1
|
Gül E, Dursun AY, Tepe O, Akaslan G, Pampal FG. Optimizing pectin lyase production using the one-factor-at-a-time method and response surface methodology. Biotechnol Appl Biochem 2024. [PMID: 39434440 DOI: 10.1002/bab.2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Pectinases are commonly industrially synthesized by molds. This study aimed to optimize pectin lyase synthesis by a bacterium, Pseudomonas fluorescens, using both the one-factor-at-a-time (OFAT) method and response surface methodology. First, on optimization of pectin lyase fermentation by the OFAT method, the effects of pectin, peptone, yeast extract, (NH4)2SO4, pH, and salts were investigated. The highest pectin lyase activity was determined to be 28.63 U/mL at pH 8, 30°C, with 1% (w/v) pectin and 0.14% (w/v) (NH4)2SO4 concentration at the 90th hour. The effect of substrate inhibition on the microbial growth was also investigated, and the results showed that the process can be described by noncompetitive inhibition model. The values of kinetic constants were determined as µm = 0.175 h-1, KS = 6.931 g/L, and, KI = 6.932 g/L by nonlinear regression analysis. It was reported that pectin lyase enzymes exhibited peak activity at 50°C and pH 8. Finally, response surface methodology (RSM) was utilized to optimize pH, concentrations of ammonium sulfate, and pectin, which were chosen as independent variables. The interactions between these variables were also examined. According to RSM, the optimum values of the parameters to achieve a maximum pectin lyase activity of 35.62 U/mL were determined to be pH 7.97, 1.25% (w/v) pectin concentration, and 0.25% (w/v) (NH4)2SO4 concentration.
Collapse
Affiliation(s)
- Ertuğrul Gül
- Environmental Health Department, Hakkari University, Hakkari, Turkey
- Department of Civil Engineering, Faculty of Engineering, Dicle University, Diyarbakir, Turkey
| | - Arzu Yadigar Dursun
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Ozlem Tepe
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Gonca Akaslan
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Fadile Gül Pampal
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| |
Collapse
|
2
|
Zhang Y, Hu J, Zhang Q, Cai D, Chen S, Wang Y. Enhancement of alkaline protease production in recombinant Bacillus licheniformis by response surface methodology. BIORESOUR BIOPROCESS 2023; 10:27. [PMID: 38647919 PMCID: PMC10991860 DOI: 10.1186/s40643-023-00641-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/03/2023] [Indexed: 04/25/2024] Open
Abstract
Alkaline protease is widely used in the food, detergent, and pharmaceutical industries because of its comparatively great hydrolysis ability and alkali tolerance. To improve the ability of the recombinant Bacillus licheniformis to produce alkaline protease, single-factor experiments and response surface methodology (RSM) were utilized to determine and develop optimal culture conditions. The results showed that three factors (corn starch content, soybean meal content, and initial medium pH) had significant effects on alkaline protease production (P < 0.05), as determined through the Plackett‒Burman design. The maximum enzyme activity was observed with an optimal medium composition by central composite design (CCD): corn starch, 92.3 g/L; soybean meal, 35.8 g/L; and initial medium pH, 9.58. Under these optimum conditions, the alkaline protease activity of strain BL10::aprE was 15,435.1 U/mL, 82% higher than that in the initial fermentation medium. To further investigate the application of the optimum fermentation medium, the overexpressed strain BL10::aprE/pHYaprE was cultured using the optimized medium to achieve an enzyme activity of 39,233.6 U/mL. The present study achieved the highest enzyme activity of alkaline protease by B. licheniformis at the shake-flask fermentation level, which has important application value for large-scale production.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China
| | - Jingmin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China
| | - Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Environmental, Microbial Technology Center of Hubei Province College of Life Sciences, Hubei University, Wuhan, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 20037, China.
| |
Collapse
|
3
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Prihanto AA, Yano S, Wakayama M. Optimization of protease production by Bacillus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22163-22178. [PMID: 34780017 DOI: 10.1007/s11356-021-17279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Chitin extraction from shrimp shell powder (SSP) using protease-producing microbes is an attractive approach for valorizing shrimp shell waste because it is simple and environmentally friendly. In this study, the protease production and chitin extraction from SSP by Bacillus cereus HMRSC30 were simultaneously optimized using statistical approaches. As a result, fermentation in medium composed of 30 g/L SSP, 0.2 g/L MgSO4 · 7H2O, 3 g/L (NH4)2SO4, 0.5 g/L K2HPO4, and 1.5 g/L KH2PO4 (pH 6.5) for 7 days maximized protease production (197.75 ± 0.33 U/mL) to approximately 1.64-fold compared to unoptimized condition (126.8 ± 0.047 U/mL). This level of enzyme production was enough to achieve 97.42 ± 0.28% deproteinization (DP) but low demineralization (DM) of 53.76 ± 0.21%. The high DM of 90% could be easily accomplished with the post-treatment using 0.4 M HCl and acetic acid. In addition, the study evaluated the possible roadmap to maximize the value of generated products and obtain additional profits from this microbial process. The observation showed the possibility of serving crude chitin as a bio-adsorbent with the highest removal capacity against Coomassie brilliant blue (97.99%), followed by methylene blue (74.42%). The recovered protease exhibited the function to remove egg yolk stain, indicating its potential for use as a detergent in de-staining. The results corroborated the benefits of microbial fermentation by B. cereus HMRSC30 as green process for comprehensive utilization of shrimp shell waste as well as minimizing waste generation along the established process.
Collapse
Affiliation(s)
- Hilmi Amanah Aditya Cahyaningtyas
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Wasana Suyotha
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand.
| | - Benjamas Cheirsilp
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Asep Awaludin Prihanto
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65415, East Java, Indonesia
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
4
|
TEPE Ö, DURSUN AY. Optimization of endo-pectinase and pectin lyase production from wheat bran by Bacillus pumilus using response surface methodology. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.808326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Characterization of partially purified alkaline protease secreted by halophilic bacterium Citricoccus sp. isolated from agricultural soil of northern India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Hammami A, Bayoudh A, Abdelhedi O, Nasri M. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1352-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK. Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 2018; 4:e00646. [PMID: 30009270 PMCID: PMC6042311 DOI: 10.1016/j.heliyon.2018.e00646] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Alkaline proteases have applications in numerous industries. In this study, we have isolated and screened proteolytic bacteria from poultry wastes mixed soil and identified two bacterial isolates as Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 based on 16S rDNA sequencing. Maximum level of protease production was achieved after 24 h of fermentation in a basal medium. The optimal temperature, initial pH of the media and agitation for alkaline protease production by these two isolates were 30 °C, pH 9.0 and 120 rpm, respectively. The both bacterial isolates produced maximum level of protease with 3.0% organic municipal solid wastes (OMSW) as the sole source of carbon and nitrogen under previously optimized fermentation conditions. In comparison with the shake flask, protease production increased about 2.5-fold in the bioreactor with reduction in fermentation period. The partial purification of protease resulted in a final 45.67 and 34.86-fold purified protease with a specific activity of 8335.34 and 9918.91 U/mg protein and a typical yield of 9.75 and 9.41% from B. subtilis and E. indicum, respectively. The optimum temperature and pH of the partially purified protease from the both sources was 40 °C and pH 9.0, respectively. Protease from the both isolates was stable at pH 7.0-12.0 and at temperatures up to 50 °C. The effects of protease inhibitors indicated that the protease from B. subtilis might be serine and cysteine type and from E. indicum might be cysteine type. Mg2+, K+ and Ca2+ stimulated but Zn2+, Hg2+, Co2+ and Fe3+ strongly inhibited the protease activity. The partially purified protease from B. subtilis substantially dehaired cow skin and decomposed gelatinous compound from X-ray film. Our study revealed that OMSW can be used as raw material for production of bacterial extracellular protease and alkaline protease from B. subtilis might be potential for industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
9
|
Souza PM, Werneck G, Aliakbarian B, Siqueira F, Ferreira Filho EX, Perego P, Converti A, Magalhães PO, Junior AP. Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 2017; 109:1103-1110. [DOI: 10.1016/j.fct.2017.03.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
10
|
Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017; 101:383-397. [PMID: 28315440 DOI: 10.1016/j.ijbiomac.2017.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO4) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry.
Collapse
|
11
|
Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, Dahalan FA, Shukor MY. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:182-195. [PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
Collapse
Affiliation(s)
- Ibrahim Yusuf
- Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Science, Bayero University, Kano, P.M.B. 3011, Kano, Nigeria
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Mohd Arif Syed
- Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Nor Aripin Shamaan
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 13th Floor, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100, Kuala Lumpur, Malaysia
| | - Khalilah Abdul Khalil
- Biomolecular Science Program, School of Biology, Faculty of Applied Sciences, Universiti Teknology MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Farrah Aini Dahalan
- The School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pengajian Kejuruteraan Jejawi 3, 02600, Arau, Perlis, Malaysia
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Anandharaj M, Sivasankari B, Siddharthan N, Rani RP, Sivakumar S. Production, Purification, and Biochemical Characterization of Thermostable Metallo-Protease from Novel Bacillus alkalitelluris TWI3 Isolated from Tannery Waste. Appl Biochem Biotechnol 2016; 178:1666-86. [PMID: 26749296 DOI: 10.1007/s12010-015-1974-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 11/26/2022]
Abstract
Protease enzymes in tannery industries have enormous applications. Seeking a potential candidate for efficient protease production has emerged in recent years. In our study, we sought to isolate proteolytic bacteria from tannery waste dumping site in Tamilnadu, India. Novel proteolytic Bacillus alkalitelluris TWI3 was isolated and tested for protease production. Maximum protease production was achieved using lactose and skim milk as a carbon and nitrogen source, respectively, and optimum growth temperature was found to be 40 °C at pH 8. Protease enzyme was purified using ammonium sulfate precipitation method and anion exchange chromatography. Diethylaminoethanol (DEAE) column chromatography and Sephadex G-100 chromatography yielded an overall 4.92-fold and 7.19-fold purification, respectively. The 42.6-kDa TWI3 protease was characterized as alkaline metallo-protease and stable up to 60 °C and pH 10. Ca(2+), Mn(2+), and Mg(2+) ions activated the protease, while Hg(2+), Cu(2+), Zn(2+), and Fe(2+) greatly inhibited it. Ethylenediaminetetraacetic acid (EDTA) inhibited TWI3 protease and was activated by Ca(2+), which confirmed that TWI3 protease is a metallo-protease. Moreover, this protease is capable of dehairing goat skin and also removed several cloth stains, which makes it more suitable for various biotechnological applications.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Balayogan Sivasankari
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India.
| | - Nagarajan Siddharthan
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Rizwana Parveen Rani
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
| | - Subramaniyan Sivakumar
- Department of Biology, Gandhigram Rural Institute-Deemed University, Gandhigram, 624302, Tamilnadu, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| |
Collapse
|
13
|
Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease. PLoS One 2015; 10:e0146067. [PMID: 26716833 PMCID: PMC4696672 DOI: 10.1371/journal.pone.0146067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.
Collapse
|
14
|
Extracellular serine proteases by Acremonium sp. L1-4B isolated from Antarctica: Overproduction using cactus pear extract with response surface methodology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 2015; 19:961-71. [PMID: 26159877 DOI: 10.1007/s00792-015-0771-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.
Collapse
|
16
|
Ibrahim AS, Al-Salamah AA, Elbadawi YB, El-Tayeb MA, Ibrahim SSS. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Production and characterization of haloalkaline protease from ascidian-associated Virgibacillus halodenitrificans RSK CAS1 using marine wastes. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0987-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|