1
|
Benine C, Boutlelis DA, Touhami LA, Lanez E, Ghemam Amara D, Rim G, Hanen N, Zahnit W, Messaoudi M. Green synthesis, characterization, antioxidant, interaction with DNA/BSA, and investigation of cytotoxicity against MCF-7 cancer cells of zinc oxide nanoparticles using Hammada scoparia (Pomel) Iljin extract. Int J Biol Macromol 2025; 295:139709. [PMID: 39798760 DOI: 10.1016/j.ijbiomac.2025.139709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise. The purpose of our study based on developed a simple, green synthesis method for ZnO-NPs nanoparticles using Hammada scoparia (Pomel) Iljin extract. Characterization through XRD, SEM, and FTIR confirmed the successful synthesis and structural properties of the NPs, revealing an average crystallite size of 17.786 nm and a particle size of 36.12 ± 4.52 nm. EDX analysis detected significant amounts of zinc and oxygen, while FTIR spectra identified various functional groups. Antioxidant assays (ABTS, DPPH, FRAP) showed that ZnO-NPs exhibit notable free radical scavenging activities, albeit less effective than ascorbic acid. Additionally, cyclic voltammetry and electronic spectroscopy studies indicated strong electrostatic interactions between ZnO-NPs and biomolecules such as DNA and BSA, suggesting potential applications in drug delivery. Cytotoxicity tests on MCF-7 breast cancer cells demonstrated significant dose-dependent inhibition of cell viability, emphasizing the potential of ZnO-NPs as effective agents in cancer therapy. Overall, the findings underscore the promising biomedical applications of ZnO-NPs, particularly in antioxidant and anticancer therapies.
Collapse
Affiliation(s)
- Chaima Benine
- Department of Cellular and Molecular Biology, Faculty of Life and Natural Science, University of El Oued, 39000, Algeria; Laboratory of Biology, Environment and Health (LBEH), University of El Oued, 39000, Algeria
| | - Djahra Ali Boutlelis
- Department of Cellular and Molecular Biology, Faculty of Life and Natural Science, University of El Oued, 39000, Algeria; Laboratory of Biology, Environment and Health (LBEH), University of El Oued, 39000, Algeria
| | - Laiche Ammar Touhami
- Department of Biology, Faculty of Life and Natural Science, University of El Oued, 39000, Algeria; Laboratory of Biodiversity and Application of Biotechnology in Agriculture (BABDA), University of El Oued, 39000, Algeria
| | - Elhafnaoui Lanez
- Department of Cellular and Molecular Biology, Faculty of Life and Natural Science, University of El Oued, 39000, Algeria; VTRS Laboratory, Department of Chemistry, Faculty of Exact Sciences, University of El Oued, 39000, Algeria
| | - Djilani Ghemam Amara
- Department of Biology, Faculty of Life and Natural Science, University of El Oued, 39000, Algeria; Laboratory of Biology, Environment and Health (LBEH), University of El Oued, 39000, Algeria
| | - Gatrane Rim
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Najjaa Hanen
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Medenine 4119, Tunisia
| | - Wafa Zahnit
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000 El Bez, Algeria
| | | |
Collapse
|
2
|
Kumar R, Dhar I, Sharma MM. Zinc Oxide Nanoparticles: Applications in Photocatalysis of Dyes and Pearl Millet Seed Priming for Enhanced Agricultural Output. ACS OMEGA 2025; 10:7181-7193. [PMID: 40028148 PMCID: PMC11866003 DOI: 10.1021/acsomega.4c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
This research examines the environmentally benign manufacture of zinc oxide nanoparticles employing a crude extract from Murraya koenigii leaves as a capping and reducing agent. The considerable peak of synthesized zinc oxide nanoparticles (ZnO NPs) was observed at 335 nm, and the functional groups of plant active metabolites to reduce zinc and evaluate shape and elemental compositions were analyzed using UV-vis spectroscopy, FT-IR, SEM, and EDX analysis, respectively. The average size of synthesized zinc oxide nanoparticles (27.26 nm) was validated by XRD using the Debye-Scherrer's equation. Zinc oxide nanoparticles were assessed for their efficiency in seed priming, photocatalytic degradation, antibacterial activity, and antioxidant abilities. The biosynthesized zinc oxide nanoparticles were utilized in seed priming, significantly enhancing germination rate (90%), shoot length (5.46 cm), and root length (15.13 cm) at a concentration of 150 ppm in comparison to control. Further, the effect of methyl orange (MO) and methylene blue (MB) dyes on % seed germination and plant growth of hybrid pearl millet was studied in vitro. MO and MB had shown approximately 15 and 46% reduction in seed germination % in comparison to control. Additionally, zinc oxide nanoparticles had shown remarkable photocatalytic degradation of 94.45% against methylene blue and 85.99% against methyl orange. Zinc oxide nanoparticles were also effective against Escherichia coli and Staphylococcus aureus bacteria, with zones of inhibition of 0.45 and 0.35 cm at a 100 mg/mL concentration. Furthermore, zinc nanoparticles observed higher antioxidant activity against DPPH at 80 μg/mL. The present finding highlights the potential of biosynthesized zinc oxide nanoparticles as a sustainable approach to agriculture, environmental remediation, and biological sciences.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur–Ajmer
Expressway, Jaipur 303007, Rajasthan, India
| | - Irra Dhar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur–Ajmer
Expressway, Jaipur 303007, Rajasthan, India
| | - Madan Mohan Sharma
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Near JVK Toll Plaza, Jaipur–Ajmer
Expressway, Jaipur 303007, Rajasthan, India
| |
Collapse
|
3
|
Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol 2025; 207:50. [PMID: 39891715 DOI: 10.1007/s00203-025-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Trimetallic nanoparticles (TMNPs) have emerged as a pivotal area of research due to their unique properties and diverse applications across medicine, agriculture, and environmental sciences. This review provides several novel contributions that distinguish it from existing literature on trimetallic nanoparticles (TMNPs). Firstly, it offers a focused exploration of TMNPs, specifically addressing their unique properties and applications, which have been less examined compared to other multimetallic nanoparticles. This targeted analysis fills a significant gap in current research. Secondly, the review emphasizes innovative biosynthesis methods utilizing microorganisms and plant extracts, positioning these green synthesis approaches as environmentally friendly alternatives to traditional chemical methods. This focus aligns with the increasing demand for sustainable practices in nanotechnology. Furthermore, the review integrates discussions on both medical and agricultural applications of TMNPs, highlighting their multifunctional potential across diverse fields. This comprehensive perspective enhances our understanding of how TMNPs can address various challenges. Additionally, the review explores the synergistic effects among the different metals in TMNPs, providing insights into how these interactions can be harnessed to optimize their properties for specific applications. Such discussions are often overlooked in existing studies. Moreover, this review identifies critical research gaps and challenges within the field, outlining future directions that encourage further investigation and innovation in TMNP development. By doing so, it proactively contributes to advancing the field. Finally, the review advocates for interdisciplinary collaboration among material scientists, biologists, and environmental scientists, emphasizing the importance of diverse expertise in enhancing the research and application of TMNPs.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | | | - Mahmoud A Diab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Amer Morsy Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Mohamed Abdelrahman Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nasser Ibrahim Issa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ziad A Hamdy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed E Nafea
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Nageh Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Albraa Adel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdulrahman Hasib
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Mostafa Hawela
- Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | | | - Mustafa A Nouh
- Research and Development Department, ALSALAM International for Development & Agricultural Investment, Giza, Egypt
| | - Ahmed Abdelhay Nahool
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
Manikandan R, Thomas J. Sustainable Approaches in Green Synthesis of Silica Nanoparticles Using Extracts of Chlorella and Its Application. Appl Biochem Biotechnol 2024; 196:7928-7939. [PMID: 38662321 DOI: 10.1007/s12010-024-04949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Silica nanoparticles, also known as SiO2 nanoparticles, have wider applications in biomedical, building, water treatment, agriculture, and food industries. It is used as an anticaking agent in the food industry, used to remove heavy metals from water, and used in cement-based materials. SiO2 nanoparticles synthesized by physical and chemical methods require high energy and use of toxic chemicals which is quite expensive, have a greater impact causing health-related issues, and have environmental side effects. Hence, there is a need to synthesize nanoparticles in an eco-friendly way. The biological or green synthesis method uses microbes, such as bacteria, fungi, algae, and plants for synthesizing nanoparticles. Algae contain natural biochemicals that act as reducing agents. These biomolecules are non-toxic as they are naturally occurring compounds and can be used to fabricate nanoparticles by avoiding the use of toxic chemicals in an eco-friendly method. In this study, silica nanoparticles were synthesized by green synthesis methods using microalgae extract. Further, the green synthesized silica nanoparticles were characterized using ultra violet-visible (UV-VIS) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray analysis (EDAX). The antimicrobial activity of the silica nanoparticles against E. coli was studied. This study revealed that the nanoparticles can be synthesized using green synthesis methods with low cost, less toxic chemicals, eco-friendly, and have antimicrobial activity against E. coli.
Collapse
Affiliation(s)
- Ragul Manikandan
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India
| | - Jibu Thomas
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
5
|
Muthu S, Lakshmikanthan M, Edward-Sam E, Subramanian M, Govindan L, Patcha ABM, Krishnan K, Duraisamy N, Jeyaperumal S, Aziz AT. Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. Pharmaceutics 2024; 16:1300. [PMID: 39458629 PMCID: PMC11510838 DOI: 10.3390/pharmaceutics16101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Phloroglucinol (PHL), a phenolic compound extracted from the brown alga Rosenvingea intricata, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential. METHODS PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL. RESULTS The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC50 of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction. CONCLUSIONS The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mythileeswari Lakshmikanthan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Edwin Edward-Sam
- Department of Microbiology, Division of Virology and Molecular Biology, St. Peters Medical College Hospital & Research Institute, Hosur 635130, Tamil Nadu, India;
| | - Mutheeswaran Subramanian
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Lakshmanan Govindan
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Afrina Begum Mithen Patcha
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Nallusamy Duraisamy
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai 600078, Tamil Nadu, India;
| | - Selvakumari Jeyaperumal
- National Centre for Disease Control, Thiruvananthapuram Field Unit, Iranimuttam, Thiruvananthapuram 695009, Kerala, India;
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
6
|
Kalaba MH, El-Sherbiny GM, Ewais EA, Darwesh OM, Moghannem SA. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Streptomyces baarnensis and its active metabolite (Ka): a promising combination against multidrug-resistant ESKAPE pathogens and cytotoxicity. BMC Microbiol 2024; 24:254. [PMID: 38982372 PMCID: PMC11232237 DOI: 10.1186/s12866-024-03392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Various eco-friendly techniques are being researched for synthesizing ZnO-NPs, known for their bioactivity. This study aimed at biosynthesizing ZnO-NPs using Streptomyces baarnensis MH-133, characterizing their physicochemical properties, investigating antibacterial activity, and enhancement of their efficacy by combining them with a water-insoluble active compound (Ka) in a nanoemulsion form. Ka is a pure compound of 9-Ethyl-1,4,6,9,10-pentahydroxy-7,8,9,10-tetrahydrotetracene-5,12-dione obtained previously from our strain of Streptomyces baarnensis MH-133. Biosynthesized ZnO-NPs employing Streptomyces baarnensis MH-133 filtrate and zinc sulfate (ZnSO4.7H2O) as a precursor were purified and characterized by physicochemical investigation. High-resolution-transmission electron microscopy (HR-TEM) verified the effective biosynthesis of ZnO-NPs (size < 12 nm), whereas dynamic light scattering (DLS) analysis showed an average size of 17.5 nm. X-ray diffraction (XRD) exhibited characteristic diffraction patterns that confirmed crystalline structure. ZnO-NPs efficiently inhibited both Gram-positive and Gram-negative bacteria (MICs: 31.25-125 µg/ml). The pure compound (Ka) was combined with ZnO-NPs to improve effectiveness and reduce dose using checkerboard microdilution. Niteen treatments of Ka and ZnO-NPs combinations obtained by checkerboard matrix inhibited Klebsiella pneumonia. Eleven combinations had fractional inhibitory concentration index (FICi) between 1.03 and 2, meaning indifferent, another five combinations resulted from additive FICi (0.625-1) and only one combination with FICi of 0.5, indicating synergy. In the case of methicillin-resistant S. aureus (MRSA), Ka-ZnO-NPs combinations yielded 23 treatments with varying degrees of interaction. The results showed eleven treatments with indifferent interaction, eight additive interactions, and two synergies with FICi of 0.5 and 0.375. The combinations that exhibited synergy action were transformed into a nanoemulsion form to improve their solubility and bioavailability. The HR-TEM analysis of the nanoemulsion revealed spherical oil particles with a granulated core smaller than 200 nm and no signs of aggregation. Effective dispersion was confirmed by DLS analysis which indicated that Ka-ZnO-NPs nanoemulsion droplets have an average size of 53.1 nm and a polydispersity index (PI) of 0.523. The killing kinetic assay assessed the viability of methicillin-resistant Staphylococcus aureus (MRSA) and K. pneumonia post-treatment with Ka-ZnO-NPs combinations either in non-formulated or nanoemulsion form. Results showed Ka-ZnO-NPs combinations show concentration and time-dependent manner, with higher efficacy in nanoemulsion form. The findings indicated that Ka-ZnO-NPs without formulation at MIC values killed K. pneumonia after 24 h but not MRSA. Our nanoemulsion loaded with the previously mentioned combinations at MIC value showed bactericidal effect at MIC concentration of Ka-ZnO-NPs combination after 12 and 18 h of incubation against MRSA and K. pneumonia, respectively, compared to free combinations. At half MIC value, nanoemulsion increased the activity of the combinations to cause a bacteriostatic effect on MRSA and K. pneumonia after 24 h of incubation. The free combination showed a bacteriostatic impact for 6 h before the bacteria regrew to increase log10 colony forming unit (CFU)/ml over the initial level. Similarly, the cytotoxicity study revealed that the combination in nanoemulsion form decreased the cytotoxicity against kidney epithelial cells of the African green monkey (VERO) cell line. The IC50 for Ka-ZnO-NPs non-formulated treatment was 8.17/1.69 (µg/µg)/ml, but in nano-emulsion, it was 22.94 + 4.77 (µg/µg)/mL. In conclusion, efficient Ka-ZnO-NPs nanoemulsion may be a promising solution for the fighting of ESKAPE pathogenic bacteria according to antibacterial activity and low toxicity.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Emad A Ewais
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Saad A Moghannem
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
7
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
Wen J, Gao F, Liu H, Wang J, Xiong T, Yi H, Zhou Y, Yu Q, Zhao S, Tang X. Metallic nanoparticles synthesized by algae: Synthetic route, action mechanism, and the environmental catalytic applications. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111742. [DOI: 10.1016/j.jece.2023.111742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Cruz-Luna AR, Vásquez-López A, Rojas-Chávez H, Valdés-Madrigal MA, Cruz-Martínez H, Medina DI. Engineered Metal Oxide Nanoparticles as Fungicides for Plant Disease Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:2461. [PMID: 37447021 DOI: 10.3390/plants12132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Metal oxide nanoparticles are considered to be good alternatives as fungicides for plant disease control. To date, numerous metal oxide nanoparticles have been produced and evaluated as promising antifungal agents. Consequently, a detailed and critical review on the use of mono-, bi-, and tri-metal oxide nanoparticles for controlling phytopathogenic fungi is presented. Among the studied metal oxide nanoparticles, mono-metal oxide nanoparticles-particularly ZnO nanoparticles, followed by CuO nanoparticles -are the most investigated for controlling phytopathogenic fungi. Limited studies have investigated the use of bi- and tri-metal oxide nanoparticles for controlling phytopathogenic fungi. Therefore, more studies on these nanoparticles are required. Most of the evaluations have been carried out under in vitro conditions. Thus, it is necessary to develop more detailed studies under in vivo conditions. Interestingly, biological synthesis of nanoparticles has been established as a good alternative to produce metal oxide nanoparticles for controlling phytopathogenic fungi. Although there have been great advances in the use of metal oxide nanoparticles as novel antifungal agents for sustainable agriculture, there are still areas that require further improvement.
Collapse
Affiliation(s)
- Aida R Cruz-Luna
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca 71230, Mexico
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Alcaldía Tláhuac, Ciudad de México 13550, Mexico
| | - Manuel A Valdés-Madrigal
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, Ciudad Hidalgo 61100, Mexico
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
11
|
Cheraghipour K, Azarhazine M, Zivdari M, Beiranvand M, Shakib P, Rashidipour M, Mardanshah O, Mohaghegh MA, Marzban A. Evaluation of scolicidal potential of salicylate coated zinc nanoparticles against Echinococcus granulosus protoscoleces. Exp Parasitol 2023; 246:108456. [PMID: 36610471 DOI: 10.1016/j.exppara.2022.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 μg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 μg/ml at 10 min and SA alone at 2000 μg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 μg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.
Collapse
Affiliation(s)
- Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Lorestan Provincial Veterinary Service, Khorramabad, Iran
| | - Mohammad Azarhazine
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marjan Beiranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mohammad Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
12
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
13
|
Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. CHEMOSPHERE 2022; 293:133571. [PMID: 35026203 DOI: 10.1016/j.chemosphere.2022.133571] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 05/22/2023]
Abstract
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.
Collapse
Affiliation(s)
- Fahad Khan
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
14
|
Abdullah FH, Bakar NHHA, Bakar MA. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127416. [PMID: 34655867 DOI: 10.1016/j.jhazmat.2021.127416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Industrial wastewaters contain hazardous contaminants that pollute the environment and cause socioeconomic problems, thus demanding the employment of effective remediation procedures such as photocatalysis. Zinc oxide (ZnO) nanomaterials have emerged to be a promising photocatalyst for the removal of pollutants in wastewater owing to their excellent and attractive characteristics. The dynamic tunable features of ZnO allow a wide range of functionalization for enhanced photocatalytic efficiency. The current review summarizes the recent advances in the fabrication, modification, and industrial application of ZnO photocatalyst based on the analysis of the latest studies, including the following aspects: (1) overview on the properties, structures, and features of ZnO, (2) employment of dopants, heterojunction, and immobilization techniques for improved photodegradation performance, (3) applicability of suspended and immobilized photocatalytic systems, (4) application of ZnO hybrids for the removal of various types of hazardous pollutants from different wastewater sources in industries, and (5) potential of bio-inspired ZnO hybrid nanomaterials for photocatalytic applications using renewable and biodegradable resources for greener photocatalytic technologies. In addition, the knowledge gap in this field of work is also highlighted.
Collapse
Affiliation(s)
- F H Abdullah
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - N H H Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - M Abu Bakar
- Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
15
|
Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions. J Fungi (Basel) 2021; 7:1033. [PMID: 34947015 PMCID: PMC8706727 DOI: 10.3390/jof7121033] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
The use of metal nanoparticles is considered a good alternative to control phytopathogenic fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe) have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag nanoparticles have been the most investigated nanoparticles due to their good antifungal activities, followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis methods have been used to produce these nanoparticles with different shapes and sizes, which have shown outstanding antifungal activities. This review shows the success of the use of metal nanoparticles to control phytopathogenic fungi in agriculture.
Collapse
Affiliation(s)
- Aida R. Cruz-Luna
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo 68230, Mexico;
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|
16
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
17
|
Cassani L, Marcovich NE, Gomez-Zavaglia A. Seaweed bioactive compounds: Promising and safe inputs for the green synthesis of metal nanoparticles in the food industry. Crit Rev Food Sci Nutr 2021; 63:1527-1550. [PMID: 34407716 DOI: 10.1080/10408398.2021.1965537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Scientific research on developing and characterizing eco-friendly metal nanoparticles (NPs) is an active area experiencing currently a systematic and continuous growth. A variety of physical, chemical and more recently biological methods can be used for the synthesis of metal nanoparticles. Among them, reports supporting the potential use of algae in the NPs green synthesis, contribute with only a minor proportion, although seaweed was demonstrated to perform as a successful reducing and stabilizing agent. Thus, the first part of the present review depicts the up-to-date information on the use of algae extracts for the synthesis of metal nanoparticles, including a deep discussion of the certain advantages as well as some limitations of this synthesis route. In the second part, the available characterization techniques to unravel their inherent properties such as specific size, shape, composition, morphology and dispersibility are comprehensively described, to finally focus on the factors affecting their applications, bioactivity, potential toxic impact on living organisms and incorporation into food matrices or food packaging, as well as future prospects. The present article identifies the key knowledge gap in a systematic way highlighting the critical next steps in the green synthesis of metal NPs mediated by algae.
Collapse
Affiliation(s)
- Lucía Cassani
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CCT-CONICET), Mar del Plata, Argentina.,Departamento de Ingeniería Química y en Alimentos - Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Norma E Marcovich
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA, CCT-CONICET), Mar del Plata, Argentina.,Departamento de Ingeniería Química y en Alimentos - Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|