1
|
de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. Fungal endo and exochitinase production, characterization, and application for Candida biofilm removal. Braz J Microbiol 2024; 55:2267-2277. [PMID: 38951478 PMCID: PMC11405547 DOI: 10.1007/s42770-024-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.
Collapse
Affiliation(s)
- Cíntia Lionela Ambrósio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"- São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Vasquez YMSC, Cueva-Yesquen LG, Duarte AWF, Rosa LH, Valladão R, Lopes AR, Costa Bonugli-Santos R, de Oliveira VM. Genomics, Proteomics, and Antifungal Activity of Chitinase from the Antarctic Marine Bacterium Curtobacterium sp. CBMAI 2942. Int J Mol Sci 2024; 25:9250. [PMID: 39273199 PMCID: PMC11395076 DOI: 10.3390/ijms25179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.
Collapse
Affiliation(s)
- Yesenia Melissa Santa-Cruz Vasquez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Luis Gabriel Cueva-Yesquen
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Alysson Wagner Fernandes Duarte
- Complexo de Ciências Médicas e de Enfermagem, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca 57309-005, AL, Brazil
| | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo Valladão
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Adriana Rios Lopes
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Rafaella Costa Bonugli-Santos
- Instituto Latino Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu 85870-650, PR, Brazil;
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
| |
Collapse
|
3
|
Mechri S, Jabeur F, Bessadok B, Moumnassi S, Idrissi Yahyaoui M, Mannani N, Asehraou A, Mensi F, Vita S, D'Amore P, Di Bella C, Lo Monaco D, Abousalham A, Sadok S, Le Roes-Hill M, Jaouadi B. Production of a new chitinase from Nocardiopsis halophila TN-X8 utilizing bio-waste from the blue swimming crab: enzyme characterization and immobilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45217-45233. [PMID: 38958861 DOI: 10.1007/s11356-024-34088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
In accordance with the framework of the Circular Blue Bioeconomy in the Mediterranean region, the objective of this study was to evaluate the biotransformation of blue swimming crab (Portunus segnis) residues obtained from the port of Sfax by an extracellular chitinase produced by Nocardiopsis halophila strain TN-X8 isolated from Chott El Jerid (Tozeur, Tunisia). From the analysis of multiple extremophilic Actinomycetota, it was determined that strain TN-X8 exclusively utilized 60 g/L of raw blue swimming crab as its carbon and energy source, achieving a chitinase activity of approximately 950 U/mL following a 6-day incubation period at 40 °C. Pure chitinase, designated as ChiA-Nh30, was obtained after heat treatment, followed by ammonium sulfate fractionation and Sephacryl® S-200 column chromatography. The maximum ChiA-Nh30 activity was observed at pH 3 and 75 °C. Interestingly, compared with cyclohexamidine, ChiA-Nh30 showed a good antifungal effect against four pathogenic fungi. Furthermore, when using colloidal chitin as substrate, ChiA-Nh30 demonstrated a higher degree of catalytic efficiency than the commercially available Chitodextrinase®. In addition, ChiA-Nh30 could be immobilized by applying encapsulation and encapsulation-adsorption techniques. The kaolin and charcoal used acted as excellent binders, resulting in improved ChiA-Nh30 stability. For the immobilized ChiA-Nh30, the yield of N-acetyl-D-glucosamine monomers released from 20% (w/v) blue swimming crab residues increased by 3.1 (kaolin) and 2.65 (charcoal) times, respectively.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax (USF), Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Fadoua Jabeur
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax (USF), Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Boutheina Bessadok
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Sara Moumnassi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health (LBBEH), Faculty of Sciences of Oujda (FSO), Mohammed Premier University (UMP), BV Mohamed VI, P.O. Box 717, 60000, Oujda, Morocco
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health (LBBEH), Faculty of Sciences of Oujda (FSO), Mohammed Premier University (UMP), BV Mohamed VI, P.O. Box 717, 60000, Oujda, Morocco
| | - Nysrine Mannani
- Laboratory of Marine Biotechnologies and Environment (BIOMARE), Faculty of Sciences of El Jadida (FS El Jadida), Chouaib Doukkali University (UCD), Road of Ben Maachou, P.O. Box 20, 24000, El Jadida, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health (LBBEH), Faculty of Sciences of Oujda (FSO), Mohammed Premier University (UMP), BV Mohamed VI, P.O. Box 717, 60000, Oujda, Morocco
| | - Fethi Mensi
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Stefano Vita
- Instituto Zooprofilattico Sperimentale Della Sicilia (IZSSi), Via G. Marinuzzi, 3, 90129, Palermo, Italy
| | - Paolo D'Amore
- Instituto Zooprofilattico Sperimentale Della Sicilia (IZSSi), Via G. Marinuzzi, 3, 90129, Palermo, Italy
| | - Calogero Di Bella
- Instituto Zooprofilattico Sperimentale Della Sicilia (IZSSi), Via G. Marinuzzi, 3, 90129, Palermo, Italy
| | - Daniela Lo Monaco
- Instituto Zooprofilattico Sperimentale Della Sicilia (IZSSi), Via G. Marinuzzi, 3, 90129, Palermo, Italy
| | - Abdelkarim Abousalham
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Univ Lyon, Université Lyon 1, Bât Raulin, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Saloua Sadok
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), Institut National des Sciences et Technologies de la Mer (INSTM), Annexe La Goulette Port de Pêche, 2060, La Goulette, Tunisia
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute (AMHBI), Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
| | - Bassem Jaouadi
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules (LMEBB), Centre of Biotechnology of Sfax (CBS), University of Sfax (USF), Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
4
|
Dias BL, Sarmento RA, Venzon M, Jumbo LOV, dos Santos LSS, de Souza Moura W, Mourão DDSC, Fernandes PRDS, Neitzke TR, Oliveira JVDA, Dias T, Dalcin MS, Oliveira EE, dos Santos GR. Morinda citrifolia Essential Oil: A Plant Resistance Biostimulant and a Sustainable Alternative for Controlling Phytopathogens and Insect Pests. BIOLOGY 2024; 13:479. [PMID: 39056674 PMCID: PMC11274064 DOI: 10.3390/biology13070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
With the growing demand for sustainable and safe agricultural practices, plant compounds emerge as a solution for biological activities. Here, we evaluated the potential of using Morinda citrifolia essential oil to induce plant resistance and to control phytopathogens (Curvularia lunata) and insect pests (Daubulus maidis). We conducted a chromatographic analysis to unveil the essential oil components. We also quantified the activity levels of antioxidant enzymes and chitinase for resistance induction. The antifungal action was evaluated through disease progression and the inhibition of mycelial growth in addition to in silico studies that made it possible to predict the interaction site between the fungal protein and the compounds. We assessed the toxicity and repellent actions towards the D. maidis. Octanoic acid (58.43%) was identified as the essential oil major compound. Preventive treatment with essential oil and octanoic acid (25.0 µL mL-1) increased not only the plant defense activities (i.e., the activity of the enzymes superoxide dismutase, catalase, phenol peroxidase, ascorbate peroxidase, and chitinase) but also controlled Curvularia leaf spot. The stable interactions between octanoic acid and tyrosine-tRNA ligase from C. lunata suggested protein synthesis inactivation. The essential oil inhibited 51.6% of mycelial growth, and this effect was increased to 75.9% with the addition of adjuvants (i.e., angico gum). The essential oil reduced 76% of the population of D. maidis adults and repelled 50% of the number of D. maidis after 48 h under field conditions. The repellency effect in the field reduced the population of D. maidis adults, transmitters of the stunting complex, by 50%. The results highlight the potential of M. citrifolia as a resistance activator, fungicide, insecticide, and an effective biorational alternative.
Collapse
Affiliation(s)
- Bruna Leticia Dias
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Madelaine Venzon
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG), Viçosa 36571-000, MG, Brazil;
| | - Luis Oswaldo Viteri Jumbo
- Programa de Pós-Graduação Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Lucas Samuel Soares dos Santos
- Departamento de Química, Universidade Federal do Tocantins, Curso de Química Ambiental, Câmpus de Gurupi, P.O. Box 66, Gurupi 77410-530, TO, Brazil;
| | - Wellington de Souza Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
| | - Dalmarcia de Souza Carlos Mourão
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Paulo Ricardo de Sena Fernandes
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Taila Renata Neitzke
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - João Victor de Almeida Oliveira
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Tiago Dias
- Departamento de Engenharia Agronômica, Universidade Estadual do Tocantins (UNITINS), Campus de Palmas, Palmas 77001-090, TO, Brazil;
| | - Mateus Sunti Dalcin
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Gil Rodrigues dos Santos
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
- Programa de Pós-Graduação Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil;
| |
Collapse
|
5
|
Unuofin JO, Odeniyi OA, Majengbasan OS, Igwaran A, Moloantoa KM, Khetsha ZP, Iwarere SA, Daramola MO. Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38045-38060. [PMID: 38789707 PMCID: PMC11195638 DOI: 10.1007/s11356-024-33728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Chitinases, enzymes that degrade chitin, have long been studied for their role in various biological processes. They play crucial roles in the moulting process of invertebrates, the digestion of chitinous food, and defense against chitin-bearing pathogens. Additionally, chitinases are involved in physiological functions in crustaceans, such as chitinous food digestion, moulting, and stress response. Moreover, chitinases are universally distributed in organisms from viruses to mammals and have diverse functions including tissue degradation and remodeling, nutrition uptake, pathogen invasion, and immune response regulation. The discovery of these diverse functions expands our understanding of the biological significance and potential applications of chitinases. However, recent research has shown that chitinases possess several other functions beyond just chitin degradation. Their potential as biopesticides, therapeutic agents, and tools for bioremediation underscores their significance in addressing global challenges. More importantly, we noted that they may be applied as bioweapons if ethical regulations regarding production, engineering and application are overlooked.
Collapse
Affiliation(s)
- John Onolame Unuofin
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | | | | | - Aboi Igwaran
- The Life Science Center Biology, School of Sciences and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Karabelo MacMillan Moloantoa
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Private Bag X540001, Durban, 4000, South Africa
| | - Zenzile Peter Khetsha
- Department of Agriculture, Central University of Technology, Free State, Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Samuel Ayodele Iwarere
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Michael Olawale Daramola
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
6
|
Abu Bakar N, Chung BLY, Smykla J, Karsani SA, Alias SA. Proteomic characterization of Pseudogymnoascus spp. isolates from polar and temperate regions. Mycologia 2024; 116:449-463. [PMID: 38484286 DOI: 10.1080/00275514.2024.2313429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/30/2024] [Indexed: 05/01/2024]
Abstract
Proteomics has been used extensively in the field of mycology, mainly in trying to understand the complex network of protein-protein interactions that has been implicated in the molecular functions of fungi. It is also a useful tool to compare metabolic differences within a genus. Species of Pseudogymnoascus, a genus under the phyla Ascomycota, have been shown to play an important role in the soil environment. They have been found in both polar and temperate regions and are a known producer of many extracellular hydrolases that contribute to soil decomposition. Despite the apparent importance of Pseudogymnoascus spp. in the soil ecosystem, investigations into their molecular functions are still very limited. In the present study, proteomic characterization of six Pseudogymnoascus spp. isolated from three biogeographic regions (the Arctic, Antarctic, and temperate regions) was carried out using tandem mass spectrometry. Prior to proteomic analysis, the optimization for protein extraction was carried out. Trichloroacetic acid‑acetone‑phenol was found to be the best extraction method to be used for proteomic profiling of Pseudogymnoascus spp. The proteomic analysis identified 2003 proteins that were successfully mapped to the UniProtKB database. The identified proteins were clustered according to their biological processes and molecular functions. The shared proteins found in all Pseudogymnoascus spp. (1201 proteins) showed a significantly close relationship in their basic cellular functions, despite differences in morphological structures. Analysis of Pseudogymnoascus spp. proteome also identified proteins that were unique to each region. However, a high number of these proteins belonged to protein families of similar molecular functions, namely, transferases and hydrolases. Our proteomic data can be used as a reference for Pseudogymnoascus spp. across different global regions and a foundation for future soil ecosystem function research.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, C308, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
- National Antarctic Research Centre, Universiti Malaya, B303, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
| | - Benjamin Lau Yii Chung
- Advanced Biotechnology and Breeding Centre, Persiaran Institusi, Malaysian Palm Oil Board, No. 6, Bandar Baru Bangi, Kajang, Selangor 43000, Malaysia
| | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Krakow 31-120, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, C308, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
- National Antarctic Research Centre, Universiti Malaya, B303, Institute of Advanced Studies Building, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
8
|
Correa KCS, Facchinatto WM, Habitzreuter FB, Ribeiro GH, Rodrigues LG, Micocci KC, Campana-Filho SP, Colnago LA, Souza DHF. Activity of a Recombinant Chitinase of the Atta sexdens Ant on Different Forms of Chitin and Its Fungicidal Effect against Lasiodiplodia theobromae. Polymers (Basel) 2024; 16:529. [PMID: 38399907 PMCID: PMC10892911 DOI: 10.3390/polym16040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
This study evaluates the activity of a recombinant chitinase from the leaf-cutting ant Atta sexdens (AsChtII-C4B1) against colloidal and solid α- and β-chitin substrates. 1H NMR analyses of the reaction media showed the formation of N-acetylglucosamine (GlcNAc) as the hydrolysis product. Viscometry analyses revealed a reduction in the viscosity of chitin solutions, indicating that the enzyme decreases their molecular masses. Both solid state 13C NMR and XRD analyses showed minor differences in chitin crystallinity pre- and post-reaction, indicative of partial hydrolysis under the studied conditions, resulting in the formation of GlcNAc and a reduction in molecular mass. However, the enzyme was unable to completely degrade the chitin samples, as they retained most of their solid-state structure. It was also observed that the enzyme acts progressively and with a greater activity on α-chitin than on β-chitin. AsChtII-C4B1 significantly changed the hyphae of the phytopathogenic fungus Lasiodiplodia theobromae, hindering its growth in both solid and liquid media and reducing its dry biomass by approximately 61%. The results demonstrate that AsChtII-C4B1 could be applied as an agent for the bioproduction of chitin derivatives and as a potential antifungal agent.
Collapse
Affiliation(s)
- Katia Celina Santos Correa
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - William Marcondes Facchinatto
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, St. Santiago, 3810-193 Aveiro, Portugal;
| | - Filipe Biagioni Habitzreuter
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Gabriel Henrique Ribeiro
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Lucas Gomes Rodrigues
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Kelli Cristina Micocci
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Sérgio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Luiz Alberto Colnago
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Dulce Helena Ferreira Souza
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| |
Collapse
|
9
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
10
|
Mendarte-Alquisira C, Alarcón A, Ferrera-Cerrato R. Growth, tolerance, and enzyme activities of Trichoderma strains in culture media added with a pyrethroids-based insecticide. Rev Argent Microbiol 2024; 56:79-89. [PMID: 37640657 DOI: 10.1016/j.ram.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 08/31/2023] Open
Abstract
The application of pyrethroids and carbamates represents an environmental risk and may exert adverse effects on beneficial microorganisms such as Trichoderma, which contribute to the biocontrol of several fungal phytopathogens. This research evaluated the tolerance of several strains of Trichoderma to a selected culture medium contaminated with a commercial insecticide (H24®) composed of pyrethroids, permethrin and prallethrin, and carbamate propoxur, and determined the influence of this insecticide on the release of enzymes such as chitinases, peroxidases, and endoglucanases by a consortium of selected Trichoderma strains grown in liquid culture medium. Four out of 10 Trichoderma strains showed tolerance to 200ppm (∼48.3% of growth) of the commercial insecticide after 96h of exposure to a contaminated solid medium. After eight days of growth in liquid culture, the insecticide enhanced extracellular protein content and peroxidase activities in the Trichoderma consortium but decreased both chitinase and glucanase activities. These fungal responses should be considered when implementing strategies that combine alternative pesticides and fungal biocontrollers for managing fungal phytopathogens.
Collapse
Affiliation(s)
- Caliope Mendarte-Alquisira
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico
| | - Alejandro Alarcón
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico
| | - Ronald Ferrera-Cerrato
- Área de Microbiología, Posgrado de Edafología, Colegio de Postgraduados, Carretera Federal México-Texcoco km 36.5, Montecillo 56264, Estado de México, Mexico.
| |
Collapse
|
11
|
Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, Choi SI, Yun JY, Ahn YS. The Prospect of Hydrolytic Enzymes from Bacillus Species in the Biological Control of Pests and Diseases in Forest and Fruit Tree Production. Int J Mol Sci 2023; 24:16889. [PMID: 38069212 PMCID: PMC10707167 DOI: 10.3390/ijms242316889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree production. Even though chemical pesticides have been effective in the control of plant diseases and insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues that affect human life, animals, and the environment, as well as the growing challenge of pesticide resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as chitinases, β-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides. This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp. as effective biocontrol alternatives against phytopathogens/insect pests through the degradation of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins, β-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit tree production.
Collapse
Affiliation(s)
- Henry B. Ajuna
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Hyo-In Lim
- Forest Bioinformation Division, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Jae-Hyun Moon
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Sang-Jae Won
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Vantha Choub
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Su-In Choi
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Ju-Yeol Yun
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| | - Young Sang Ahn
- Department of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (H.B.A.); (J.-H.M.); (S.-J.W.); (V.C.); (S.-I.C.); (J.-Y.Y.)
| |
Collapse
|
12
|
Antifungal activity and mechanism of electron beam irradiation against Rhizopus oryzae. J Food Prot 2023; 86:100070. [PMID: 36989859 DOI: 10.1016/j.jfp.2023.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Electron beam irradiation is a physical fungicidal technique that has emerged as a potential application in China. However, its antifungal activity and mechanism against Rhizopus oryzae have not been reported. Thus, this study aimed to investigate the antifungal activity and mechanism of electron beam irradiation of R. oryzae. The antifungal activity analysis showed that the D10 value and complete elimination dose of R. oryzae irradiated by electron beam were 1.73 kGy and 8.08 kGy, respectively. Electron beam irradiation has a strong inhibitory effect on the filamentous biomass of R. oryzae. To reveal the antifungal mechanism of electron beam against R. oryzae, this study analyzed the dynamic changes in the cell wall, cell membrane, and oxidative stress induced by different irradiation doses. The results showed that electron beam irradiation destroyed the cell wall structure of R. oryzae, increasing chitinase activity and decreasing chitin content. Cell membrane integrity is disrupted, increasing relative conductivity, decreasing pH values, and decreasing soluble protein content. Electron beam irradiation causes oxidative stress in cells, increasing H2O2 content, decreasing antisuperoxide anion activity, decreasing DPPH free radical scavenging activity, and inhibiting defense enzyme (CAT and SOD) activity. This phenomenon indicates that electron beams can cause structural damage to and metabolic dysfunction of cells and disorders of redox homeostasis, which may be the main cause of growth inhibition and cell death in R. oryzae.
Collapse
|
13
|
Lee JH, Anderson AJ, Kim YC. Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms 2022; 10:microorganisms10051053. [PMID: 35630495 PMCID: PMC9146382 DOI: 10.3390/microorganisms10051053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Biological control is an important process for sustainable plant production, and this trait is found in many plant-associated microbes. This study reviews microbes that could be formulated into pesticides active against various microbial plant pathogens as well as damaging insects or nematodes. The focus is on the beneficial microbes that colonize the rhizosphere where, through various mechanisms, they promote healthy plant growth. Although these microbes have adapted to cohabit root tissues without causing disease, they are pathogenic to plant pathogens, including microbes, insects, and nematodes. The cocktail of metabolites released from the beneficial strains inhibits the growth of certain bacterial and fungal plant pathogens and participates in insect and nematode toxicity. There is a reinforcement of plant health through the systemic induction of defenses against pathogen attack and abiotic stress in the plant; metabolites in the beneficial microbial cocktail function in triggering the plant defenses. The review discusses a wide range of metabolites involved in plant protection through biocontrol in the rhizosphere. The focus is on the beneficial firmicutes and pseudomonads, because of the extensive studies with these isolates. The review evaluates how culture conditions can be optimized to provide formulations containing the preformed active metabolites for rapid control, with or without viable microbial cells as plant inocula, to boost plant productivity in field situations.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Agricultural Solutions, BASF Korea Ltd., Seoul 04518, Korea;
| | - Anne J. Anderson
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA;
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
14
|
Gracz-Bernaciak J, Mazur O, Nawrot R. Functional Studies of Plant Latex as a Rich Source of Bioactive Compounds: Focus on Proteins and Alkaloids. Int J Mol Sci 2021; 22:12427. [PMID: 34830309 PMCID: PMC8620047 DOI: 10.3390/ijms222212427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023] Open
Abstract
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.
Collapse
Affiliation(s)
| | | | - Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (J.G.-B.); (O.M.)
| |
Collapse
|
15
|
Morales-Ruiz E, Priego-Rivera R, Figueroa-López AM, Cazares-Álvarez JE, Maldonado-Mendoza IE. Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03. FEMS Microbiol Lett 2021; 368:6044226. [PMID: 33351136 DOI: 10.1093/femsle/fnaa218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023] Open
Abstract
Bacterial chitinases are a subject of intense scientific research due to their biotechnological applications, particularly their use as biological pesticides against phytopathogenic fungi as a green alternative to avoid the use of synthetic pesticides. Bacillus cereus sensu lato B25 is a rhizospheric bacterium that is a proven antagonist of Fusarium verticillioides, a major fungal pathogen of maize. This bacterium produces two chitinases that degrade the fungal cell wall and inhibit its growth. In this work, we used a heterologous expression system to purify both enzymes to investigate their biochemical traits in terms of Km, Vmax, optimal pH and temperature. ChiA and ChiB work as exochitinases, but ChiB exhibited a dual substrate activity and it is also an endochitinase. In this work, the direct addition of these chitinases inhibited fungal conidial germination and therefore they may play a major role in the antagonism against F. verticillioides.
Collapse
Affiliation(s)
- Estefanía Morales-Ruiz
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes 250, 81101, Col. San Joachin, Guasave, Sinaloa, Mexico
| | - Ricardo Priego-Rivera
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes 250, 81101, Col. San Joachin, Guasave, Sinaloa, Mexico
| | - Alejandro Miguel Figueroa-López
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, 85000, Ciudad Obregón, Sonora, Mexico
| | - Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes 250, 81101, Col. San Joachin, Guasave, Sinaloa, Mexico
| | - Ignacio E Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, CIIDIR Unidad Sinaloa, Instituto Politécnico Nacional, Boulevard Juan de Dios Bátiz Paredes 250, 81101, Col. San Joachin, Guasave, Sinaloa, Mexico
| |
Collapse
|
16
|
Minamihata K, Tanaka Y, Santoso P, Goto M, Kozome D, Taira T, Kamiya N. Orthogonal Enzymatic Conjugation Reactions Create Chitin Binding Domain Grafted Chitinase Polymers with Enhanced Antifungal Activity. Bioconjug Chem 2021; 32:1688-1698. [PMID: 34251809 DOI: 10.1021/acs.bioconjchem.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymatic reaction offers site-specific conjugation of protein units to form protein conjugates or protein polymers with intrinsic functions. Herein, we report horseradish peroxidase (HRP)- and microbial transglutaminase (MTG)-catalyzed orthogonal conjugation reactions to create antifungal protein polymers composed of Pteris ryukyuensis chitinase-A (ChiA) and its two domains, catalytic domain, CatD, and chitin-binding domain, LysM2. We engineered the ChiA and CatD by introducing a peptide tag containing tyrosine (Y-tag) at N-termini and a peptide tag containing lysine and tyrosine (KY-tag) at C-termini to construct Y-ChiA-KY and Y-CatD-KY. Also, LysM2 with Y-tag and KY-tag (Y-LysM2-KY) or with a glutamine-containing peptide tag (Q-tag) (LysM2-Q) were constructed. The proteins with Y-tag and KY-tag were efficiently polymerized by HRP reaction through the formation of dityrosine bonds at the tyrosine residues in the peptide tags. The Y-CatD-KY polymer was further treated by MTG to orthogonally graft LysM2-Q to the KY-tag via isopeptide formation between the side chains of the glutamine and lysine residues in the peptide tags to form LysM2-grafted CatD polymer. The LysM2-grafted CatD polymer exhibited significantly higher antifungal activity than the homopolymer of Y-ChiA-KY and the random copolymer of Y-CatD-KY and Y-LysM2-KY, demonstrating that the structural differences of artificial chitinase polymers have a significant impact on the antifungal activity. This strategy of polymerization and grafting reaction of protein can contribute to the further research and development of functional protein polymers for specific applications in various fields in biotechnology.
Collapse
Affiliation(s)
- Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pugoh Santoso
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Dan Kozome
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Cold-adapted chitinases from Antarctic bacteria: Taxonomic assessment and enzyme production optimization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Hassan AA, Ismail SA. Production of antifungal N-acetyl-β-glucosaminidase chitinolytic enzyme using shrimp byproducts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Pasin TM, de Oliveira TB, Scarcella ASDA, Polizeli MDLTDM, Guazzaroni ME. Perspectives on Expanding the Repertoire of Novel Microbial Chitinases for Biological Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3284-3288. [PMID: 33720714 DOI: 10.1021/acs.jafc.1c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interest in chitin-degrading enzymes has grown over the years, and microbial chitinases are the most attractive and promising candidates for the control of plant pests (fungi and insects). Currently, there are many studies on chitinases produced by cultivable microorganisms; however, almost none of them have achieved acceptable applicability as a biopesticide in the field. Approximately 99% of the microorganisms from soil cannot be isolated by conventional culture-dependent methods, thus having an enormous biotechnological/genetic potential to be explored. On the basis of this, the present paper aims to provide a brief overview of the metagenomic opportunities that have been emerging and allowing access to the biochemical potential of uncultivable microorganisms through the direct mining of DNA sequences recovered from the environment. This work also shortly discussed the future perspectives of functional and sequence-based metagenomic approaches for the identification of new chitinase-coding genes with potential for applications in several agricultural and biotechnological industries, especially in biological control.
Collapse
Affiliation(s)
- Thiago Machado Pasin
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Tássio Brito de Oliveira
- Department of Biology, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Ana Sílvia de Almeida Scarcella
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
- Department of Biology, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| |
Collapse
|
20
|
Recent advances in the bioprospection and applications of chitinolytic bacteria for valorization of waste chitin. Arch Microbiol 2021; 203:1953-1969. [PMID: 33710379 DOI: 10.1007/s00203-021-02234-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
One of the most abundant natural polymers on earth, chitin is a fibrous and structural polysaccharide, composed of N-acetyl-D-glucosamine. The biopolymer is the major structural constituent of fungi, arthropods, mollusks, nematodes, and some algae. The biodegradation of chitin is largely manifested by chitinolytic enzyme secreting organisms including bacteria, insects, and plants. Among them, bacterial chitinases represent the most promising, inexpensive, and sustainable source of proteins that can be employed for industrial-scale applications. To this end, the presented review comes at a timely moment to highlight the major sources of chitinolytic bacteria. It also discusses the potential pros and cons of prospecting bacterial chitinases that can be easily manipulated through genetic engineering. Additionally, we have elaborated the recent applications of the chitin thereby branding chitinases as potential candidates for biorefinery and biomedical research for eco-friendly and sustainable management of chitin waste in the environment.
Collapse
|
21
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
22
|
Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Trop 2020; 212:105686. [PMID: 32866458 DOI: 10.1016/j.actatropica.2020.105686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Vector control, the most efficient tool to reduce mosquito-borne disease transmission, has been compromised by the rise of insecticide resistance. Recent studies suggest the potential of mosquito-associated microbiota as a source for new biocontrol agents or new insecticidal chemotypes. In this study, we identified a strain of Serratia marcescens that has larvicidal activity against Anopheles dirus, an important malaria vector in Southeast Asia. This bacterium secretes heat-labile larvicidal macromolecules when cultured under static condition at 25°C but not 37°C. Two major protein bands of approximately 55 kDa and 110 kDa were present in spent medium cultured at 25°C but not at 37°C. The Liquid Chromatography-Mass Spectrometry (LC-MS) analyses of these two protein bands identified several proteases and chitinases that were previously reported for insecticidal properties against agricultural insect pests. The treatment with protease and chitinase inhibitors led to a reduction in larvicidal activity, confirming that these two groups of enzymes are responsible for the macromolecule's toxicity. Taken together, our results suggest a potential use of these enzymes in the development of larvicidal agents against Anopheles mosquitoes.
Collapse
|
23
|
Protection of surplus food from fungal spoilage using Streptomyces spp.: a green approach. Arch Microbiol 2020; 203:941-950. [PMID: 33089339 DOI: 10.1007/s00203-020-02087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
Consortia of Streptomyces spp. (colonies 169, 194, 165 and 130) used in this study are an efficient producer of secondary metabolites like chitinases and antifungal compounds, which may help in the protection of surplus food from spoilage. Qualitative screening for chitinase production and taxonomy of these colonies were undertaken in our previous studies. In the current study, GC-MS analysis of extract produced from the consortia of Streptomyces strains was done for the identification of antifungal compounds. Treatment of surplus food with activated consortia of Streptomyces spp. has protected powdered food for a month, whereas fresh food (unpowdered) was preserved for two days. A control sample of surplus food (untreated) was kept to check the contamination, which resulted in the growth of three fungi (FP-1, FG-1, and FB-1). Taxonomic characterization of fungi and identification of toxic compounds produced from them were done by ITS amplification and GC-MS analysis, respectively. The study shows that the secondary metabolites from Streptomyces spp. have the potential to protect the food from mycotoxin contamination. Based on literature reports, this is for the first time that bioactive compounds and chitinases produced from Streptomyces are being used for the protection and management of surplus food.
Collapse
|
24
|
Characterization of chitinase from Shewanella inventionis HE3 with bio-insecticidal effect against granary weevil, Sitophilus granarius Linnaeus (Coleoptera: Curculionidae). Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|