1
|
Pakkianathan J, Chan S, Cruz J, Ewan K, Simental AA, Khan S. Targeting Surface Markers in Anaplastic Thyroid Cancer: Future Directions in Ligand-bound Therapy. J Endocr Soc 2025; 9:bvaf035. [PMID: 40071065 PMCID: PMC11893542 DOI: 10.1210/jendso/bvaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 03/14/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) is the rarest and most aggressive form of thyroid cancer, known for its highly variable nature and poor prognosis, primarily due to the lack of effective treatments. While conventional therapies have had limited success, there remains an urgent need for novel therapeutic approaches to combat this disease. ATC tumors are resistant to the standard radioiodine therapy because they lack the sodium/iodide symporter (NIS), which is necessary for iodine uptake. However, recent advances in theranostics targeting cell surface markers have opened new avenues for treating ATC. We used the PubMed database and Google search engine to identify relevant articles using combinations of specific keywords related to the topic of interest, focusing on each surface marker. This review explores multiple surface markers identified in ATC and their promising roles for delivering therapeutic agents into tumors, inducing cell death. Several promising markers, including prostate-specific membrane antigen, vitamin D receptor, IGF-1 receptor, programmed death-ligand 1, epidermal growth factor receptor, and L-type amino acid transporter 1 (LAT-1), have been found in ATC and could serve as effective targets for delivering therapeutic agents to tumors, inducing cell death. Restoring NIS expression is also explored as a potential therapy for ATC. Additionally, boron neutron capture therapy, which utilizes LAT-1 expression, is highlighted as a future therapeutic option due to its ability to selectively target tumor cells while minimizing damage to surrounding healthy tissue. These strategies offer the potential to overcome many of the challenges associated with ATC, improving patient outcomes and overall survival.
Collapse
Affiliation(s)
- Janice Pakkianathan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Samuel Chan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Joseph Cruz
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kennedi Ewan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alfred A Simental
- Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Salma Khan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
2
|
Wåhlén E, Lennartsson J, Heldin J. Depletion of the Rho GTPases Cdc42, Rac1 or RhoA reduces PDGF-induced STAT1 and STAT3 signaling. Biochem Biophys Rep 2024; 40:101828. [PMID: 39380576 PMCID: PMC11460520 DOI: 10.1016/j.bbrep.2024.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
This study investigates the role of Rho GTPases, specifically Cdc42, Rac1, and RhoA, in platelet-derived growth factor receptors (PDGFRα and PDGFRβ) signaling. Signal transducer and activator of transcription (STAT) proteins, essential for cellular processes such as proliferation and immune response, are activated downstream of PDGFRs. Dysregulation of these pathways is linked to various diseases, including cancer. The current study examines the effects of Rho GTPase depletion on PDGFR phosphorylation, STAT protein stability, and downstream signaling. Results indicate that depletion of Cdc42, Rac1, or RhoA impairs PDGFR phosphorylation and reduces STAT1 and STAT3 signaling, without significantly affecting AKT and ERK1/2 pathways. The findings highlight the critical regulatory roles of Rho GTPases in PDGFR-mediated STAT signaling.
Collapse
Affiliation(s)
- Erik Wåhlén
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | | | | |
Collapse
|
3
|
Merz N, Hartel JC, Grösch S. How ceramides affect the development of colon cancer: from normal colon to carcinoma. Pflugers Arch 2024; 476:1803-1816. [PMID: 38635059 PMCID: PMC11582153 DOI: 10.1007/s00424-024-02960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The integrity of the colon and the development of colon cancer depend on the sphingolipid balance in colon epithelial cells. In this review, we summarize the current knowledge on how ceramides and their complex derivatives influence normal colon development and colon cancer development. Ceramides, glucosylceramides and sphingomyelin are essential membrane components and, due to their biophysical properties, can influence the activation of membrane proteins, affecting protein-protein interactions and downstream signalling pathways. Here, we review the cellular mechanisms known to be affected by ceramides and their effects on colon development. We also describe which ceramides are deregulated during colorectal carcinogenesis, the molecular mechanisms involved in ceramide deregulation and how this affects carcinogenesis. Finally, we review new methods that are now state of the art for studying lipid-protein interactions in the physiological environment.
Collapse
Affiliation(s)
- Nadine Merz
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Jennifer Christina Hartel
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany
| | - Sabine Grösch
- Goethe-University Frankfurt, Institute of Clinical Pharmacology, Theodor Stern Kai 7, 60590, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany.
| |
Collapse
|
4
|
Rubin Sander M, Tsiatsiou AK, Wang K, Papadopoulos N, Rorsman C, Olsson F, Heldin J, Söderberg O, Heldin CH, Lennartsson J. PDGF-induced internalisation promotes proteolytic cleavage of PDGFRβ in mesenchymal cells. Growth Factors 2024; 42:147-160. [PMID: 39387439 DOI: 10.1080/08977194.2024.2413623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Platelet-derived growth factor (PDGF)-induced signalling via PDGF receptor β (PDGFRβ) leads to activation of downstream signalling pathways which regulate multiple cellular responses. It is unclear how PDGFRβ is degraded; both lysosomal and proteasomal degradation have been suggested. In this study, we have characterised the proteolytic cleavage of ligand-activated PDGFRβ, which results in two fragments: a larger fragment containing the extracellular domain, the transmembrane segment, and a part of the intracellular juxtamembrane region with a molecular mass of ∼130 kDa, and an intracellular ∼70 kDa fragment released into the cytoplasm. The proteolytic processing did not take place without internalisation of PDGFRβ. In addition, chelation of intracellular Ca2+ inhibited proteolytic processing. Inhibition of the proteasome affected signal transduction by increasing the phosphorylation of PDGFRβ, PLCγ, and STAT3 while reducing it on Erk1/2 and not affecting Akt. The proteolytic cleavage was observed in fibroblasts or cells that had undergone epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Agni Karolina Tsiatsiou
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Kehuan Wang
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Frida Olsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
5
|
Lu W, Chen M, Zhou Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. EGFR-ERK1/2 signaling and mitochondrial dynamics in seasonal ovarian steroidogenesis of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2024; 243:106558. [PMID: 38815727 DOI: 10.1016/j.jsbmb.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqi Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhou
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
7
|
Lyu Y, Feng W, Song J, Wang C, Fu Y, Zhao B, Meng Y. Zedoarondiol inhibits human bronchial smooth muscle cell proliferation through the CAV-1/PDGF signalling pathway. Sci Rep 2024; 14:13145. [PMID: 38849430 PMCID: PMC11161633 DOI: 10.1038/s41598-024-63970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Airway remodelling in lung diseases can be treated by inhibiting excessive smooth muscle cell proliferation. Zedoarondiol (Zed) is a natural compound isolated from the Chinese herb Curcuma longa. The caveolin-1 (CAV-1) is widely expressed in lung cells and plays a key role in platelet-derived growth factor (PDGF) signalling and cell proliferation. This study aims to investigate the effect of Zed on human bronchial smooth muscle cell (HBSMC) proliferation and explore its potential molecular mechanisms. We assessed the effect of Zed on the proliferation of PDGF-stimulated HBSMCs and performed proteomic analysis to identify potential molecular targets and pathways. CAV1 siRNA was used to validate our findings in vitro. In PDGF-stimulated HBSMCs, Zed significantly inhibited excessive proliferation of HBSMCs. Proteomic analysis of zedoarondiol-treated HBSMCs revealed significant enrichment of differentially expressed proteins in cell proliferation-related pathways and biological processes. Zed inhibition of HBSMC proliferation was associated with upregulation of CAV1, regulation of the CAV-1/PDGF pathway and inhibition of MAPK and PI3K/AKT signalling pathway activation. Treatment of HBSMCs with CAV1 siRNA partly reversed the inhibitory effect of Zed on HBSMC proliferation. Thus, this study reveals that zedoarondiol potently inhibits HBSMC proliferation by upregulating CAV-1 expression, highlighting its potential value in airway remodelling and related diseases.
Collapse
Affiliation(s)
- Yinglan Lyu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wandi Feng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingze Song
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 11 North 3Rd Ring Eastern Road, Beijing, 100029, China
| | - Yu Fu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 11 North 3Rd Ring Eastern Road, Beijing, 100029, China
| | - Yanyan Meng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, 11 North 3Rd Ring Eastern Road, Beijing, 100029, China.
| |
Collapse
|
8
|
Wang W, Liu C, He D, Shi G, Song P, Zhang B, Li T, Wei J, Jiang Y, Ma L. CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway. Pharmacol Res 2024; 204:107189. [PMID: 38649124 DOI: 10.1016/j.phrs.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Spinal cord injury (SCI) is a complex problem in modern medicine. Fibroblast activation and fibroscarring after SCI impede nerve recovery. Non-coding RNA plays an important role in the progression of many diseases, but the study of its role in the progression of spinal fibrosis is still emerging. Here, we investigated the function of circular RNAs, specifically antisense to the cerebellar degeneration-related protein 1 (CDR1as), in spinal fibrosis and characterized its molecular mechanism and pathophysiology. The presence of CDR1as in the spinal cord was verified by sequencing and RNA expression assays. The effects of inhibition of CDR1as on scar formation, inflammation and nerve regeneration after spinal cord injury were investigated in vivo and in vitro. Further, gene expression of miR-7a-5p and protein expression of transforming Growth Factor Beta Receptor II (TGF-βR2) were measured to evaluate their predicted interactions with CDR1as. The regulatory effects and activation pathways were subsequently verified by miR-7a-5p inhibitor and siCDR1as. These results indicate that CDR1as/miR-7a-5p/TGF-βR2 interactions may exert scars and nerves functions and suggest potential therapeutic targets for treating spinal fibrotic diseases.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Post-doctoral Scientific Research Workstation, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, China; Department of Histology and Embryology, Cheeloo College of Medicine, School of Basic Medical Sciences Shandong University, Jinan, China
| | - Guidong Shi
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Song
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianlu Wei
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yunpeng Jiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|