs) against photoaging. In this study, the effects of Maifuyin, SA, and choline on UVA-induced cell death and senescence in fibroblasts were evaluated in cell counting kit-8 (CCK-8), expression of β-galactosidase (β-GAL), and matrix metalloproteinases (MMP)-1. To identify oxidative stress, the investigation focused on reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde. Additionally, a mRNA sequencing technology (RNA-seq) was applied to study the underlying mechanisms of these components on UVA-induced photoaging. Meanwhile, the level of C-X-C motif chemokine ligand 2 (CXCL2) in the cell supernatant was confirmed to assess the autocrine chemokine level. To reassess the involvement of CXCL2, the expression of β-GAL was evaluated in fibroblasts treated with or without CXCL2. The results indicated that 1 mg/mL Maifuyin and SA inhibited UVA-induced senescence in fibroblasts, MMP-1 expression, and oxidative damage. The RNA-seq revealed 1 mg/mL Maifuyin and SA might be recruited chemokine CXCLs to inhibit MMPs production and fibroblast senescence via TNFα, MAPK, and NF-κB pathways. ELISA results showed a significant reduction of autocrine CXCL2 in UVA-irradiated HDFs by pretreating Maifuyin and SA. The β-GAL staining assay revealed that CXCL2 treatment increased β-GAL activity, while the administration of Maifuyin and SA counteracted this effect in HDFs. These results highlighted the potential use of Maifuyin and SA as promising candidates for anti-photoaging applications.
Collapse
Affiliation(s)
- Yu Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Guo
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Fan Yang
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| |
Collapse
|
2
|
Fu R, Zhu K, Li Z, Lei L, Li M, Lang X, Yao Y. Type III Collagen Promotes Pseudopodium-Driven Cell Migration. CHEM & BIO ENGINEERING 2025; 2:97-109. [PMID: 40041002 PMCID: PMC11873850 DOI: 10.1021/cbe.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 03/06/2025]
Abstract
The extracellular matrix (ECM), particularly collagen, is acknowledged for its significant impact on cell migration. However, the detailed mechanisms through which it influences pseudopodium formation and cell motility are not yet fully understood. This study delves into the impact of recombinant human type III collagen (hCOL3) on cell migration, specifically focusing on the dynamics of pseudopodia and their contribution to cell motility. The research evaluates the impact of a fragmented form of hCOL3, engineered for the study, on cell motility and pseudopodium behavior using both single-cell and collective-cell migration assays. The results demonstrate that hCOL3 promotes cell migration velocity, augments the effective diffusion coefficient, and enhances directionality in both single-cell and collective migration contexts. Observations from scanning electron microscopy reveal that treatment with hCOL3 increases both the number and length of filopodia, which are crucial for cell migration and interaction with the ECM. The study suggests that hCOL3 facilitates a more targeted and rapid migration. The presence of an increased number of filopodia on surfaces treated with hCOL3 enhances the cell's ability to detect environmental cues and extent, thereby augmenting its migratory capacity. This discovery could potentially lead to greater efficiency in wound healing processes.
Collapse
Affiliation(s)
- Ruiwen Fu
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | - Zhouyang Li
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
| | - Liqun Lei
- The
First Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department
of Dermatology, Children’s Hospital
of Fudan University, National Children’s Medical Center, Shanghai 201102, China
| | - Xuye Lang
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Yao
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Ran F, Mu K, Zhou L, Peng L, Liu G, Liu Y, Pang Y, Feng G, Guo C, Wang T, Luo Q. Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling. Gels 2025; 11:104. [PMID: 39996646 PMCID: PMC11854240 DOI: 10.3390/gels11020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetic wound healing presents significant challenges due to impaired angiogenesis, chronic inflammation, and cellular dysfunction. Building on previous research, this study further explores the potential of a plant-derived glucosyloxybenzyl 2-isobutylmalates (B-CGT) hydrogel in promoting diabetic wound healing. Network pharmacology and molecular docking analyses suggest that B-CGT may regulate key mechanisms, such as apoptosis, inflammation, and matrix remodeling, through core targets including SIRT1, CASP8, and MMP8. In vivo studies further demonstrated that B-CGT hydrogel significantly accelerated wound closure in diabetic mice, enhanced angiogenesis, promoted collagen deposition, and achieved immune balance by modulating macrophage polarization, thereby shifting the inflammatory environment toward a repair state. Moreover, B-CGT hydrogel significantly improved the wound microenvironment by upregulating VEGF expression and exerting antioxidant effects. By combining theoretical predictions with experimental validation, this study elucidates the multi-target synergistic regulatory mechanisms of B-CGT hydrogel. These findings provide new research directions for addressing immune imbalance and angiogenesis defects in diabetic wound healing and lay a scientific foundation for the optimization and application of chronic wound treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Gang Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.)
| | - Yuchen Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (F.R.); (K.M.); (Y.P.)
| | | | | | | | | | | |
Collapse
|
4
|
Ye S, Chen B, Jeevithan L, Yang H, Kong Y, Diao X, Wu W. Recombinant Humanized Collagen Enhances Secreted Protein Levels of Fibroblasts and Facilitates Rats' Skin Basement Membrane Reinforcement. J Funct Biomater 2025; 16:47. [PMID: 39997581 PMCID: PMC11856143 DOI: 10.3390/jfb16020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Collagen and its peptides exhibit remarkable antioxidant activity, superior biocompatibility, and water solubility, making them a significant research focus in skin care. Hence, the recombinant humanized collagen types I, III, and XVII complexed with niacinamide were developed to address damage in human foreskin fibroblasts (HFF-1) caused by ultraviolet radiation and to evaluate basement membrane proteins in a rat skin model. The Cell Counting Kit-8 (CCK-8) assay showed that higher concentrations of the complex increased the survival of damaged cells by approximately 10% and 22%, respectively, compared to the normal group after 16 and 48 h of treatment. Further biochemical analyses using ELISA and immunofluorescence (IF) confirmed that the complex enhanced the expression of collagen type IV, laminin, P63, and transforming growth factor-β (TGF-β) in the damaged cells. Additionally, the complex boosted the activity of the basement membrane in rat skin and stimulated the secretion of integrin, laminin, and perlecan. Overall, the recombinant humanized collagen complex effectively reinforced the skin's basement membrane.
Collapse
Affiliation(s)
- Shijia Ye
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
| | - Boyu Chen
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Catolica San-Antonio de Murcia, 30107 Murcia, Spain
| | - Haoze Yang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
| | - Yaqi Kong
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
| | - Xiaozhen Diao
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
- Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Y.); (B.C.); (L.J.); (H.Y.); (Y.K.)
- Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
5
|
Ziliani F, Michalak-Micka K, Klar AS. Isolation and Culture of Human Dermal Fibroblasts. Methods Mol Biol 2025; 2922:75-83. [PMID: 40208528 DOI: 10.1007/978-1-0716-4510-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Dermal fibroblasts are the main cell type present in skin connective tissue (dermis). They are responsible for the synthesis of dermal extracellular matrix (ECM), providing mechanical stability for the dermal layer. In addition, fibroblasts interact with epidermal cells during hair development and in interfollicular skin cells through bidirectional interactions and secretion of growth factors and cytokines. The changes in the fibroblast population correlate with structural, compositional, quantitative, and qualitative transformations of the main ECM proteins in the dermis, as well as with the age-related disorders, and the state and proliferative activity of basal keratinocytes that are the main cells in the epidermis. Moreover, fibroblasts play an essential role during cutaneous wound healing and in bio-engineering of skin. Hence, culture of primary fibroblast is gaining in importance. In addition, fibroblast cultures established from skin biopsies provide a powerful tool for investigating normal skin physiology or specific disease states. In this chapter, detailed procedures for the establishing and maintaining primary cultures of adult human dermal fibroblasts are described.
Collapse
Affiliation(s)
- Fabiana Ziliani
- Tissue Biology Research Unit, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Katarzyna Michalak-Micka
- Tissue Biology Research Unit, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Sander EA, El-Hattab MY, Jacobson KR, Klingelhutz AJ, Ankrum JA, Calve S. Fibroblast-Adipocyte Lineage Cell Interactions Result in Differential Production of Extracellular Matrix Proteins. Cell Mol Bioeng 2024; 17:597-608. [PMID: 39926384 PMCID: PMC11799492 DOI: 10.1007/s12195-024-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Scarring from traumatic injury, burns, and other complications remains a significant problem that diminishes quality of life for millions of people worldwide. A common target for the development of new therapies to promote healing and reduce scarring are myofibroblasts because of their central role in pathological scarring. Recent work indicates that adipocyte lineage cells also contribute to the wound healing process, including clinical reports that indicate that the placement of autologous adipose micrografts at the surgical site improves the appearance and pliability of existing scars. Methods To better understand how adipocyte lineage cells interact with fibroblasts to promote healing, we first utilized an in vitro model of wound healing to visualize fibroblast spheroid collagen deposition via time-lapse imaging. We then introduced pre-adipocyte and adipocyte spheroids to visualize pair-wise spheroid interactions and collagen deposition among all three cell types. Finally, we quantified differences in the extracellular matrix (ECM) proteins produced using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results We found that all three cell-types contribute to ECM deposition and that the composition of the ECM proteins, or matrisome, was significantly different depending on which cells were co-cultured together. Conclusions By better understanding the interactions among these cell types, novel adipose-tissue-based therapeutic approaches can be developed to improve wound healing and reduce scar tissue. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00829-8.
Collapse
Affiliation(s)
- Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242 USA
| | - Mariam Y. El-Hattab
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242 USA
| | - Kathryn R. Jacobson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA USA
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242 USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO USA
| |
Collapse
|
7
|
Boraldi F, Lofaro FD, Bonacorsi S, Mazzilli A, Garcia-Fernandez M, Quaglino D. The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines 2024; 12:1586. [PMID: 39062158 PMCID: PMC11274439 DOI: 10.3390/biomedicines12071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Francesco Demetrio Lofaro
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Susanna Bonacorsi
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Alessia Mazzilli
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Institute of Biomedical Investigation (IBIMA), University of Málaga, 29010 Málaga, Spain;
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (S.B.); (A.M.)
| |
Collapse
|
8
|
Zhang QB, Huo L, Li M, Zhang R, Zhou T, Wang F, Zhou Y. Role of hypoxia-mediated pyroptosis in the development of extending knee joint contracture in rats. Eur J Med Res 2024; 29:298. [PMID: 38802976 PMCID: PMC11129407 DOI: 10.1186/s40001-024-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Joint contracture is one of the common diseases clinically, and joint capsule fibrosis is considered to be one of the most important pathological changes of joint contracture. However, the underlying mechanism of joint capsule fibrosis is still controversial. The present study aims to establish an animal model of knee extending joint contracture in rats, and to investigate the role of hypoxia-mediated pyroptosis in the progression of joint contracture using this animal model. 36 male SD rats were selected, 6 of which were not immobilized and were used as control group, while 30 rats were divided into I-1 group (immobilized for 1 week following 7 weeks of free movement), I-2 group (immobilized for 2 weeks following 6 weeks of free movement), I-4 group (immobilized for 4 weeks following 4 weeks of free movement), I-6 group (immobilized for 6 weeks following 2 weeks of free movement) and I-8 group (immobilized for 8 weeks) according to different immobilizing time. The progression of joint contracture was assessed by the measurement of knee joint range of motion, collagen deposition in joint capsule was examined with Masson staining, protein expression levels of HIF-1α, NLRP3, Caspase-1, GSDMD-N, TGF-β1, α-SMA and p-Smad3 in joint capsule were assessed using western blotting, and the morphological changes of fibroblasts were observed by transmission electron microscopy. The degree of total and arthrogenic contracture progressed from the first week and lasted until the first eight weeks after immobilization. The degree of total and arthrogenic contracture progressed rapidly in the first four weeks after immobilization and then progressed slowly. Masson staining indicated that collagen deposition in joint capsule gradually increased in the first 8 weeks following immobilization. Western blotting analysis showed that the protein levels of HIF-1α continued to increase during the first 8 weeks of immobilization, and the protein levels of pyroptosis-related proteins NLRP3, Caspase-1, GSDMD-N continued to increase in the first 4 weeks after immobilization and then decreased. The protein levels of fibrosis-related proteins TGF-β1, p-Smad3 and α-SMA continued to increase in the first 8 weeks after immobilization. Transmission electron microscopy showed that 4 weeks of immobilization induced cell membrane rupture and cell contents overflow, which further indicated the activation of pyroptosis. Knee extending joint contracture animal model can be established by external immobilization orthosis in rats, and the activation of hypoxia-mediated pyroptosis may play a stimulating role in the process of joint capsule fibrosis and joint contracture.
Collapse
Affiliation(s)
- Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Lei Huo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Mian Li
- Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Rui Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Ting Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Feng Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, China.
| |
Collapse
|
9
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Cucu RP, Hînganu MV, Costan VV, Lozneanu L, Boişteanu O, Tamaş C, Negru D, Hînganu D. Morphofunctional and histological patterns of blood vessels in the superficial cervicofacial musculoaponeurotic system in midlateral face regions. Ann Anat 2024; 253:152221. [PMID: 38309593 DOI: 10.1016/j.aanat.2024.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE The superficial cervicofacial musculoaponeurotic system (SMAS) is a complex network formed by mimic muscles and conjunctive tissue of the superficial fascia of the face.This study aimed to introduce new anatomofunctional data on the importance of the trans-SMAS distribution pattern of the skin microperfusion of the face and to underline the role of SMAS in maintaining the homeostasis of the vascular network that crosses it. Considering the fibrous and muscular matrix of the SMAS, using COLIII and MyoH2 antibodies, together with endothelial immunohistochemistry(IHC)intercellular adhesion molecule 2 marker, we determined the correlation of these structures and their interaction. METHODS This study included 33donors of SMAS tissues, which have been stained withregular hematoxylin and eosin (HE), and three different IHC markers have been used (collagen III, muscular tissue, and blood vessels). The samples were collected from parotid, masseteric, jugal, and zygomatic regions. Magnetic resonance angiography was used to identify the main vascular sources of the midlateral regions of the face of another 47 patients. RESULTS Significant differences in topographic arrangement, density, and relations of the microsopic vasculature were observed between each of the four regions. Major differences were identified between the role of SMAS in each of these regions, from the parotid capsule to masseteric fascia, transition mobile part, and attaching manners in the zygomatic subunit. CONCLUSIONS Blood vessel topography must be related with the surrounding conjunctive and muscular tissue, especially regarding facial SMAS. Intrinsic relations between these three components of the SMAS and nervous fibers can provide us important hints on the functionality of the whole system.
Collapse
Affiliation(s)
| | - Marius Valeriu Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Victor-Vlad Costan
- Department of Oral and Maxillo-Facial Surgery, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Ludmila Lozneanu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Otilia Boişteanu
- Department of Oral surgery, Anaesthesiology and Intensive Care, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Camelia Tamaş
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dragoş Negru
- Radiology and imaging department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Hînganu
- Department of MorphoFunctional Sciences I, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
11
|
Sun Y, Nie F, Wang G, Li Q, Xie H. An experimental study of the vascular embolism caused by recombinant type III collagen implants and hyaluronic acid. J Cosmet Dermatol 2023; 22:2705-2713. [PMID: 37128820 DOI: 10.1111/jocd.15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND There are significant differences in the reported incidence of vascular complications that result from the injection of different soft tissue fillers. This study aimed to compare the risk of vascular embolism after recombinant type III collagen implants and hyaluronic acid (HA) injection into arteries. METHODS Different concentrations of recombinant type III collagen and Restylane were injected into the central ear artery of rabbits, to construct an immediate embolization model. We screened for vascular recanalization and tissue necrosis at 30 min, 1 day, and 7 days after injection, and histopathology examination was processed on Day 7. RESULTS At 30 min after injection, complete recanalization of the central ear artery was observed in 17 rabbits in the C1 group while none in the HA group. On Day 1 after injection, complete recanalization of the CEA main trunk was observed in all rabbits in the collagen group while 50% in the HA group. There was a significant difference between the C1 group and the HA group in terms of vascular recanalization and skin necrosis. CONCLUSION Under the present experimental conditions, the risk of causing vascular embolism was much lower with collagen than with Restylane. Different doses of collagen at different injection rates have the same safety profile.
Collapse
Affiliation(s)
- Yimou Sun
- Department of Plastic Surgery, Peking University 3rd Hospital, Beijing, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University 3rd Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University 3rd Hospital, Beijing, China
| | - Qin Li
- Department of Plastic surgery, AIST Medical Cosmetology Hospital, Chengdu, China
| | - Hongbin Xie
- Department of Plastic Surgery, Peking University 3rd Hospital, Beijing, China
| |
Collapse
|
12
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Raskov H, Gaggar S, Tajik A, Orhan A, Gögenur I. The Matrix Reloaded-The Role of the Extracellular Matrix in Cancer. Cancers (Basel) 2023; 15:2057. [PMID: 37046716 PMCID: PMC10093330 DOI: 10.3390/cancers15072057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As the core component of all organs, the extracellular matrix (ECM) is an interlocking macromolecular meshwork of proteins, glycoproteins, and proteoglycans that provides mechanical support to cells and tissues. In cancer, the ECM can be remodelled in response to environmental cues, and it controls a plethora of cellular functions, including metabolism, cell polarity, migration, and proliferation, to sustain and support oncogenesis. The biophysical and biochemical properties of the ECM, such as its structural arrangement and being a reservoir for bioactive molecules, control several intra- and intercellular signalling pathways and induce cytoskeletal changes that alter cell shapes, behaviour, and viability. Desmoplasia is a major component of solid tumours. The abnormal deposition and composition of the tumour matrix lead to biochemical and biomechanical alterations that determine disease development and resistance to treatment. This review summarises the complex roles of ECM in cancer and highlights the possible therapeutic targets and how to potentially remodel the dysregulated ECM in the future. Furthering our understanding of the ECM in cancer is important as the modification of the ECM will probably become an important tool in the characterisation of individual tumours and personalised treatment options.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Shruti Gaggar
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Asma Tajik
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
14
|
Planta D, Gerwinn T, Salemi S, Horst M. Neurogenic Lower Urinary Tract Dysfunction in Spinal Dysraphism: Morphological and Molecular Evidence in Children. Int J Mol Sci 2023; 24:ijms24043692. [PMID: 36835106 PMCID: PMC9959703 DOI: 10.3390/ijms24043692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Spinal dysraphism, most commonly myelomeningocele, is the typical cause of a neurogenic lower urinary tract dysfunction (NLUTD) in childhood. The structural changes in the bladder wall in spinal dysraphism already occur in the fetal period and affect all bladder wall compartments. The progressive decrease in smooth muscle and the gradual increase in fibrosis in the detrusor, the impairment of the barrier function of the urothelium, and the global decrease in nerve density, lead to severe functional impairment characterized by reduced compliance and increased elastic modulus. Children present a particular challenge, as their diseases and capabilities evolve with age. An increased understanding of the signaling pathways involved in lower urinary tract development and function could also fill an important knowledge gap at the interface between basic science and clinical implications, leading to new opportunities for prenatal screening, diagnosis, and therapy. In this review, we aim to summarize the evidence on structural, functional, and molecular changes in the NLUTD bladder in children with spinal dysraphism and discuss possible strategies for improved management and for the development of new therapeutic approaches for affected children.
Collapse
Affiliation(s)
- Dafni Planta
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Tim Gerwinn
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
15
|
Gao J, Guo Z, Zhang Y, Liu Y, Xing F, Wang J, Luo X, Kong Y, Zhang G. Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regen Biomater 2022; 10:rbac110. [PMID: 36683742 PMCID: PMC9847517 DOI: 10.1093/rb/rbac110] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The content of type I collagen (COL-I) and type III collagen (COL-III) and the ratio between them not only affect the skin elasticity and mechanical strength, but also determine the fibril diameter. In this research, we investigated the age-related changes in COL-I/COL-III ratio with their formed fibril diameter. The experimental result was obtained from high performance liquid chromatography-mass spectrometer, hydroxyproline determination, picrosirius red staining and transmission electron microscopes (TEM), respectively. The result indicated that the COL-I/COL-III ratio in mouse skin increased with aging. From the 0th to 9th week, the COL-I/COLIII ratio increased from 1.3:1 to 4.5:1. From the 9th to the 18th week, it remained between 4.5:1 and 4.9:1. The total content of COL-I and COL-III firstly increased and then decreased with aging. The TEM result showed that the fibril diameter increased with aging. From the 0th to 9th week, the average fibril diameter increased from 40 to 112 nm; From the 9th to 18th weeks, it increased from 112 to 140 nm. After the 9th week. The fibril diameter showed obvious uneven distribution. Thus, the COL-I/COLIII ratio was proportional to the fibril diameter, but inversely proportional to the uniformity of fibril diameter.
Collapse
Affiliation(s)
- Jianping Gao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhu Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Luo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjun Kong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guifeng Zhang
- Correspondence address. Tel: +86 010 82613421, E-mail:
| |
Collapse
|
16
|
Rathnayake RAC, Yoon S, Zheng S, Clutter ED, Wang RR. Electrospun Silk Fibroin-CNT Composite Fibers: Characterization and Application in Mediating Fibroblast Stimulation. Polymers (Basel) 2022; 15:91. [PMID: 36616441 PMCID: PMC9824115 DOI: 10.3390/polym15010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Electrospinning is a simple, low-cost, and highly efficient technique to generate desirable nano/microfibers from polymer solutions. Silk fibroin (SF), a biopolymer found in Bombyx mori cocoons, has attracted attention for various biomedical applications. In this study, functionalized CNT was incorporated in SF to generate biocomposite fibers by electrospinning. The electrospun (E-spun) fibers were well aligned with morphology mimicking the locally oriented ECM proteins in connective tissues. While as-spun fibers dissolved in water in just two minutes, ethanol vapor post-treatment promoted β-sheet formation leading to improved fiber stability in an aqueous environment (>14 days). The addition of a minute amount of CNT effectively improved the E-spun fiber alignment and mechanical strength while retained high biocompatibility and biodegradability. The fibers’ electrical conductivity increased by 13.7 folds and 21.8 folds, respectively, in the presence of 0.1 w% and 0.2 w% CNT in SF fibers. With aligned SF-CNT 0.1 % fibers as a cell culture matrix, we found electrical stimulation effectively activated fibroblasts from patients of pelvic organ prolapse (POP), a connective tissue disorder. The stimulation boosted the fibroblasts’ productivity of collagen III (COLIII) and collagen I (COLI) by 74 folds and 58 folds, respectively, and reduced the COLI to COLIII ratio favorable for tissue repair. The developed material and method offer a simple, direct, and effective way to remedy the dysfunctional fibroblasts of patients for personalized cell therapeutic treatment of diseases and health conditions associated with collagen disorder.
Collapse
Affiliation(s)
| | | | | | | | - Rong R. Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
17
|
Ryu TK, Lee H, Yon DK, Nam DY, Lee SY, Shin BH, Choi GW, Jeon DS, Oh BB, Kim JH, Yoon Y, Kim HJ, Duteil L, Bruno-Bonnet C, Heo CY, Kang SM. The antiaging effects of a product containing collagen and ascorbic acid: In vitro, ex vivo, and pre-post intervention clinical trial. PLoS One 2022; 17:e0277188. [PMID: 36508415 PMCID: PMC9744321 DOI: 10.1371/journal.pone.0277188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
Various substances, including collagen (Naticol®) and ascorbic acid, that inhibit and prevent skin aging have been studied. Collagen prevents skin aging, has anti-inflammatory effects, and assists in normal wound healing. Ascorbic acid is a representative antioxidant that plays a role in collagen synthesis. To achieve a synergistic effect of collagen and ascorbic acid on all skin types, we prepared a product named "TEENIALL." In addition, we used a container to separate ascorbic acid and collagen to prevent the oxidation of ascorbic acid. To confirm the effects of TEENIALL, we first confirmed its penetrability in fibroblasts, keratinocytes, melanocyte, and human skin tissues. Thereafter, we confirmed the collagen synthesis ability in normal human fibroblasts. Based on the results of in vitro tests, we conducted a clinical trial (KCT0006916) on female volunteers, aged 40 to 59 years, with skin wrinkles and hyperpigmentation, to evaluate the effects of the product in improving skin wrinkles, skin lifting, and pigmentation areas before using the product, and after 2 and 4 weeks of using the product. The values of nine wrinkle parameters that were evaluated decreased and those for skin sagging, pigmentation, dermal density, and mechanical imprint (pressure) relief were improved. Skin wrinkle and pigmentation were evaluated to ensure that the improvement effect was maintained even after 1 week of discontinuing the product use. The evaluation confirmed that the effects were sustained compared to those after 4 weeks of using the product. Additionally, skin wrinkles, skin lifting, radiance, and moisture content in the skin improved immediately after using the product once. Based on the results of in vitro and ex vivo experiments and the clinical trial, we show that the product containing ascorbic acid and collagen was effective in alleviating skin aging.
Collapse
Affiliation(s)
- Tae Kyeong Ryu
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Hanna Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Da Yeong Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Soo Yun Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Byung Ho Shin
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Go Woon Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Da Som Jeon
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Bo Bae Oh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Ji Hyun Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Young Yoon
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Hyun Jeong Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
| | - Luc Duteil
- Centre of Clinical Pharmacology Applied to Dermatology (CPCAD), Hôpital l’Archet 2, Nice, France
| | | | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
- * E-mail: (CYH); (SMK)
| | - So Min Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- Korean Skin Research Center, Seongnam, South Korea
- H&BIO Corporation/R&D Center, Seongnam, South Korea
- * E-mail: (CYH); (SMK)
| |
Collapse
|
18
|
Chatterjee M, Acosta A, Taub PJ, Andarawis-Puri N. Enhanced healing outcomes in MRL/MpJ mouse tissues conserved in insertion site following surgical repair. J Shoulder Elbow Surg 2022; 31:e593-e602. [PMID: 35598836 DOI: 10.1016/j.jse.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Surgical repair of supraspinatus tendons (SSTs) has a high failure rate at the insertion site. A significant hurdle to therapeutic development is that effective intrinsic healing mechanisms are unknown. The MRL/MpJ (MRL) mouse exhibits tissue-specific enhanced healing; however, these tissues exhibit disparate properties from the complex SST. The extent of SST healing in the complex environment of the rotator cuff is unknown. We hypothesized that MRL mice would exhibit enhanced restoration of the structurally complex insertion site, resulting in functional improvements. METHODS B6 and MRL mice underwent SST detachment and immediate surgical repair. Mice were analyzed for gait assessment after either 2 or 6 weeks and were then killed humanely for immunohistologic analysis. RESULTS MRL SSTs demonstrated enhanced recovery of zonal architecture and bone structure compared with B6 SSTs. MRL SSTs exhibited decreased levels of type III collagen at 2 weeks and increased levels of type I procollagen at 6 weeks compared with B6 SSTs. MRL mice experienced initial gait deficits at 2 weeks that had recovered by 6 weeks. DISCUSSION The temporal balance of collagen in MRL mice suggests recovery toward naive composition. Initial gait deficits in MRL mice may provide a protective loading environment that is ultimately beneficial. The mechanisms of enhanced healing observed previously in MRL mice may be conserved in the complex SST, providing a platform to interrogate specific aspects of improved healing.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley Acosta
- Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter J Taub
- Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
19
|
Schumacher D, Curaj A, Staudt M, Simsekyilmaz S, Kanzler I, Boor P, Klinkhammer BM, Li X, Bucur O, Kaabi A, Xu Y, Zheng H, Nilcham P, Schuh A, Rusu M, Liehn EA. Endogenous Modulation of Extracellular Matrix Collagen during Scar Formation after Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232314571. [PMID: 36498897 PMCID: PMC9741070 DOI: 10.3390/ijms232314571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4-5). Reducing the neutrophil infiltration in CCR1-/- resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2-/- scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4-5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process.
Collapse
Affiliation(s)
- David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mareike Staudt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Isabella Kanzler
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Boor
- Institute for Pathology, RWTH Aachen University, 52074 Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Molecular Biomedicine, Comenius University, 811 08 Bratislava, Slovakia
| | | | - Xiaofeng Li
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Octavian Bucur
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 1 Boston Place, Ste 2600, Boston, MA 02108, USA
| | - Adnan Kaabi
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Yichen Xu
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Huabo Zheng
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Pakhwan Nilcham
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Schuh
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.R.); (E.A.L.); Tel.: +49-241-80-35984 (M.R.); +45-6550-4015 (E.A.L.)
| | - Elisa A. Liehn
- Department for Cardiology, Angiology and Internal Intensive Care, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
- Correspondence: (M.R.); (E.A.L.); Tel.: +49-241-80-35984 (M.R.); +45-6550-4015 (E.A.L.)
| |
Collapse
|
20
|
Dong Y, Zhang C, Zhang Q, Li Z, Wang Y, Yan J, Wu G, Qiu L, Zhu Z, Wang B, Gu H, Zhang Y. Identification of nanoparticle-mediated siRNA-ASPN as a key gene target in the treatment of keloids. Front Bioeng Biotechnol 2022; 10:1025546. [PMID: 36394011 PMCID: PMC9649824 DOI: 10.3389/fbioe.2022.1025546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Keloid, also known as connective tissue hyperplasia, is a benign proliferative disorder with a global distribution. The available therapeutic interventions are steroid injections, surgical removal of keloids, radiotherapy, compression therapy, the application of cryosurgery, and many other methods. Objectives: Existing treatments or approaches for keloids may lead to similar or even larger lesions at the site of keloid excision, leading to a high recurrence rate. Therefore, this study aims at identifying a new gene-based therapy for the treatment of keloids. Methods: An ASPN-siRNA/nanoparticle combination (si-ASPN) and a negative siRNA/nanoparticle complex (NC) was developed on the basis of bioinformatics studies and used in vitro and in vivo experiments. Results: The results showed a strong correlation between the development of keloids and high expression of ASPN protein. With the expression of ASPN protein greatly reduced in keloid fibroblasts and nude mice allografts after treatment with si-ASPN, the collagen and fibroblasts were also uniform, thinner, parallel and regular. Conclusion: All the above experimental results suggest that keloid and ASPN are closely related and both fibroblast growth and metabolism of keloid are inhibited after silencing ASPN. Therefore, ASPN-siRNA delivered via nanoparticles can serve as a novel intervention therapy for the treatment of keloids.
Collapse
Affiliation(s)
- Yipeng Dong
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zihan Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yixiao Wang
- Medical School of Nantong University, Nantong, China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Gujie Wu
- Medical School of Nantong University, Nantong, China
| | - Ling Qiu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhihan Zhu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Bolin Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Haiying Gu
- Institute of Analytical Chemistry for Life Science, Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| |
Collapse
|
21
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
22
|
Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse. Acta Biomater 2022; 152:335-344. [PMID: 36055614 PMCID: PMC10182770 DOI: 10.1016/j.actbio.2022.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Collagen is the predominant structural protein within connective tissues. Pelvic organ prolapse (POP) is characterized by weakening of the pelvic floor connective tissues and loss of support for pelvic organs. In this study, we examined the multiscale structure, molecular composition and biomechanics of native collagen fibrils in connective tissues of the posterior vaginal fornix collected from healthy women and POP patients, and established the correlation of these properties with clinical POP quantification (POP-Q) scores. The collagen characteristics, including collagen amount, ratio of Collagen I and Collagen III, collagen fibril d-period, alignment and stiffness, were found to change progressively with the increase of the clinical measurement of Point C, a measure of uterine descent and apical prolapse. The results imply that a severe prolapse is associated with stiffer collagen fibrils, reduced collagen d-period, increased fibril alignment and imbalanced collagen synthesis, degradation and deposition. Additionally, prolapse progression appears to be synchronized with deterioration of the collagen matrix, suggesting that a POP-Q score obtained via a non-invasive clinical test can be potentially used to quantitatively assess collagen abnormality of a patient's local tissue. STATEMENT OF SIGNIFICANCE: Abnormal collagen metabolism and deposition are known to associate with connective tissue disorders, such as pelvic organ prolapse. Quantitative correlation of the biochemical and biophysical characteristics of collagen in a prolapse patient's tissue with the clinical diagnostic measurements is unexplored and unestablished. This study fills the knowledge gap between clinical prolapse quantification and the individual's cellular and molecular disorders leading to connective tissue failure, thus, provides the basis for clinicians to employ personalized treatment that can best manage the patient's condition and to alert pre-symptomatic patients for early management to avoid unwanted surgery.
Collapse
|
23
|
Song P, Pan Q, Sun Z, Zou L, Yang L. Fibroblast activation protein alpha: Comprehensive detection methods for drug target and tumor marker. Chem Biol Interact 2022; 354:109830. [PMID: 35104486 DOI: 10.1016/j.cbi.2022.109830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Fibroblast activation protein alpha (FAP-α, EC3.4.2. B28), a type II transmembrane proteolytic enzyme for the serine protease peptidase family. It is underexpressed in normal tissues but increased significantly in disease states, especially in neoplasm, which is a potential biomarker to turmor diagnosis. The inhibition of FAP-α activity will retard tumor formation, which is expected to be a promising tumor therapeutic target. At present, although the FAP-α expression detection methods has diversification, a superlative detection means is necessary for the clinical diagnosis. This review covers the discovery and the latest advances in FAP-α, as well as the future research prospects. The tissue distribution, structural characteristics, small-molecule ligands and structure-activity relationship of major inhibitors of FAP-α were summarized in this review. Furthermore, a variety of detection methods including traditional detection methods and emerging probes detection were classified and compared, and the design strategy and kinetic parameters of these FAP-α probe substrates were summarized. In addition, these comprehensive information provides a series of practical and reliable assays for the optimal design principles of FAP-α probes, promoting the application of FAP-α as a disease marker in diagnosis, and a drug target in drug design.
Collapse
Affiliation(s)
- Peifang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quisha Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Aligned Collagen-CNT Nanofibrils and the Modulation Effect on Ovarian Cancer Cells. JOURNAL OF COMPOSITES SCIENCE 2021; 5. [PMID: 35664989 PMCID: PMC9164112 DOI: 10.3390/jcs5060148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fibrillar collagen is a one-dimensional biopolymer and is the most abundant structural protein in the extracellular matrix (ECM) of connective tissues. Due to the unique properties of carbon nanotubes (CNTs), considerable attention has been given to the application of CNTs in developing biocomposite materials for tissue engineering and drug delivery. When introduced to tissues, CNTs inevitably interact and integrate with collagen and impose a discernible effect on cells in the vicinity. The positive effect of the collagen-CNT (COL-CNT) matrix in tissue regeneration and the cytotoxicity of free CNTs have been investigated extensively. In this study, we aimed to examine the effect of COL-CNT on mediating the interaction between the matrix and SKOV3 ovarian cancer cells. We generated unidirectionally aligned collagen and COL-CNT nanofibrils, mimicking the structure and dimension of collagen fibrils in native tissues. AFM analysis revealed that the one-dimensional structure, high stiffness, and low adhesion of COL-CNT greatly facilitated the polarization of SKOV3 cells by regulating the β−1 integrin-mediated cell–matrix interaction, cytoskeleton rearrangement, and cell migration. Protein and gene level analyses implied that both collagen and COL-CNT matrices induced the epithelial–mesenchymal transition (EMT), and the COL-CNT matrix prompted a higher level of cell transformation. However, the induced cells expressed CD44 at a reduced level and MMP2 at an increased level, and they were responsive to the chemotherapy drug gemcitabine. The results suggested that the COL-CNT matrix induced the transdifferentiation of the epithelial cancer cells to mature, less aggressive, and less potent cells, which are inapt for tumor metastasis and chemoresistance. Thus, the presence of CNT in a collagen matrix is unlikely to cause an adverse effect on cancer patients if a controlled dose of CNT is used for drug delivery or tissue regeneration.
Collapse
|