1
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
2
|
Ariaee A, Koentgen S, Wardill HR, Hold GL, Prestidge CA, Armstrong HK, Joyce P. Prebiotic selection influencing inflammatory bowel disease treatment outcomes: a review of the preclinical and clinical evidence. EGASTROENTEROLOGY 2024; 2:e100055. [PMID: 39944472 PMCID: PMC11731074 DOI: 10.1136/egastro-2023-100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2025]
Abstract
Inflammatory bowel disease (IBD) is characterised by chronic inflammation in the gastrointestinal tract, with unclear aetiology but with known factors contributing to the disease, including genetics, immune responses, environmental factors and dysbiosis of the gut microbiota. Existing pharmacotherapies mainly target the inflammatory symptoms of disease, but recent research has highlighted the capacity for microbial-accessible carbohydrates that confer health benefits (ie, prebiotics) to selectively stimulate the growth of beneficial gut bacteria for improved IBD management. However, since prebiotics vary in source, chemical composition and microbiota effects, there is a clear need to understand the impact of prebiotic selection on IBD treatment outcomes. This review subsequently explores and contrasts the efficacy of prebiotics from various sources (β-fructans, galacto-oligosaccharides, xylo-oligosaccharides, resistant starch, pectin, β-glucans, glucomannans and arabinoxylans) in mitigating IBD symptomatology, when used as either standalone or adjuvant therapies. In preclinical animal colitis models, prebiotics have revealed type-dependent effects in positively modulating gut microbiota composition and subsequent attenuation of disease indicators and proinflammatory responses. While prebiotics have demonstrated therapeutic potential in animal models, clinical evidence for their precise efficacy remains limited, stressing the need for further investigation in human patients with IBD to facilitate their widespread clinical translation as microbiota-targeting IBD therapies.
Collapse
Affiliation(s)
- Amin Ariaee
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sabrina Koentgen
- University of New South Wales, Sydney, New South Wales, Australia
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Georgina L Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Heather K Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
- Manitoba Multiple Sclerosis Research Centre, Winnipeg, Manitoba, Canada
- Children’s Health Research Institute Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Xia P, Zhao M, Jin H, Hou T, Deng Z, Zhang M, Zhou Q, Zhan F, Li B, Li J. Konjac glucomannan-assisted curcumin alleviated dextran sulfate sodium-induced mice colitis via regulating immune response and maintaining intestinal barrier integrity. Food Funct 2023; 14:8747-8760. [PMID: 37698392 DOI: 10.1039/d3fo01068f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Curcumin has been proven to be an effective strategy for reducing inflammatory responses. However, low bioavailability and instability at the physiological pH have limited its anti-inflammatory activity in ulcerative colitis patients. In the present study, a complex of curcumin and konjac glucomannan (KGM) effectively inhibited intestinal inflammation and this effect was associated with KGM degradation degrees. Results demonstrated that treatment with the complex markedly mitigated colitis symptoms and decreased inflammatory cytokines levels, especially in the complex treatment groups with K110 (KGM treated in 110 °C) and konjac oligosaccharides (KOSs). Furthermore, increasing the KOS content in KOC (the complex of curcumin and KOS) promoted the gene expressions of the intestinal barrier and inhibited the gene expressions of inflammatory cytokines, as well as improved gut microbiota dysregulation. Overall, our studies suggest that the complex of curcumin and KGM exerts effective anti-inflammatory effects by regulating the intestinal immune response and modulating microbiota diversity and composition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Mengge Zhao
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hong Jin
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Hou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhichang Deng
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mengting Zhang
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Zhou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fuchao Zhan
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jing Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
5
|
Sun Q, Chen J, Zhao Q, He Z, Tang L, Pu Y, He B. Bio-adhesive and ROS-scavenging hydrogel microspheres for targeted ulcerative colitis therapy. Int J Pharm 2023; 639:122962. [PMID: 37068716 DOI: 10.1016/j.ijpharm.2023.122962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Ulcerative colitis (UC) as an important type of inflammatory bowel disease is a chronic disease characterized by intestinal dyshomeostasis. The UC treatment is challenged by the insufficiency of drug delivery and retention. Herein, we fabricated an intrarectal formulation of olsalazine (Olsa)-loaded hydrogel microspheres (LDKT/Olsa) with good bio-adhesiveness and reactive oxygen species (ROS)-scavenging ability to enhance drug retention and therapeutic effect. Low methoxy pectin-dopamine conjugate/konjac glucomannan composite hydrogel microspheres (LDKT) with a size ranging from 10 to 100 μm were prepared by using Zn2+ and ROS-sensitive thioketal as crosslinkers. Upon intrarectal administration, the negatively charged and dopamine-functionalized hydrogel microspheres efficiently adhered to cationic surface of inflammatory mucosa, scavenging ROS and releasing Zn2+ and Olsa for antibacterial and anti-inflammatory effects. In the dextran sodium sulfate (DSS)-induced mouse UC model, the microspheres significantly reduced the levels of colonic ROS and pro-inflammatory cytokines, improved gut mucosal barrier integrity, and remarkably relieved colitis. Overall, the LDKT microspheres are promising carriers to deliver drugs for UC treatment.
Collapse
Affiliation(s)
- Qiqi Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jun Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
7
|
Tang J, Liu J, Yan Q, Gu Z, August A, Huang W, Jiang Z. Konjac Glucomannan Oligosaccharides Prevent Intestinal Inflammation Through SIGNR1-Mediated Regulation of Alternatively Activated Macrophages. Mol Nutr Food Res 2021; 65:e2001010. [PMID: 34390195 DOI: 10.1002/mnfr.202001010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 08/05/2021] [Indexed: 12/23/2022]
Abstract
SCOPE Konjac glucomannan oligosaccharides (KMOS) are prebiotics and may improve intestinal immunity through modulation of macrophage function. However, the underlying molecular mechanisms were unclear. METHODS AND RESULTS Using a mouse model of dextran sulfated sodium (DSS)-induced acute colitis, the study demonstrates here that KMOS (400 mg-1 kg-1 d-1 ) can ameliorate intestinal inflammation in a macrophage dependent manner. Oral exposure to KMOS prevents DSS-induced intestinal pathology, improves epithelial integrity, and decreases accumulation of colonic inflammatory leukocytes and cytokines. The therapeutic effects of KMOS are dependent on the function of macrophages, as depletion of macrophages abolished the effects. In colonic lamina propria of DSS-treated mice, as well as in vitro culture of bone marrow derived macrophages (BMDMs), KMOS skews reprogramming of classically activated macrophages (CAM/M1) into alternatively activated macrophages (AAM/M2). The study further determines that the activation of SIGNR1/phospho-c-Raf (S338)/phospho-p65 (S276)/acetyl-p65 (K310) pathway is responsible for KMOS-induced AAM/M2 polarization. Blockage of SIGNR1 abolishes KMOS-induced AAM/M2 polarization of activated macrophages, expression of phospho-p65 (S276) in colonic macrophages, and alleviation of DSS-induced colitis in mice, suggesting that SIGNR1 is critical for macrophage responses to KMOS. CONCLUSIONS This study reveals a SIGNR1-mediated macrophage-dependent pathway that supports regulatory function of KMOS in host immunity and intestinal homeostasis.
Collapse
Affiliation(s)
- Jiqing Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhenglong Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 13843, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 13843, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
8
|
Lu Y, Yu Z, Zhang Z, Liang X, Gong P, Yi H, Yang L, Liu T, Shi H, Zhang L. Bifidobacterium animalis F1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport. Food Funct 2021; 12:791-801. [PMID: 33393951 DOI: 10.1039/d0fo02227f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Probiotics and natural products can promote humoral transport and effectively relieve intestinal motility. This study investigated the effects of probiotics in combination with konjac glucomannan (KGM) and an aqueous extract of Prunus persica on constipation. The growth promotion effect of these natural products on probiotics was investigated using co-culture in vitro. The combined effect of probiotics and natural products on constipation was observed in mice. The tryptophan, tryptamine and short-chain fatty acid levels were determined using enzyme-linked immunosorbent assay, reverse-phase high-performance liquid chromatography, and gas chromatography. The key genes and proteins involved in humoral transport were identified using real-time polymerase chain reaction, western blotting and fluorescence immunoassay. KGM promoted the growth of Bifidobacterium animalis F1-7 in vitro, and a mixture of KGM and B. animalis F1-7 effectively promoted defaecation in mice, increased the faecal water content, shortened the defaecation time and improved the gastrointestinal transit rate. In mice, the KGM + F1-7 mixture reduced the tryptophan level and increased the levels of tryptamine, acetic acid, propionic acid, butyric acid and valeric acid. In addition, the KGM + F1-7 mixture effectively increased the mRNA level of 5-HT4-G-protein-coupled receptors (5-HT4GPCR)/mucins-2 (MUC-2) and reduced the level of aquaporins (AQP3); furthermore, it upregulated the protein level of 5-HT4GPCR/MUC-2 and downregulated the protein level of AQP3. These findings indicated that the KGM + F1-7 mixture effectively improved intestinal motility and alleviated constipation through humoral transport-related pathways.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lu Y, Zhang J, Zhang Z, Liang X, Liu T, Yi H, Gong P, Wang L, Yang W, Zhang X, Zhang L, Yang L, Shi H. Konjac glucomannan with probiotics acts as a combination laxative to relieve constipation in mice by increasing short-chain fatty acid metabolism and 5-hydroxytryptamine hormone release. Nutrition 2020; 84:111112. [PMID: 33454530 DOI: 10.1016/j.nut.2020.111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Various probiotics and natural products can help to relieve constipation. This study aimed to explore the constipation-relieving effects and potential mechanism of a combination laxative of konjac glucomannan and probiotics. METHODS This study evaluated the gastrointestinal-tract viability of probiotics in vitro. A constipation model was constructed in BALB/c mice, and the efficacies of the combinations verified in terms of their bowel movement-promoting effects, including the first black-stool defecation time and gastrointestinal transit rates of mice. Colonization by the probiotics was determined by quantitative real-time polymerase chain reaction. Hematoxylin-eosin staining, gas chromatography, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot were also used for analysis. RESULTS Lactobacillus paracasei X11 (X11) and L. casei YRL577 (YRL577) had outstanding gastrointestinal-tract viability. Konjac glucomannan (KGM) + X11, Prunus persica + X11, and Prunus persica + YRL577 significantly relieved constipation. In addition, KGM promoted the colonization of X11. Meanwhile, KGM + X11 effectively promoted the metabolism of short-chain fatty acids in mice better than other combinations, and the 5-hydroxytryptamine (5-HT) content in the KGM + X11 group was the highest among all the groups. Therefore, KGM + X11 was selected for further research. The combination laxative promoted the secretion of 5-HT, up-regulated mRNA and protein levels of 5-HT receptor 4 and serotonin transporter via the 5-HT pathway, and effectively relieved constipation. CONCLUSIONS The combination laxative konjac glucomannan-probiotic (KGM + X11) promoted defecation in constipated mice, possibly by increasing short-chain fatty acid metabolism and 5-HT hormone release.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junxue Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingli Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wenjun Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Shah BM, Palakurthi SS, Khare T, Khare S, Palakurthi S. Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease. Int J Biol Macromol 2020; 165:722-737. [PMID: 33010274 DOI: 10.1016/j.ijbiomac.2020.09.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Treatments for inflammatory bowel disease (IBD) are typically immunosuppressive. Despite a range of treatment options, limited efficacy, systemic toxicities like bone marrow suppression, infections and malignancy are their serious setbacks. There exists an unmet medical need for novel therapeutic agents without safety concerns resulting from chronic, systemic immunosuppression. Of late, several natural agents with better therapeutic potential have been reported. It is very likely that restricting the release of the active molecules to the intestine would further improve their clinical efficacy and safety. To this end, novel polymer-based micro/nano formulations protect the drug from gastric environment and slowly release the drug in the colon. However, cost and side-effects associated to synthetic polymers have led to the development of biocompatible, economic and pharmaceutically well-accepted biomacromolecules in exploring their potential in IBD. Since last few years, biological proteins, polysaccharides and their combinations have shown great efficacy in colitis induced animal models. In this review, micro/nano formulations developed using biomacromolecules like chitosan, zein, pectin, casein, alginate, dextran, glucomannan and hyaluronic acid have been reviewed focusing on their potential in protecting active cargo, avoiding premature release, distal colon targeting along with their impact on reshaping the altered gut microbiota and how it can ameliorate the colitis conditions.
Collapse
Affiliation(s)
- Brijesh M Shah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
11
|
Lin D, Jiang X, Zhao Y, Zhai X, Yang X. Komagataeibacter hansenii CGMCC 3917 alleviates alcohol-induced liver injury by regulating fatty acid metabolism and intestinal microbiota diversity in mice. Food Funct 2020; 11:4591-4604. [PMID: 32432239 DOI: 10.1039/c9fo02040c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential effects of Komagataeibacter hansenii CGMCC 3917 cells on alcohol-induced liver injury and their probable mechanisms were investigated. Male Kunming mice were orally administered with alcohol (10 mL per kg BW) alone or in combination with administration of K. hansenii CGMCC 3917 cells at 2 × 108 and 2 × 106 CFUs for 10 weeks. Administration of strain CGMCC 3917 cells, especially high dose administration, decreased the liver weights, fat gain, and fatty-acid metabolism-related enzyme SCD-1, ACC and FAS expressions and endotoxin release, which were elevated by alcohol treatment. Furthermore, the total contents of long chain fatty acids of the liver and serum in alcohol-treated mice supplemented with a high dose of strain CGMCC 3917 cells were decreased to 5.44 ± 0.19 μg mL-1 and 3.66 ± 0.15 μg mL-1 from 6.65 ± 0.31 μg mL-1 and 4.52 ± 0.21 μg mL-1, respectively. Conversely, the SCFAs decreased by ethanol treatment, particularly the acetic acid, propionic acid and butyric acid, were obviously enhanced in the faeces, colon and cecum of the mice supplemented with strain CGMCC 3917 cells. Moreover, strain CGMCC 3917 cells could regulate gut microbiome by significantly decreasing the abundance of Actinobacteria, Proteobacteria and Firmicutes, and dramatically increasing the abundance of Bacteroidetes in alcohol-treated mice. These findings suggest that K. hansenii CGMCC 3917 cells alleviate alcohol-induced liver damage via regulating fatty acid metabolism and intestinal microbiota diversity in mice.
Collapse
Affiliation(s)
- Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Polysaccharides that contain many sugar monomers include starch and non-starch polysaccharides (NSPs) together with resistant starch (RS). Dietary polysaccharides are well known to have a wide range of biological benefits for bowel health. Gut microbiota and their fermentative products, short chain fatty acids (SCFA), which have recently been highlighted as metabolic regulators, are thought to mediate the function of dietary complex carbohydrates and bowel health. We discuss the influence of various polysaccharides on human bowel health and the mechanisms underlying these effects. We also describe their biological effects on intestinal health and the mechanisms underlying their activity; the polysaccharides were divided into three categories: dietary, microbial, and host-derived polysaccharides. Physiological impacts of non-starch polysaccharides (NSPs) and resistant starch (RS), both of which pass through the small intestine nearly intact and can be fermented by gut microbiota in the large intestine, are similar to each other. They exert a wide range of beneficial effects including anti-inflammation, gut epithelial barrier protection, and immune modulation through both microbiota-dependent and -independent mechanisms. Bacterial polysaccharides usually found in the cell wall generally act as immune modulators, and host-derived polysaccharides not only protect host cells from pathogenic microbial neighbors but also affect overall intestinal health via interactions with gut microbes. Considering these observations, further studies on polysaccharides will be important for bowel health.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Ye Seul Seo
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
13
|
Li K, Qi H, Liu Q, Li T, Chen W, Li S, Piao HL, Yin H. Preparation and antitumor activity of selenium-modified glucomannan oligosaccharides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
14
|
Abstract
The present review is focused on the prebiotic impact of inulin on the management of the gastrointestinal disorder. Prebiotics can be described as "non-digestible food ingredient stimulating the growth of a certain number of bacteria in the colon, which can improve the host health". In 2004 this definition was modernized to include other areas that may benefit from selective targeting of particular microorganisms: "selectively fermented ingredients that alter the configuration and activity in the gastrointestinal microbiota that confer positive effect". The positive impact of prebiotics in experimental colitis and human inflammatory bowel disease (IBD) has already been established. Prebiotics shows a positive effect in the prevention of IBD by modulating the trophic functions of the flora. Inulin enhances the growth of indigenous lactobacilli and/or bifidobacteria by inducing colonic production of short chain fatty acids (SCFA's) and these properties are related to decreased mucosal lesion scores and diminished mucosal inflammation. Inulin shows a positive approach to retain microbial populations and to support epithelial barrier function by their prebiotic effect which helps in the host defense against invasion and pathogens translocation (endogenous and/or exogenous) and in the inhibition of gastrointestinal diseases and this impact should be verified in further clinical studies. In the present review, we discussed the positive effect of prebiotics in rat IBD models and in human subjects along with their potential protective mechanisms. Preclinical and clinical data revealed that the gut mucosal barrier would be improved by the use of prebiotics in IBD.
Collapse
Affiliation(s)
- Wasim Akram
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Ramakant Joshi
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| |
Collapse
|
15
|
Utilisation of dietary fibre (non-starch polysaccharide and resistant starch) molecules for diarrhoea therapy: A mini-review. Int J Biol Macromol 2019; 122:572-577. [DOI: 10.1016/j.ijbiomac.2018.10.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
|
16
|
Zhang LJ, Huang XJ, Shi XD, Chen HH, Cui SW, Nie SP. Protective effect of three glucomannans from different plants against DSS induced colitis in female BALB/c mice. Food Funct 2019; 10:1928-1939. [DOI: 10.1039/c8fo02305k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucomannans (GMs) from diverse natural plants have great potentiality in enhancing the host immune system.
Collapse
Affiliation(s)
- Liu-Jing Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Xiao-Jun Huang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Xiao-Dan Shi
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Steve W. Cui
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Guelph Research and Development Centre
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| |
Collapse
|
17
|
Devaraj RD, Reddy CK, Xu B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int J Biol Macromol 2018; 126:273-281. [PMID: 30586587 DOI: 10.1016/j.ijbiomac.2018.12.203] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Konjac glucomannan (KGM) is a dietary fiber hydrocolloidal polysaccharide isolated from the tubers of Amorphophallus konjac. Over the last few decades, the purified KGM has been offered as a food additive as well as a dietary supplement in many countries. Also, a diet containing konjac flour or KGM is considered as healthier, and these foods are popular in many Asian and European markets. Further, due to the adhesive property of KGM, it can form a defensive covering on the surface of the intestine. Additionally, KGM can reduce the levels of glucose, cholesterol, triglycerides, and blood pressure and can enable weight loss. Its wide-ranging effects prevent many chronic diseases through the regulation of metabolism. In this review, the recent studies on the health benefits such as anti-diabetic, anti-obesity, laxative, prebiotic, and anti-inflammatory activities of KGM were discussed. Also, this review deals with the applications of KGM and its derivatives in bio-technical, pharmaceutical, tissue engineering, fine chemical fields, etc.
Collapse
Affiliation(s)
- Ramya Devi Devaraj
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China
| | - Chagam Koteswara Reddy
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
18
|
Zhai X, Lin D, Zhao Y, Li W, Yang X. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12706-12718. [PMID: 30411889 DOI: 10.1021/acs.jafc.8b05036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work was to assess possible impacts of novel insoluble fiber 8% bacterial cellulose (BC), soluble fiber 8% konjac glucomannan (KGM), and their mixture (4% BC/4% KGM) on fatty acid metabolism and intestinal microbiota of C57BL/6J mice fed with a high-fat diet (HFD). HFD-fed mice receiving the dietary fibers (DFs) for 16 weeks exhibited an improvement in lipid-associated cytokines and a decrease in inflammation factors, which was associated with the improved hepatic and serum fatty acid composition. The DFs, notably the mixed BC/KGM, elevated the HFD-caused decrease in the contents of acetic acid (from 23.9 ± 0.85 to 32.2 ± 0.84 mM/g; p < 0.05), propionic acid (from 6.53 ± 0.28 to 12.8 ± 0.58 mM/g; p < 0.05), and butyric acid (from 7.73 ± 0.43 to 13.5 ± 0.47 mM/g; p < 0.05). Furthermore, the mixed BC/KGM significantly decreased the abundance of Firmicutes (from 90.4 to 67.6%) and Mucispirillum (from 4.77 to 1.58%) and dramatically increased the abundance of Bacteroidetes (from 7.83 to 25.0%) and Akkermansia (from 0.69 to 2.80%) in the gut of HFD-fed mice at the genus level. Moreover, correlation analysis revealed that the multiplicity of gut microbiota was useful in sustaining colonic integrity through producing short-chain fatty acids to some extent. This finding suggests that a mixture of insoluble BC and soluble KGM has positive effects on modulation of the intestinal microecosystem in mice.
Collapse
|
19
|
Zeng Y, Zhang J, Zhang Y, Men Y, Zhang B, Sun Y. Prebiotic, Immunomodulating, and Antifatigue Effects of Konjac Oligosaccharide. J Food Sci 2018; 83:3110-3117. [PMID: 30511769 DOI: 10.1111/1750-3841.14376] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/26/2023]
Abstract
Irregular and long time work schedules not only makes people feel fatigue, but also brings great risks of diseases, due to gastrointestinal disorder and immune dysfunction. Therefore, it has positive significance to help challenged people stay energetic and healthy with food supplement. Konjac oligosaccharide has shown various physiological benefits and been recommended in the fortification of functional foods. However, there have been few reports on its application aimed to simultaneously relieve physical fatigue and keep body healthy. In this paper, the potential prebiotic, immunoregulatory, and antifatigue activities of konjac oligosaccharide were evaluated in vitro and in vivo. The results showed that konjac oligosaccharide could promote probiotics growth and short chain fatty acids production in mice cecum. At the concentration of 50 to 200 μg/mL, konjac oligosaccharide could activate murine macrophage RAW 264.7 to secret NO and cytokines of IL-10 and IL-6. Moreover, this oligosaccharide could alleviate physical fatigue by prolonging exhaustive time, improving the level of superoxide dismutases and glutathione peroxidase, increasing the content of blood glucose, and decreasing the content of blood urea nitrogen. The results suggested that konjac oligosaccharide had prebiotic, immunoregulatory, and antifatigue effects, providing its application potential in functional food aimed at people with irregular and long time work.
Collapse
Affiliation(s)
- Yan Zeng
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jiangang Zhang
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ying Zhang
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yan Men
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Bo Zhang
- Key Laboratory for Bioactive Material and Functional Food of Beijing, College of Biochemical Engineering, Beijing Union Univ., Beijing, 100023, China
| | - Yuanxia Sun
- Natl. Engineering Laboratory for Industrial Enzymes, Tianjin Inst. of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
20
|
Jiang M, Li H, Shi JS, Xu ZH. Depolymerized konjac glucomannan: preparation and application in health care. J Zhejiang Univ Sci B 2018; 19:505-514. [PMID: 29971989 DOI: 10.1631/jzus.b1700310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Konjac glucomannan (KGM) is a water-soluble polysaccharide obtained from the roots and tubers of konjac plants. Recently, a degraded product of KGM, depolymerized KGM (DKGM), has attracted attention because of its low viscosity, improved hydrophily, and favorable physiological functions. In this review, we describe the preparation of DKGM and its prebiotic effects. Other health benefits of DKGM, covering antioxidant and immune activity, are also discussed, as well as its safety. DKGM could be a candidate for use as a tool for the treatment of various diseases, including intestinal flora imbalance, and oxidative- and immune-related disorders.
Collapse
Affiliation(s)
- Min Jiang
- School of Pharmaceutical, Jiangnan University, Wuxi 214122, China
| | - Heng Li
- School of Pharmaceutical, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Mijan MA, Lim BO. Diets, functional foods, and nutraceuticals as alternative therapies for inflammatory bowel disease: Present status and future trends. World J Gastroenterol 2018; 24:2673-2685. [PMID: 29991873 PMCID: PMC6034142 DOI: 10.3748/wjg.v24.i25.2673] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/19/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a serious health concern among western societies. The disease is also on the rise in some East Asian countries and in Australia. Health professionals and dietitians around the world are facing an unprecedented challenge to prevent and control the increasing prevalence of IBD. The current therapeutic strategy that includes drugs and biological treatments is inefficient and are associated with adverse health consequences. In this context, the use of natural products is gaining worldwide attention. In vivo studies and clinical evidence suggest that well-planned dietary regimens with specific nutrients can alleviate gastrointestinal inflammation by modulating inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin 1 (IL-1), IL-6, IL-1β, and IL-10. Alternatively, the avoidance of high-fat and high-carbohydrate diets is regarded as an effective tool to eliminate the causes of IBD. Many functional foods and bioactive components have received attention for showing strong therapeutic effects against IBD. Both animal and human studies suggest that bioactive functional foods can ameliorate IBD by downregulating the pro-inflammatory signaling pathways, such as nuclear factor κB, STAT1, STAT6, and pro-inflammatory cytokines, including IL-1β, IL-4, IL-6, COX-2, TNF-α, and interferon γ. Therefore, functional foods and diets have the potential to alleviate IBD by modulating the underlying pathogenic mechanisms. Future comprehensive studies are needed to corroborate the potential roles of functional foods and diets in the prevention and control of IBD.
Collapse
Affiliation(s)
- Mohammad Al Mijan
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 380-701, South Korea
| | - Beong Ou Lim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 380-701, South Korea
| |
Collapse
|
22
|
Preparation and cellular protection against oxidation of Konjac oligosaccharides obtained by combination of γ -irradiation and enzymatic hydrolysis. Food Res Int 2018; 107:93-101. [DOI: 10.1016/j.foodres.2018.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 01/14/2023]
|
23
|
Dey YN, Sharma G, Wanjari MM, Kumar D, Lomash V, Jadhav AD. Beneficial effect of Amorphophallus paeoniifolius tuber on experimental ulcerative colitis in rats. PHARMACEUTICAL BIOLOGY 2017; 55:53-62. [PMID: 27600166 PMCID: PMC7011945 DOI: 10.1080/13880209.2016.1226904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 08/17/2016] [Indexed: 05/29/2023]
Abstract
CONTEXT The tuber of Amorphophallus paeoniifolius (Dennst.) Nicolson (Araceae), commonly called Suran or Jimmikand, has high medicinal value and is used ethnomedicinally for the treatment of different gastrointestinal and inflammatory disorders. OBJECTIVE The present study evaluated the effects of extracts of Amorphophallus paeoniifolius tubers on acetic acid-induced ulcerative colitis (UC) in rats. MATERIALS AND METHODS Wistar rats were orally administered methanol extract (APME) or aqueous extract (APAE) (250 and 500 mg/kg) or standard drug, prednisolone (PRDS) (4 mg/kg) for 7 days. On 6th day of treatment, UC was induced by transrectal instillation of 4% acetic acid (AA) and after 48 h colitis was assessed by measuring colitis parameters, biochemical estimations and histology of colon. RESULTS APME or APAE pretreatment significantly (p < .05-.001) prevented AA-induced reduction in body weight and increase in colitis parameters viz. stool consistency, colon weight/length ratio and ulcer score, area and index. Extracts treatment attenuated (p < .001) increase in alkaline phosphatase and lactate dehydrogenase in serum and myeloperoxidase activity and cytokines in colon tissue due to AA administration. Extracts treatment prevented AA-induced elevation in lipid peroxidation and decline in activities of superoxide dismutase and catalase and reduced-glutathione content (p < .05-.001) along with histopathological alterations. PRDS also showed similar ameliorative effect on colitis. DISCUSSION AND CONCLUSION APME and APAE showed a preventive effect on UC, and ameliorated inflammation and oxidative damage in colon. The effects may be attributed to presence of phytochemicals, betulinic acid, β-sitosterol, and glucomannan. In conclusion, the tuber of Amorphophallus paeoniifolius exhibited an anticolitic effect through anti-inflammatory and antioxidant action.
Collapse
Affiliation(s)
- Yadu Nandan Dey
- National Research Institute for
Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh,
India, (Under Central Council for Research in Ayurvedic Sciences,
Ministry of AYUSH, New Delhi, India)
- Centre for Advanced Research in Pharmaceutical
Sciences, Shobhit University, Meerut, Uttar Pradesh,
India
| | - Garima Sharma
- School of Studies in Biomedical Technology,
Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Manish M. Wanjari
- National Research Institute for
Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh,
India, (Under Central Council for Research in Ayurvedic Sciences,
Ministry of AYUSH, New Delhi, India)
| | - Dharmendra Kumar
- Centre for Advanced Research in Pharmaceutical
Sciences, Shobhit University, Meerut, Uttar Pradesh,
India
- Faculty of Pharmaceutical Sciences, UCSI
University, Kaula Lumpur, Malaysia
| | - Vinay Lomash
- Shriram Institute for Industrial
Research, New Delhi, India
| | - Ankush D. Jadhav
- National Research Institute for
Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh,
India, (Under Central Council for Research in Ayurvedic Sciences,
Ministry of AYUSH, New Delhi, India)
| |
Collapse
|
24
|
Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by γ-irradiation. Food Chem 2017; 231:42-50. [DOI: 10.1016/j.foodchem.2017.03.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 01/06/2023]
|
25
|
|
26
|
Norton C, Czuber-Dochan W, Artom M, Sweeney L, Hart A. Systematic review: interventions for abdominal pain management in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46:115-125. [PMID: 28470846 DOI: 10.1111/apt.14108] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/22/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain is frequently reported by people with inflammatory bowel disease (IBD), including in remission. Pain is an under-treated symptom. AIM To systematically review evidence on interventions (excluding disease-modifying interventions) for abdominal pain management in IBD. METHODS Databases (MEDLINE, EMBASE, PsycInfo, CINAHL, Scopus, Cochrane Library) were searched (February 2016). Two researchers independently screened references and extracted data. RESULTS Fifteen papers were included: 13 intervention studies and two cross-sectional surveys. A variety of psychological, dietary and pharmacological interventions were reported. Four of six studies reported pain reduction with psychological intervention including individualised and group-based relaxation, disease anxiety-related Cognitive Behavioural Therapy and stress management. Both psychologist-led and self-directed stress management in inactive Crohn's disease reduced pain compared with controls (symptom frequency reduction index=-26.7, -11.3 and 17.2 at 6-month follow-up, respectively). Two dietary interventions (alcoholic drinks with high sugar content and fermentable carbohydrate with prebiotic properties) had an effect on abdominal pain. Antibiotics (for patients with bacterial overgrowth) and transdermal nicotine patches reduced abdominal pain. Current and past cannabis users report it relieves pain. One controlled trial of cannabis reduced SF-36 and EQ-5D pain scores (1.84 and 0.7, respectively). These results must be treated with caution: data were derived from predominantly small uncontrolled studies of moderate to low quality. CONCLUSIONS Few interventions have been tested for IBD abdominal pain. The limited evidence suggests that relaxation and changing cognitions are promising, possibly with individualised dietary changes. There is a need to develop interventions for abdominal pain management in IBD.
Collapse
Affiliation(s)
- C Norton
- Florence Nightingale Faculty of Nursing & Midwifery, King's College London, London, UK
| | - W Czuber-Dochan
- Florence Nightingale Faculty of Nursing & Midwifery, King's College London, London, UK
| | - M Artom
- Florence Nightingale Faculty of Nursing & Midwifery, King's College London, London, UK
| | - L Sweeney
- Florence Nightingale Faculty of Nursing & Midwifery, King's College London, London, UK
| | - A Hart
- St Mark's Hospital, London, UK
| |
Collapse
|
27
|
Gómez B, Míguez B, Yáñez R, Alonso JL. Manufacture and Properties of Glucomannans and Glucomannooligosaccharides Derived from Konjac and Other Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2019-2031. [PMID: 28248105 DOI: 10.1021/acs.jafc.6b05409] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glucomannans (GM) are polymers that can be found in natural resources, such as tubers, bulbs, roots, and both hard- and softwoods. In fact, mannan-based polysaccharides represent the largest hemicellulose fraction in softwoods. In addition to their structural functions and their role as energy reserve, they have been assessed for their healthy applications, including their role as new source of prebiotics. This paper summarizes the scientific literature regarding the manufacture and functional properties of GM and their hydrolysis products with a special focus on their prebiotic activity.
Collapse
Affiliation(s)
- Belén Gómez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - Beatriz Míguez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - Remedios Yáñez
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| | - José L Alonso
- Chemical Engineering Department, Polytechnic Building, University of Vigo (Campus Ourense) , 32004 Ourense, Spain
- CITI , Avenida Galicia 2, Tecnopole, San Cibrao das Viñas, 32900 Ourense, Spain
- CINBIO , University Campus, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
28
|
Dey YN, Wanjari MM, Kumar D, Lomash V, Jadhav AD. Curative effect of Amorphophallus paeoniifolius tuber on experimental hemorrhoids in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:183-191. [PMID: 27426509 DOI: 10.1016/j.jep.2016.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amorphophallus paeoniifolius (Dennst.) Nicolson (Family- Araceae) is a crop of south East Asian origin. In India, its tuber is widely used in ethnomedicinal practices by different tribes for the treatment of piles (hemorrhoids). AIM The present study evaluated the effect of methanolic and aqueous extract of Amorphophallus paeoniifolius tuber on croton oil induced hemorrhoids in rats. MATERIALS AND METHODS The methanolic extract was standardized with the major phenolic compound, betulinic acid, by HPLC. The hemorrhoids were induced by applying 6% croton oil preparation in the ano-rectal region. Rats were orally administered methanolic and aqueous extract at doses of 250 and 500mg/kg, each for 7 days. Pilex (200mg/kg) was used as reference anti-hemorrhoidal drug. Hemorrhoids were assessed on eighth day by measuring hemorrhoidal and biochemical parameters along with histology of ano-rectal tissue. RESULTS Croton oil application caused induction of hemorrhoids as indicated by significant (p<0.001) increase in plasma exudation of Evans blue in ano-rectal tissue, macroscopic severity score and ano-rectal coefficient as compared to normal rats. It significantly (p<0.001) elevated lactate dehydrogenase and cytokines (TNF-α and IL-6) levels in serum and increased myeloperoxidase activity and lipid peroxidation in ano-rectal tissue along with marked histological damage as compared to normal rats. Treatment with tuber extracts and pilex significantly (p<0.05-p<0.001) ameliorated Evans blue exudation, hemorrhoidal parameters and other biochemical parameters with attenuation of tissue damage compared to hemorrhoid control rats. The results indicate that tuber extracts exhibited curative action on hemorrhoids. The aqueous extract showed more pronounced effect than methanolic extract. The effects may be attributed to anti-inflammatory and antioxidant properties. CONCLUSION Results indicate that tuber of Amorphophallus paeoniifolius exhibited curative action on hemorrhoids through anti-inflammatory and antioxidant properties. The study validates the ethnomedicinal use of tuber in hemorrhoids and implicates its therapeutic potential as an anti-hemorrhoidal agent.
Collapse
Affiliation(s)
- Yadu Nandan Dey
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh, India; Centre for Advanced Research in Pharmaceutical Sciences, Shobhit University, Meerut, Uttar Pradesh, India
| | - Manish M Wanjari
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh, India.
| | - Dharmendra Kumar
- Centre for Advanced Research in Pharmaceutical Sciences, Shobhit University, Meerut, Uttar Pradesh, India; Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vinay Lomash
- Shriram Institute of Industrial Research, New Delhi, India
| | - Ankush D Jadhav
- National Research Institute for Ayurveda-Siddha Human Resource Development, Gwalior, Madhya Pradesh, India
| |
Collapse
|
29
|
Tester RF, Al-Ghazzewi FH. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3283-3291. [PMID: 26676961 DOI: 10.1002/jsfa.7571] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
The impact of ingesting glucomannans on health is not limited to colonic-focused fermentation into short-chain fatty acids (SCFAs), which might have some local health benefits; it also helps in treating disease states and enhancing the body's immune system, both within the gut and in/on other parts of the body. The local and systemic roles of hydrolysed glucomannans, especially konjac glucomannans, in the mouth, oesophagus, stomach, small intestine, large intestine, gut-associated lymphoid tissue (GALT), skin and vagina, are highlighted. Therapeutic applications are discussed. © 2015 Society of Chemical Industry.
Collapse
|
30
|
Behera SS, Ray RC. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol 2016; 92:942-956. [PMID: 27481345 DOI: 10.1016/j.ijbiomac.2016.07.098] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023]
Abstract
In recent year, konjac glucomannan (KGM) has attracted more attention due to its non-harmful and non-toxic properties, good biocompatibility, biodegradability and hydrophilic ability. Moreover, KGM and their derivatives have several importances in the multidirectional research areas such as nutritional, biotechnological and fine chemical fields. In the previous article, we have reviewed the nutritional aspects of KGM covering the various aspects of functional foods, food additives and their derivatives. This review aims at highlighting the diverse biomedical research conducted on KGM in the past ten years, covering therapies for anti-obesity, regulation in lipid metabolism, laxative effect, anti-diabetic, anti-inflammatory, prebiotic to wound dressing applications. Moreover, this review deals with global health aspects of KGM and the disparate health related factors associated with diseases and their control measures.
Collapse
Affiliation(s)
- Sudhanshu S Behera
- Department of Fisheries and Animal Resource Development, Government of Odisha, India.
| | - Ramesh C Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar 751 019, India
| |
Collapse
|
31
|
Huang X, Nie S, Xie M. Interaction between gut immunity and polysaccharides. Crit Rev Food Sci Nutr 2015; 57:2943-2955. [DOI: 10.1080/10408398.2015.1079165] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Teimourian S, Masoudzadeh N. CARD15 gene overexpression reduces effect of etanercept, infliximab, and adalimumab on cytokine secretion from PMA activated U937 cells. Eur J Pharmacol 2015; 762:394-401. [DOI: 10.1016/j.ejphar.2015.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 01/05/2023]
|
33
|
Suwannaporn P, Tester RF, Al-Ghazzewi FH, Artitdit P. Effect of short term administration of konjac glucomannan hydrolysates on adult blood lipid parameters and glucose concentrations. ACTA ACUST UNITED AC 2015. [DOI: 10.1108/nfs-02-2015-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
– This paper aims to evaluate the effect of depolymerised glucomannan in regulating blood lipid and glucose concentrations.
Design/methodology/approach
– Twenty adult volunteers were recruited. Blood samples were taken at Day 0. The volunteers consumed drinks containing 3.0 g active glucomannan hydrolysates (AMH) for 14 days, after which time blood samples were retaken (Day 15). Blood samples were analysed to determine the blood lipid and glucose concentrations.
Findings
– The average fasting blood glucose at the start of the trial was 2.54 mmol/L but reduced slightly to 2.49 mmol/L after consumption of the glucomannan. The total average cholesterol at the start of the trial was higher (6.69 mmol/L) than desirable (
<
5.0 mmol/L). This was reduced after consuming the glucomannan to 6.44 mmol/L (3.74 per cent). The triglyceride content was also higher initially than recommended (2.88 mmol/L) but was reduced by 11.5 per cent. The high-density lipoprotein (HDL) was within the desirable range before and after consumption (1.57 and 1.52 mmol/L, respectively), while the average low-density lipoprotein (LDL) was higher than recommended (
<
3.0 mmol/L), representing 4.55 mmol/L and 4.40 mmol/L before and after consumption, respectively. Both parameters were reduced by over 3.0 per cent. The consumption of the glucomannan hydrolysates also reduced the total cholesterol/HDL and LDL/HDL ratios.
Originality/value
– The AMH was effective in lowering blood cholesterol and glucose concentrations. Consumption of such carbohydrates could prove useful for these physiological disorders. Further studies are desirable to characterise the exact mechanism.
Collapse
|
34
|
|