1
|
Wei N, Guo Z, Ye R, Guan L, Ren J, Liang Y, Shao X, Fang J, Fang J, Du J. A systematic review of the pain-related emotional and cognitive impairments in chronic inflammatory pain induced by CFA injection and its mechanism. IBRO Neurosci Rep 2025; 18:414-431. [PMID: 40124113 PMCID: PMC11929881 DOI: 10.1016/j.ibneur.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Emotional and cognitive impairments are comorbidities commonly associated with chronic inflammatory pain. To summarize the rules and mechanisms of comorbidities in a complete Freund's adjuvant (CFA)-induced pain model, we conducted a systematic review of 66 experimental studies identified in a search of three databases (PubMed, Web of Science, and ScienceDirect). Anxiety-like behaviors developed at 1- or 3-days post-CFA induction but also appeared between 2- and 4 weeks post-induction. Pain aversion, pain depression, and cognitive impairments were primarily observed within 2 weeks, 4 weeks, and 2-4 weeks post-CFA injection, respectively. The potential mechanisms underlying the comorbidities between pain and anxiety predominantly involved heightened neuronal excitability, enhanced excitatory synaptic transmission, and neuroinflammation of anterior cingulate cortex (ACC) and amygdala. The primary somatosensory cortex (S1)Glu→caudal dorsolateral striatum (cDLS)GABA, medial septum (MS)CHAT→rACC, rACCGlu→thalamus, parabrachial nucleus (PBN)→central nucleus amygdala (CeA), mediodorsal thalamus (MD)→basolateral amygdala (BLA), insular cortex (IC)→BLA and anteromedial thalamus nucleus (AM)CaMKⅡ→midcingulate cortex (MCC)CaMKⅡ pathways are enhanced in the pain-anxiety comorbidity. The ventral hippocampal CA1 (vCA1)→BLA and BLA→CeA pathways were decreased in the pain-anxiety comorbidity. The BLA→ACC pathway was enhanced in the pain-depression comorbidity. The infralimbic cortex (IL)→locus coeruleus (LC) pathway was enhanced whereas the vCA1→IL pathway was decreased, in the pain-cognition comorbidity. Inflammation/neuroinflammation, oxidative stress, apoptosis, ferroptosis, gut-brain axis dysfunction, and gut microbiota dysbiosis also contribute to these comorbidities.
Collapse
Affiliation(s)
- Naixuan Wei
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Zi Guo
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Ru Ye
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Lu Guan
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junhui Ren
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| |
Collapse
|
2
|
Chen Z, Liu F, Wang Q, Xue X, Chen D, Lin L, Yuan Y, Ding S, Yan R, Dong Y, Zuo Z, Yue J, Lou H, Huang Z, Wang Y. Forsythoside B suppresses glioblastoma by upregulating the expression of PTPRN. Neuropharmacology 2025; 277:110514. [PMID: 40383262 DOI: 10.1016/j.neuropharm.2025.110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 05/02/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Glioblastoma (IDH-wildtype) (GBM), the most common high-grade glioma, is a highly invasive and malignant tumor in the brain. Currently, there is no effective treatment for GBM, highlighting the urgent need to find novel therapeutic drugs. Forsythoside B (FB), as a phenylethanoid glycosides compound extracted from Forsythia suspensa, has shown pharmacological functions such as anti-inflammation and anti-bacteria. However, its effects and mechanisms in GBM remain unclear. By performing several in vitro assays, we found that FB suppressed the proliferation of GBM cells in dose- and time-dependent manners. Furthermore, FB arrested the cell cycle at the G0/G1 phase and induced apoptosis in GBM cells. FB also significantly inhibited GBM cells migration. Mechanistically, RNA sequencing results showed that FB treatment remarkably upregulated the expression of PTPRN (a protein-coding gene that plays an important role in the progression of various cancers) in GBM cells. Consistent with this finding, PTPRN expression was downregulated in GBM samples from the Chinese Glioma Genome Atlas (CGGA) and other databases. Knockdown of PTPRN partially restored the inhibitory effects of FB on GBM cells, whereas, overexpression of PTPRN enhanced FB-induced suppression of GBM cell growth and migration. Finally, we found that FB slowed down the growth of tumor in a GBM orthotopic mice model through upregulating PTPRN expression in vivo, with no significant toxicity to other organs. Taken together, these results suggest that FB exerts its anticancer effects on GBM via increasing the expression of PTPRN, which may provide a potential new therapeutic strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Zhichao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Furui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Danni Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruoyu Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yingge Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhenxing Zuo
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Juanqing Yue
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Hangjun Lou
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310056, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Zheng XZ, Yu HY, Chen YR, Fang JS. Aucubin mitigates the elevation of microglial aerobic glycolysis and inflammation in diabetic neuropathic pain via aldose reductase. World J Diabetes 2025; 16:103915. [DOI: 10.4239/wjd.v16.i5.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Treatment of diabetic neuropathy is often limited by side effects. Aucubin, an iridoid glycoside derived from natural plants, exhibits notable anti-inflammatory and antioxidant properties.
AIM To investigate the effects of aucubin on diabetic neuropathic pain (DNP) and glycolysis and inflammation in microglia.
METHODS Streptozotocin (STZ) was used to establish a DNP animal model. Blood glucose levels and body weight of mice were measured following STZ administration. Paw withdrawal threshold was calculated for mechanical allodynia. Paw withdrawal latency was recorded for thermal hyperalgesia. The open field test and elevated plus maze was used to assess locomotor activity and anxiety-like behavior. Western blotting was utilized for analysis of protein expression. Immunofluorescence staining was measured for morphometric analysis of microglia. Glycolysis and ATP synthesis in BV-2 cell lines were detected by metabolic extracellular flux analysis. The SwissTargetPrediction and STRING databases were used for comprehensive screening to identify potential target proteins for aucubin. The molecular docking between the possible target proteins and aucubin was investigated using Auto Dock Tool. The BV-2 cell line was transfected with lentiviral AKR1B1-shRNA to further ascertain the function of AKR1B1 in the impact of aucubin on aerobic glycolysis and inflammation during high glucose stimulation.
RESULTS Aucubin significantly improved pain and anxiety-like behavior in STZ-induced diabetic mice and restored microglial aerobic glycolysis and inflammation. Several public databases and molecular docking studies suggested that AKR1B1, MMP2 and MMP9 are involved in the effect of aucubin on DNP. Aucubin failed to restore aerobic glycolysis and inflammation in the context of AKR1B1 deficiency.
CONCLUSION Aucubin has potential as a therapeutic agent for alleviating DNP by inhibiting expression of AKR1B1.
Collapse
Affiliation(s)
- Xue-Zhen Zheng
- Department of Anesthesiology, The First People's Hospital of Chun'an County, Hangzhou 311700, Zhejiang Province, China
| | - Hong-Yan Yu
- Department of Anesthesiology, The First People's Hospital of Chun'an County, Hangzhou 311700, Zhejiang Province, China
| | - Ye-Ru Chen
- Department of Anaesthesiology, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Sheng Fang
- Department of Anesthesiology, The First People's Hospital of Chun'an County, Hangzhou 311700, Zhejiang Province, China
| |
Collapse
|
4
|
Sun L, Li H, Zhang H, Guo Y, Wang C, Chen S. Proteomics and phosphoproteomics analysis of acute pancreatitis alleviated by forsythoside B. J Proteomics 2025; 315:105414. [PMID: 40015372 DOI: 10.1016/j.jprot.2025.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates. Forsythia constitutes a component of traditional Chinese medicinal decoctions used for clinical AP treatment; however, the efficacy of its active monomer in treating AP has yet to be completely substantiated. Here, we engineered an AP cell and mouse model by administering a combination of caerulein and LPS. In vitro experiments utilizing AR42J cells demonstrated that forsythoside B (FST·B) was the most effective monomer in mitigating cellular inflammation. Subsequently, a comprehensive evaluation of FST·B concentrations and efficacy was performed in animal models. Next Mass spectrometry analysis of pancreatic from AP mice treated with 50 mg/kg FST·B was conducted to elucidate its primary regulatory molecular signaling and key targets. FST·B effectively mitigated pathological damage in mice with acute pancreatitis, leading to a reduction in the expression of inflammatory cytokines in both pancreatic tissue and serum. Proteomics and phosphoproteomic profiles revealed that FST·B significantly enhanced the level of oxidative phosphorylation and spliceosome pathway in the AP mice. This research provides initial evidence of the regulatory molecular signals and targets of FST·B in AP, laying a potential foundation for its clinical use in treating AP. SIGNIFICANCE: Acute pancreatitis (AP) is a common acute abdominal condition in clinical practice, associated with high morbidity and mortality rates, and the global incidence of AP has increased by approximately 25 % over the past 15 years. Despite the complexity of AP's causes and the high susceptibility of proteins to degradation during lesions, systems biology studies, such as proteomics, have been limited in investigating the molecular mechanisms involved in its pharmacological treatment. Forsythoside B, a phenylethanol glycoside isolated from the air-dried fruit of forsythia, is a traditional oriental anti-inflammatory drug commonly used in clinical practice. We demonstrated in the AP mouse model that forsythoside B can alleviate pancreatic inflammatory damage in vivo. To elucidate the molecular mechanisms underlying the anti-inflammatory effect of forsythoside B, a comprehensive proteomic and phosphoproteomic analysis was conducted on AP mice models prior to and subsequent to forsythoside B intervention. Finally, 1640 significantly differentially expressed proteins, 1448 significantly differentially expressed phosphoproteins corresponding to 2496 significantly differentially expressed phosphosites were identified. Functional analysis revealed that forsythoside B significantly enhanced the level of oxidative phosphorylation in the AP mice in proteomic profiles, and the spliceosome pathway at the phosphorylation level was significantly affected by forsythoside B. This research provides initial evidence of the regulatory molecular signals and targets of forsythoside B in AP, laying a potential foundation for its clinical use in treating AP.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang 325000, China
| | - Hongmei Li
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Haiyan Zhang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Yinchu Guo
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Cheng Wang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| | - Shichao Chen
- Department of General Surgery, the People's Hospital of Yuhuan, Taizhou, Zhejiang 317600, China.
| |
Collapse
|
5
|
Hu G, Hong C, Miao Y, Wang W, Yin L, Luo X, Fu Y. Zeolitic Imidazole Framework-8 Nanoparticles as an Alternative to Freund's Adjuvant for Klebsiella pneumoniae Recombinant Protein Vaccine. Biotechnol Bioeng 2025; 122:1284-1295. [PMID: 39936873 DOI: 10.1002/bit.28944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
Vaccination represents a promising approach to combat resistant Klebsiella pneumoniae (KP). However, there is currently no licensed vaccine in the veterinary field. Outer membrane proteins have been proven to possess good immunogenicity, but Freund's adjuvant, which is commonly used to administer protein vaccines, has limitations such as a complicated formulation process as well as a tendency to cause pain and inflammation in animals. Here, we prepared a nano-vaccine based on zeolitic imidazolate framework-8 (ZIF-8)-encapsulated outer membrane protein PhoE and evaluated its efficiency in enhancing humoral and cellular immune responses in BALB/c mice. ZIF-8 nanoparticles rapidly delivered the protein antigen into dendritic cells and successfully activated them. In addition, significantly higher IgG antibody titers, cytokine levels, and splenocyte proliferation indices were founded in mice subcutaneously immunized with PhoE@ZIF-8 than in those receiving free PhoE alone. In a BALB/c mouse model, PhoE@ZIF-8 elicited a strong immune response with improved prophylactic efficacy against KP that was similar to the Freund's adjuvant-formulated vaccine. Based on the superiority of this nano-vaccine with good biocompatibility, inexpensive preparation and higher efficiency of delivering antigen into cells, ZIF-8 can serve as a promising replacement for Freund's adjuvant in research, with a prospective usage for vaccines against bacterial pathogens in the veterinary field.
Collapse
Affiliation(s)
- Gaowei Hu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Chunli Hong
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Yingjie Miao
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Wenji Wang
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Xi Luo
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Yongqian Fu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| |
Collapse
|
6
|
Wang W, Liu W, Liu S, Duan D, Ma Y, Zhang Z, Li C, Tang Y, Wang Z, Xing Y. Specific Activation of Dopamine Receptor D1 Expressing Neurons in the PrL Alleviates CSDS-Induced Anxiety-Like Behavior Comorbidity with Postoperative Hyperalgesia in Male Mice. Mol Neurobiol 2025; 62:2817-2834. [PMID: 39177734 DOI: 10.1007/s12035-024-04444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Postoperative pain is a type of pain that occurs in clinical patients after surgery. Among the factors influencing the transition from acute postoperative pain to chronic postoperative pain, chronic stress has received much attention in recent years. Here, we investigated the role of dopamine receptor D1/D2 expressing pyramidal neurons in the prelimbic cortex (PrL) in modulating chronic social defeat stress (CSDS)-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice. Our results showed that preoperative CSDS induced anxiety-like behavior and significantly prolonged postoperative pain caused by plantar incision, but did not affect plantar wound recovery and inflammation. Reduced activation of dopamine receptor D1 or D2 expressing neurons in the PrL is a remarkable feature of male mice after CSDS, and chronic inhibition of dopamine receptor D1 or D2 expressing neurons in the PrL induced anxiety-like behavior and persistent postoperative pain. Further studies found that activation of D1 expressing but not D2 expressing neurons in the PrL ameliorated CSDS-induced anxiety-like behavior and postoperative hyperalgesia. Our results suggest that dopamine receptor D1 expressing neurons in the PrL play a crucial role in CSDS-induced anxiety-like behavior comorbidity with postoperative hyperalgesia in male mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX75246, USA
| | - Dongxiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China
| | - Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Changsheng Li
- Department of Anesthesiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, No.100 Science Road, Gao-Xin District, Henan, 450001, Zhengzhou, China.
| |
Collapse
|
7
|
Liu G, Jia D, Li W, Huang Z, Shan R, Huang C. Trifluoro-Icaritin Ameliorates Neuroinflammation Against Complete Freund's Adjuvant-Induced Microglial Activation by Improving CB2 Receptor-Mediated IL-10/β-endorphin Signaling in the Spinal Cord of Rats. J Neuroimmune Pharmacol 2024; 19:53. [PMID: 39387998 DOI: 10.1007/s11481-024-10152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The underlying pathogenesis of chronic inflammatory pain is greatly complex, but the relevant therapies are still unavailable. Development of effective candidates for chronic inflammatory pain is highly urgent. We previously identified that trifluoro-icaritin (ICTF) exhibited a significant therapeutic activity against complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, however, the precise mechanisms remain elusive. Here, the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and CatWalk gait analysis were used to determine the pain-related behaviors. The expression and co-localization of pain-related signaling molecules were detected by Western blot and immunofluorescence staining. Our results demonstrated that ICTF (3.0 mg/kg, i.p.) effectively attenuated mechanical allodynia, thermal hyperalgesia and improved motor dysfunction induced by CFA, and the molecular docking displayed that CB2 receptor may be the therapeutic target of ICTF. Furthermore, ICTF not only up-regulated the levels of CB2 receptor, IL-10, β-endorphin and CD206, but also reduced the expression of P2Y12 receptor, NLRP3, ASC, Caspase-1, IL-1β, CD11b, and iNOS in the spinal cord of CFA rats. Additionally, the immunofluorescence staining from the spinal cord showed that ICTF significantly increased the co-expression between the microglial marker Iba-1 and CB2 receptor, IL-10, β-endorphin, respectively, but markedly decreased the co-localization between Iba-1 and P2Y12 receptor. Conversely, intrathecal administration of CB2 receptor antagonist AM630 dramatically reversed the inhibitory effects of ICTF on CFA-induced chronic inflammatory pain, leading to a promotion of pain hypersensitivity, abnormal gait parameters, microglial activation, and up-regulation of P2Y12 receptor and NLRP3 inflammasome, as well as the inhibition of CB2 receptor and IL-10/β-endorphin cascade. Taken together, these findings highlighted that ICTF alleviated CFA-induced neuroinflammation by enhancing CB2 receptor-mediated IL-10/β-endorphin signaling and suppressing microglial activation in the spinal cord, and uncovered that CB2 receptor may be exploited as a novel and promising target for ICTF treatment of chronic inflammatory pain.
Collapse
Grants
- NO. 2021B614 Science and Technology Project of Administration of Chinese Medicine, Jiangxi Province, China
- NO. HX202207 Horizontal Project of Gannan Medical University, Jiangxi Province, China
- No.ZD201904 University-level Key Project of Gannan Medical University, Jiangxi Province, China
- No. 20204469 Health Commission General Science and Technology Program, Jiangxi Province, China
- No. 31160213 National Natural Science Foundation of China
- No. 20142BCBC22008 Talent Project of Department of Scientific and Technology, Jiangxi Province, China
Collapse
Affiliation(s)
- Guangsen Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Weiwei Li
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Reai Shan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Jiangxi, 341000, P. R. China.
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, 341000, P. R. China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China.
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
8
|
Zhang F, Wang Y, Song X, Wen Y, Wang H, Zhang Y. The hydroxytyrosol-typed phenylpropanoidglycosides: A phenylpropanoid glycoside family with significant biological activity. Fitoterapia 2024; 178:106155. [PMID: 39089596 DOI: 10.1016/j.fitote.2024.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hydroxytyrosol-typed phenylpropanoid glycosides (HPGs), composed of phenylethanol and various complex oligosaccharides, are widespread and abundant in different plant, and have a diverse range of biological activities. All HPGs reported previously have been isolated from natural sources, and most of them showed significant bioactivities, such as anti-inflamatory, anti-cancer, cytoprotection, neuro-protective effects, enzyme-inhibitory, anti-microbial effects, and cardiovascular activity. The goal of this review is to summarize the structures of HPGs reported over the past few decades, as well as to introduce their pharmacological effects. We also introduce the possible relationship between the structures of HPGs and their source plants, as well as the structure-activity relationships of some important activities. This review will serve as a resource for future research into this class of compounds, and demonstrate their potential value.
Collapse
Affiliation(s)
- Feixun Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yiping Wang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Xiaoping Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Yingming Wen
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China
| | - Hong Wang
- College of Bioengineering, Beijing Polytechnic, No. 9 Liangshuihe 1st Street, Beijing 100176, China.
| | - Yanxin Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 1 Xuefu Road, Xi'an 710127, China; Glycobiology and Glycotechnology Research center, College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, China; College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
9
|
Yang Y, Wang N, Wang Z, Zhao M, Chen L, Shi Z. Protective role of forsythoside B in Kawasaki disease-induced cardiac injury: Inhibition of pyroptosis via the SIRT1-NF-κB-p65 signaling pathway. Chem Biol Interact 2024; 392:110953. [PMID: 38471628 DOI: 10.1016/j.cbi.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Kawasaki disease (KD), an acute exanthematous febrile pediatric illness involving systemic non-specific inflammatory reactions in small- and medium-sized arteries, poses a significant risk of coronary artery and myocardial inflammatory injury. Developing new KD treatments with improved safety and fewer side-effects is highly desirable. Forsythoside B (FTS-B), extracted from the Forsythia suspensa plant, exerts anti-inflammatory activity by inhibiting NF-κB, which is regulated by SIRT1, the reduced expression of which is strongly associated with cardiovascular disease. However, it has yet to be established whether FTS-B influences KD-related inflammatory damage. In this study, we investigated the effects of FTS-B on inflammation in cellular and murine models of KD. Our findings revealed that KD is associated with cardiac dysfunction and inflammatory injury to myocardial and human coronary artery endothelial cells (HCAECs), resulting in a pyroptosis-feedback loop. Both cellular and KD models were characterized by reduced SIRT1 expression and increased NF-κB p65 expression. Contrastingly, the rates of pyroptosis in both murine model myocardial tissues and HCAECs were significantly alleviated in response to FTS-B treatment. Also in both models, we detected an increase of SIRT1 expression and a decrease in the expression of p65. Further examination of the protective mechanism of FTS-B using the SIRT1-specific inhibitor, EX 527, revealed that this inhibitor blocked the palliative effects of FTS-B on inflammatory injury-induced pyroptosis. These results highlight the potential utility of the SIRT1-NF-κB-p65 pathway as a therapeutic target for KD treatment and demonstrate that FTS-B can alleviate KD-induced cardiac and HCAEC inflammatory injury via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Yitong Yang
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Nisha Wang
- Department of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xiaozhai Road Street, Yanta District, Xi'an, 710049, China.
| | - Zhenyi Wang
- Department of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xiaozhai Road Street, Yanta District, Xi'an, 710049, China.
| | - Miaomiao Zhao
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Luping Chen
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| | - Zhaoling Shi
- Department of Pediatric Respiratory Asthma, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No. 831, Longtaiguan Lane, Qindu District, Xianyang, 712046, China.
| |
Collapse
|
10
|
Wu M, Song W, Zhang M, Teng L, Tang Q, Zhu L. Potential mechanisms of exercise for relieving inflammatory pain: a literature review of animal studies. Front Aging Neurosci 2024; 16:1359455. [PMID: 38389561 PMCID: PMC10881774 DOI: 10.3389/fnagi.2024.1359455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory pain (IP) is one of the most prevalent and intractable human conditions, and it leads to progressive dysfunction and reduced quality of life. Additionally, IP is incredibly challenging to treat successfully with drugs or surgery. The development of IP is complex and multifactorial, and peripheral and central sensitization may influence chronicity and treatment resistance in IP. Understanding the mechanisms underlying IP is vital for developing novel therapies. Strong evidence suggests that exercise can be a first-line relief for patients with IP during rehabilitation. However, the mechanisms through which exercise improves IP remain unclear. Here, we reviewed the current animal experimental evidence for an exercise intervention in IP and proposed biological mechanisms for the effects of synaptic plasticity in the anterior cingulate cortex, endocannabinoids, spinal dorsal horn excitability balance, immune cell polarization balance, cytokines, and glial cells. This information will contribute to basic science and strengthen the scientific basis for exercise therapy prescriptions for IP in clinical practice.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|