1
|
|
2
|
Baker DA, Drought LG, Flueck C, Nofal SD, Patel A, Penzo M, Walker EM. Cyclic nucleotide signalling in malaria parasites. Open Biol 2018; 7:rsob.170213. [PMID: 29263246 PMCID: PMC5746546 DOI: 10.1098/rsob.170213] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
The cyclic nucleotides 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maria Penzo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Eloise M Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
3
|
Soni R, Sharma D, Rai P, Sharma B, Bhatt TK. Signaling Strategies of Malaria Parasite for Its Survival, Proliferation, and Infection during Erythrocytic Stage. Front Immunol 2017; 8:349. [PMID: 28400771 PMCID: PMC5368685 DOI: 10.3389/fimmu.2017.00349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Irrespective of various efforts, malaria persist the most debilitating effect in terms of morbidity and mortality. Moreover, the existing drugs are also vulnerable to the emergence of drug resistance. To explore the potential targets for designing the most effective antimalarial therapies, it is required to focus on the facts of biochemical mechanism underlying the process of parasite survival and disease pathogenesis. This review is intended to bring out the existing knowledge about the functions and components of the major signaling pathways such as kinase signaling, calcium signaling, and cyclic nucleotide-based signaling, serving the various aspects of the parasitic asexual stage and highlighted the Toll-like receptors, glycosylphosphatidylinositol-mediated signaling, and molecular events in cytoadhesion, which elicit the host immune response. This discussion will facilitate a look over essential components for parasite survival and disease progression to be implemented in discovery of novel antimalarial drugs and vaccines.
Collapse
Affiliation(s)
- Rani Soni
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Drista Sharma
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Praveen Rai
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Bhaskar Sharma
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| | - Tarun K Bhatt
- Department of Biotechnology, School of Life sciences, Central University of Rajasthan , Ajmer , India
| |
Collapse
|
4
|
Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Proc Natl Acad Sci U S A 2016; 113:13732-13737. [PMID: 27856737 DOI: 10.1073/pnas.1611904113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein-protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) with Kd = 14 nM; (iii) binding of cdb3-PO4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3-ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.
Collapse
|
5
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Zainabadi K. Malaria Parasite CLAG3, a Protein Linked to Nutrient Channels, Participates in High Molecular Weight Membrane-Associated Complexes in the Infected Erythrocyte. PLoS One 2016; 11:e0157390. [PMID: 27299521 PMCID: PMC4907441 DOI: 10.1371/journal.pone.0157390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Malaria infected erythrocytes show increased permeability to a number of solutes important for parasite growth as mediated by the Plasmodial Surface Anion Channel (PSAC). The P. falciparum clag3 genes have recently been identified as key determinants of PSAC, though exactly how they contribute to channel function and whether additional host/parasite proteins are required remain unknown. To begin to answer these questions, I have taken a biochemical approach. Here I have used an epitope-tagged CLAG3 parasite to perform co-immunoprecipitation experiments using membrane fractions of infected erythrocytes. Native PAGE and mass spectrometry studies reveal that CLAG3 participate in at least three different high molecular weight complexes: a ~720kDa complex consisting of CLAG3, RHOPH2 and RHOPH3; a ~620kDa complex consisting of CLAG3 and RHOPH2; and a ~480kDa complex composed solely of CLAG3. Importantly, these complexes can be found throughout the parasite lifecycle but are absent in untransfected controls. Extracellular biotin labeling and protease susceptibility studies localize the 480kDa complex to the erythrocyte membrane. This complex, likely composed of a homo-oligomer of 160kDa CLAG3, may represent a functional subunit, possibly the pore, of PSAC.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chisholm SA, McHugh E, Lundie R, Dixon MWA, Ghosh S, O’Keefe M, Tilley L, Kalanon M, de Koning-Ward TF. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 in P. falciparum and P. berghei Unmasks a Role in Parasite Virulence. PLoS One 2016; 11:e0149296. [PMID: 26886275 PMCID: PMC4757573 DOI: 10.1371/journal.pone.0149296] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.
Collapse
Affiliation(s)
- Scott A. Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Rachel Lundie
- The Burnet Institute, Melbourne, Victoria, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Institute, Melbourne, Victoria, Australia
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
8
|
Prajapati SK, Culleton R, Singh OP. Protein trafficking in Plasmodium falciparum-infected red cells and impact of the expansion of exported protein families. Parasitology 2014; 141:1533-1543. [PMID: 25076418 DOI: 10.1017/s0031182014000948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Erythrocytes are extensively remodelled by the malaria parasite following invasion of the cell. Plasmodium falciparum encodes numerous virulence-associated and host-cell remodelling proteins that are trafficked to the cytoplasm, the cell membrane and the surface of the infected erythrocyte. The export of soluble proteins relies on a sequence directing entry into the secretory pathways in addition to an export signal. The export signal consisting of five amino acids is termed the Plasmodium export element (PEXEL) or the vacuole transport signal (VTS). Genome mining studies have revealed that PEXEL/VTS carrying protein families have expanded dramatically in P. falciparum compared with other malaria parasite species, possibly due to lineage-specific expansion linked to the unique requirements of P. falciparum for host-cell remodelling. The functional characterization of such genes and gene families may reveal potential drug targets that could inhibit protein trafficking in infected erythrocytes. This review highlights some of the recent advances and key knowledge gaps in protein trafficking pathways in P. falciparum-infected red cells and speculates on the impact of exported gene families in the trafficking pathway.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Molecular Biology Division, National Institute of Malaria Research, New Delhi, India
| | - Richard Culleton
- Malaria Unit, Institute for Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Om P Singh
- Molecular Biology Division, National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
9
|
Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol Dis 2013; 51:195-202. [PMID: 23880461 DOI: 10.1016/j.bcmd.2013.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 01/27/2023]
Abstract
In an infected erythrocyte (iRBC), renovation and decoration are crucial for malarial parasite survival, pathogenesis and reproduction. Host cell remodeling is mediated by an array of diverse parasite-encoded export proteins that traffic within iRBC. These remodeling proteins extensively modify the membrane and cytoskeleton of iRBC and help in formation of parasite-induced novel organelles such as 'Maurer's Cleft (MC), tubulovesicular network (TVN) and parasitophorous vacuole membrane (PVM) inside the iRBC. The genome sequence of Plasmodium falciparum shows expansion of export proteins, which suggests a complex requirement of these export proteins for specific pathogenesis and erythrocyte remodeling. Plasmodium helical intersperse sub-telomeric (PHIST) is a family of seventy-two small export proteins and many of its recently discovered functional characteristics suggest an intriguing putative role in modification of an iRBC. This review highlights the recent advances in parasite genomics, proteomics, and cell biology studies unraveling the host cell modification; providing a speculation on the impact of PHIST proteins in modification of the iRBC.
Collapse
|
10
|
Purinoceptor signaling in malaria-infected erythrocytes. Microbes Infect 2012; 14:779-86. [PMID: 22580091 DOI: 10.1016/j.micinf.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 01/25/2023]
Abstract
Human erythrocytes are endowed with ATP release pathways and metabotropic and ionotropic purinoceptors. This review summarizes the pivotal function of purinergic signaling in erythrocyte control of vascular tone, in hemolytic septicemia, and in malaria. In malaria, the intraerythrocytic parasite exploits the purinergic signaling of its host to adapt the erythrocyte to its requirements.
Collapse
|
11
|
Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, Aravind L, Desai SA. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 2011; 145:665-77. [PMID: 21620134 PMCID: PMC3105333 DOI: 10.1016/j.cell.2011.05.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/21/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
Development of malaria parasites within vertebrate erythrocytes requires nutrient uptake at the host cell membrane. The plasmodial surface anion channel (PSAC) mediates this transport and is an antimalarial target, but its molecular basis is unknown. We report a parasite gene family responsible for PSAC activity. We used high-throughput screening for nutrient uptake inhibitors to identify a compound highly specific for channels from the Dd2 line of the human pathogen P. falciparum. Inheritance of this compound's affinity in a Dd2 × HB3 genetic cross maps to a single parasite locus on chromosome 3. DNA transfection and in vitro selections indicate that PSAC-inhibitor interactions are encoded by two clag3 genes previously assumed to function in cytoadherence. These genes are conserved in plasmodia, exhibit expression switching, and encode an integral protein on the host membrane, as predicted by functional studies. This protein increases host cell permeability to diverse solutes.
Collapse
Affiliation(s)
- Wang Nguitragool
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Abdullah A.B. Bokhari
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ajay D. Pillai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kempaiah Rayavara
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Paresh Sharma
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Brad Turpin
- National Instruments, Inc., Austin, TX 78730, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjay A. Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
12
|
Abstract
Cyclic nucleotides are so-called intracellular second messenger molecules used by all cells to transform environmental signals into an appropriate response. Interest in the cyclic nucleotides cAMP and cGMP in malaria parasites followed early observations that both molecules might be involved in distinct differentiation events within the sexual phase of the life cycle that is required for transmission of parasites to the mosquito vector. Completed genome sequences combined with biochemical and genetic studies have confirmed the presence of the main enzymatic components of cyclic nucleotide signalling in the parasite. Dissection of their functions is underway and is giving initial insights into some of the cellular processes, which are regulated by these signalling pathways. Malaria parasites occupy terminally differentiated red blood cells for a significant proportion of their life cycle, but although there is some evidence of potential roles for the residual host cell signalling machinery in parasite development, details are few. A major gap in our knowledge is the nature of the cell surface receptors, which might trigger cyclic nucleotide signalling in the parasite.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK.
| |
Collapse
|
13
|
Abstract
Compared with the impressive progress in understanding signal transduction pathways and mechanisms in mammalian systems, advances in protozoan signalling processes, including cyclic nucleotide metabolism, have been very slow. This is in large part connected to the fact that the components of these pathways are very different in the protozoan parasites, as confirmed by the recently completed genome. For instance, kinetoplastids have no equivalents to the mammalian Class I adenylyl cyclases (ACs) in their genomes nor any of the subunits of the associated G-proteins. The cyclases in kinetoplastid parasites contain a single transmembrane domain, a conserved intracellular catalytic domain and a highly variable extracellular domain - consistent with the expression of multiple receptor-activated cyclases - but no receptor ligands, agonists or antagonists have been identified. Apicomplexan AC and guanylyl cyclase (GC) are even more unusual, potentially being bifunctional, harbouring either a putative ion channel (AC) or a P-type ATPase-like domain (GC) alongside the catalytic region. Phosphodiesterases (PDEs) and cyclic-nucleotide-activated protein kinases are essentially conserved in protozoa, although mostly insensitive to inhibitors of the mammalian proteins. Some of the PDEs have now been validated as promising drug targets. In the following manuscript, we will summarize the existing literature on cAMP and cGMP in protozoa: cyclases, PDEs and cyclic-nucleotide-dependent kinases.
Collapse
Affiliation(s)
- Matthew K Gould
- Biomedical Research Centre, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
14
|
Pantaleo A, Ferru E, Carta F, Mannu F, Giribaldi G, Vono R, Lepedda AJ, Pippia P, Turrini F. Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by P. falciparum
growth. Proteomics 2010; 10:3469-79. [DOI: 10.1002/pmic.201000269] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Glogowska E, Dyrda A, Cueff A, Bouyer G, Egée S, Bennekou P, Thomas SLY. Anion conductance of the human red cell is carried by a maxi-anion channel. Blood Cells Mol Dis 2010; 44:243-51. [PMID: 20226698 DOI: 10.1016/j.bcmd.2010.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion channels proper has never been clarified, and the informations obtained by different groups of electrophysiologists are rather badly matched. This study, using the cell-attached configuration of the patch-clamp technique, rationalizes and explains earlier confusing results by demonstrating that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance to the red cell than the ground leak mediated by Band 3.
Collapse
Affiliation(s)
- Edyta Glogowska
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie Paris6, UMR 7150, Station Biologique, B. P. 74, 29682 Roscoff cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Dyrda A, Cytlak U, Ciuraszkiewicz A, Lipinska A, Cueff A, Bouyer G, Egée S, Bennekou P, Lew VL, Thomas SLY. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells. PLoS One 2010; 5:e9447. [PMID: 20195477 PMCID: PMC2829085 DOI: 10.1371/journal.pone.0009447] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Agnieszka Dyrda
- Centre National de la Recherche Scientifique-Université Pierre et Marie Curie Paris6, UMR 7150, Roscoff, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pantaleo A, De Franceschi L, Ferru E, Vono R, Turrini F. Current knowledge about the functional roles of phosphorylative changes of membrane proteins in normal and diseased red cells. J Proteomics 2009; 73:445-55. [PMID: 19758581 DOI: 10.1016/j.jprot.2009.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/17/2009] [Accepted: 08/27/2009] [Indexed: 12/20/2022]
Abstract
With the advent of proteomic techniques the number of known post-translational modifications (PTMs) affecting red cell membrane proteins is rapidly growing but the understanding of their role under physiological and pathological conditions is incompletely established. The wide range of hereditary diseases affecting different red cell membrane functions and the membrane modifications induced by malaria parasite intracellular growth represent a unique opportunity to study PTMs in response to variable cellular stresses. In the present review, some of the major areas of interest in red cell membrane research have been considered as modifications of erythrocyte deformability and maintenance of the surface area, membrane transport alterations, and removal of diseased and senescent red cells. In all mentioned research areas the functional roles of PTMs are prevalently restricted to the phosphorylative changes of the more abundant membrane proteins. The insufficient information about the PTMs occurring in a large majority of the red membrane proteins and the general lack of mass spectrometry data evidence the need of new comprehensive, proteomic approaches to improve the understanding of the red cell membrane physiology.
Collapse
Affiliation(s)
- Antonella Pantaleo
- Department of Genetics, Biology and Biochemistry, University of Turin, via Santena 5 bis, 10126 Turin, Italy.
| | | | | | | | | |
Collapse
|
18
|
Prudêncio M, Derbyshire ET, Marques CA, Krishna S, Mota MM, Staines HM. Plasmodium berghei-infection induces volume-regulated anion channel-like activity in human hepatoma cells. Cell Microbiol 2009; 11:1492-501. [PMID: 19496788 PMCID: PMC2774480 DOI: 10.1111/j.1462-5822.2009.01342.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parasite infection can lead to alterations in the permeability of host plasma membranes. Presented here is the first demonstration that this phenomenon occurs in Plasmodium-infected liver cells. Using the whole-cell patch-clamp technique, volume-regulated anion channel (VRAC) activity was characterized in Huh-7 cells (a human hepatoma cell line) before and after infection with Plasmodium berghei. Consistent with the presence of VRACs, hypotonic bath solution induced large ion currents in Huh-7 cells that rectified outwardly, reversed close to the equilibrium potential for Cl- and were inhibited by tamoxifen, clomiphene, mefloquine and 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), with IC50 values of 4 ± 1, 4 ± 2, 2 ± 1 and 52 ± 12 μM respectively. In isotonic conditions, initial current recordings measured in uninfected and immature (24 h post invasion) parasite-infected Huh-7 cells were similar (with conductances of 14 ± 3 versus 19 ± 5 pS/pF). However, in mature (48–72 h post invasion) parasite-infected Huh-7 cells there was a sevenfold increase in currents (with a conductance of 98 ± 16 pS/pF). The elevated currents observed in the latter are consistent with VRAC-like activity and the possible reasons for their activation are discussed.
Collapse
Affiliation(s)
- Miguel Prudêncio
- Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Wu Y, Nelson MM, Quaile A, Xia D, Wastling JM, Craig A. Identification of phosphorylated proteins in erythrocytes infected by the human malaria parasite Plasmodium falciparum. Malar J 2009; 8:105. [PMID: 19450262 PMCID: PMC2696463 DOI: 10.1186/1475-2875-8-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 05/18/2009] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Previous comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC). METHODS Metabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE) has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI). 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search. RESULTS 2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed. CONCLUSION Protein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P. falciparum proteins and 77 human proteins as phosphorylated protein in pRBC, while only 48 human proteins were identified in the corresponding fractions from uninfected RBC. Refinement of the search to include significant ion scores indicating a specific phospho-peptide identified 21 P. falciparum proteins and 14 human proteins from pRBC, 13 host proteins were identified from normal RBC. The results achieved by complementary techniques consistently reflect a reliable proteomic overview of pRBC.
Collapse
Affiliation(s)
- Yang Wu
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Morag M Nelson
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Andrew Quaile
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Dong Xia
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Jonathan M Wastling
- Faculty of Veterinary Science, University of Liverpool, Crown Street, Liverpool L69 7ZJ, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
20
|
Merckx A, Bouyer G, Thomas SLY, Langsley G, Egée S. Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends Parasitol 2009; 25:139-44. [PMID: 19200784 DOI: 10.1016/j.pt.2008.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 01/09/2023]
Abstract
By replicating within red blood cells, malaria parasites are largely hidden from immune recognition; however, in the cells, nutrients are limiting and hazardous metabolic end products can rapidly accumulate. Therefore, to survive within erythrocytes, parasites alter the permeability of the host plasma membrane, either by upregulating existing transporters or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that membrane permeability is mediated by transmembrane transport through ion channels in the infected erythrocyte. This article discusses the evidence and controversies concerning the nature of these channels and surveys the potential role of phosphorylation in activating anion channels that could be important in developing novel strategies for future malarial chemotherapies.
Collapse
Affiliation(s)
- Anaïs Merckx
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | |
Collapse
|
21
|
Abstract
Intracellular pathogens such as viruses and bacteria subvert all the major cellular functions of their hosts. Targeted host processes include protein synthesis, membrane trafficking, modulation of gene expression, antigen presentation, and apoptosis. In recent years, it has become evident that protozoan pathogens, including members of the phylum Apicomplexa, also hijack their host cell's functions to access nutrients and to escape cellular defenses and immune responses. These obligate intracellular parasites provide superb illustrations of the subversion of host cell processes such as the recruitment and reorganization of host cell compartments without fusion around the parasitophorous vacuole of Toxoplasma gondii; the export of Plasmodium falciparum proteins on the surface of infected erythrocytes; and the induced transformation of the lymphocytes infected by Theileria parva, which leads to clonal extension.
Collapse
Affiliation(s)
- Fabienne Plattner
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
22
|
Akkaya C, Shumilina E, Bobballa D, Brand VB, Mahmud H, Lang F, Huber SM. The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch 2008; 457:1035-47. [PMID: 18696103 DOI: 10.1007/s00424-008-0572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
Infection with the malaria parasite Plasmodium falciparum induces osmolyte and anion channels in the host erythrocyte membrane involving ATP release and autocrine purinergic signaling. P. falciparum-parasitized but not unstimulated uninfected erythrocytes released ATP in a 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; 7 microM)-sensitive and serum album (SA; 0.5% w/v)-stimulated manner. Since Plasmodium infection of human erythrocytes induces SA-dependent outwardly (OR) and SA-independent inwardly rectifying (IR) anion conductances, we tested whether the infection-induced OR channels directly generate an ATP release pathway. P. falciparum-parasitized erythrocytes were recorded in whole-cell mode with either Cl(-) or ATP as the only anion in the bath or pipette. In parasitized cells with predominant OR activity, replacement of bath NaCl by Na-ATP (NMDG-Cl pipette solution) shifted the current reversal potential (V (rev)) from -2 +/- 1 to +51 +/- 3 mV (n = 15). In cells with predominant IR activity, in contrast, the same maneuver induced a shift of V (rev) to significantly larger (p < or = 0.05, two-tailed t test) values (from -3 +/- 1 to +66 +/- 8 mV; n = 5) and an almost complete inhibition of outward current. The anion channel blocker NPPB reversibly decreased the ATP-generated OR currents from 1.1 +/- 0.1 nS to 0.2 +/- 0.05 nS and further shifted V (rev) to +87 +/- 7 mV (n = 12). The NPPB-sensitive fraction of the OR reversed at +48 +/- 4 mV suggesting a relative permeability of P (ATP)/P (Cl) approximately 0.01. Together, these data raise the possibility that the OR might be the electrophysiological correlate of an erythrocyte ATP release pathway.
Collapse
Affiliation(s)
- Canan Akkaya
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Merckx A, Nivez MP, Bouyer G, Alano P, Langsley G, Deitsch K, Thomas S, Doerig C, Egée S. Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance. PLoS Pathog 2008; 4:e19. [PMID: 18248092 PMCID: PMC2222956 DOI: 10.1371/journal.ppat.0040019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/17/2007] [Indexed: 11/18/2022] Open
Abstract
Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation. By replicating within red blood cells malaria parasites are largely hidden from immune recognition, but within mature erythrocytes nutrients are limiting and accumulation of potentially hazardous metabolic end products can rapidly become critical. In order to survive within red blood cells malaria parasites, therefore, alter the permeability of the erythrocyte plasma membrane either by up-regulating existing carriers, or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that these changes reflect trans-membrane transport through ion channels in the infected erythrocyte plasma membrane. Protein phosphorylation has been documented in protozoan parasites for a number of years and is implicated in key processes of both parasites and parasitized host cells. It has been established that cAMP-dependent regulated pathways are able to activate ion channels in the red cell membrane and a better understanding of how the parasite manipulates cAMP-dependent signaling to activate anion channels could be important in developing novel strategies for future anti-malarial chemotherapies.
Collapse
Affiliation(s)
- Anaïs Merckx
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | - Marie-Paule Nivez
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
| | - Guillaume Bouyer
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
| | | | - Gordon Langsley
- Institut Cochin, INSERM U567, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | - Kirk Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Serge Thomas
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
| | - Christian Doerig
- INSERM U609, Wellcome Center for Molecular Parasitology, Glasgow Biomedical Research Centre, Glasgow, Scotland, United Kingdom
| | - Stéphane Egée
- Université Pierre et Marie Curie – CNRS UMR 7150, Roscoff, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Decherf G, Bouyer G, Egée S, Thomas SLY. Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 2007; 39:24-34. [PMID: 17434769 DOI: 10.1016/j.bcmd.2007.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Electrophysiological studies on human RBCs have been difficult due to fragility and small size of cells, and little is known of ionic conductive pathways present in the RBC membrane in health and disease. We report on anionic channels in cells of healthy donors (control) and cystic fibrosis (CF) patients. Anion channel activity (8-12 pS, linear) was induced in cell-attached configuration by forskolin (50 microM) and in excised inside-out configuration by PKA (100 nM) and ATP (1 mM) but control and CF RBCs differed by their respective kinetics and gating properties. These channels were permeable to ATP (100 mM, symmetrical Tris-ATP). These data suggest either the existence of two different anionic channel types or regulation of a single channel type either by the CFTR (cystic fibrosis transmembrane regulator) protein or by different cytosolic factors. Another anionic channel type displaying outward rectification (approximately 80 pS, outward conductance) was present in 30% of CF cell patches but was not observed in normal cell patches. The frequently recorded activity of this channel in CF patches suggests a down-regulation in normal RBCs.
Collapse
Affiliation(s)
- Gaëtan Decherf
- Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, UMR 7150, Station Biologique, BP 74, 29682 Roscoff cedex, France
| | | | | | | |
Collapse
|
26
|
Parker MD, Young MT, Daly CM, Meech RW, Boron WF, Tanner MJA. A conductive pathway generated from fragments of the human red cell anion exchanger AE1. J Physiol 2007; 581:33-50. [PMID: 17317744 PMCID: PMC2075216 DOI: 10.1113/jphysiol.2007.128389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/20/2007] [Indexed: 11/08/2022] Open
Abstract
Human red cell anion exchanger AE1 (band 3) is an electroneutral Cl-HCO3- exchanger with 12-14 transmembrane spans (TMs). Previous work using Xenopus oocytes has shown that two co-expressed fragments of AE1 lacking TMs 6 and 7 are capable of forming a stilbene disulphonate-sensitive (36)Cl-influx pathway, reminiscent of intact AE1. In the present study, we create a single construct, AE1Delta(6: 7), representing the intact protein lacking TMs 6 and 7. We expressed this construct in Xenopus oocytes and evaluated it employing a combination of two-electrode voltage clamp and pH-sensitive microelectrodes. We found that, whereas AE1Delta(6: 7) has some electroneutral Cl-base exchange activity, the protein also forms a novel anion-conductive pathway that is blocked by DIDS. The mutation Lys(539)Ala at the covalent DIDS-reaction site of AE1 reduced the DIDS sensitivity, demonstrating that (1) the conductive pathway is intrinsic to AE1Delta(6: 7) and (2) the conductive pathway has some commonality with the electroneutral anion-exchange pathway. The conductance has an anion-permeability sequence: NO3- approximately I- > NO2- > Br- > Cl- > SO4(2-) approximately HCO3- approximately gluconate- approximately aspartate- approximately cyclamate-. It may also have a limited permeability to Na+ and the zwitterion taurine. Although this conductive pathway is not a usual feature of intact mammalian AE1, it shares many properties with the anion-conductive pathways intrinsic to two other Cl-HCO3- exchangers, trout AE1 and mammalian SLC26A7.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Duranton C, Akkaya C, Brand VB, Tanneur V, Lang F, Huber SM. Artemisinin inhibits cation currents in malaria-infected human erythrocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 1:143-9. [PMID: 17292071 DOI: 10.1016/j.nano.2005.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous patch-clamp studies have demonstrated inwardly and outwardly rectifying anion currents, ClC-2 Cl- currents, and nonselective Ca(++)-permeable cation currents in Plasmodium falciparum-infected human erythrocytes. METHODS The current work studied the effect of the potent antimalarial drug artemisinin on the P falciparum infection-induced whole cell currents in human erythrocyte. RESULTS Artemisinin had no significant effect on the outwardly rectifying anion currents but inhibited the cation-selective currents with an apparent half-maximal inhibitory concentration of < or =10 micromol/L. CONCLUSION Because artemisinin reportedly inhibits the asexual parasite amplification with much higher potency, the antimalarial action of the drug cannot be attributed to the artemisinin effect on the cation currents. However, artemisinin may be used as a pharmacologic tool to dissect different current fractions in P falciparum-infected erythrocytes.
Collapse
|
28
|
Baumeister S, Winterberg M, Duranton C, Huber SM, Lang F, Kirk K, Lingelbach K. Evidence for the involvement of Plasmodium falciparum proteins in the formation of new permeability pathways in the erythrocyte membrane. Mol Microbiol 2006; 60:493-504. [PMID: 16573697 DOI: 10.1111/j.1365-2958.2006.05112.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intraerythrocytic developmental stages of the malaria parasite Plasmodium falciparum are responsible for the clinical symptoms associated with malaria tropica. The non-infected human erythrocyte is a terminally differentiated cell that is unable to synthesize proteins and lipids de novo, and it is incapable of importing a number of solutes that are essential for parasite proliferation. Approximately 12-15 h after invasion the parasitized cell undergoes a marked increase in its permeability to a variety of different solutes present in the extracellular milieu. The increase is due to the induction in the erythrocyte membrane of 'new permeability pathways' which have been characterized in some detail in terms of their transport and electrophysiological properties, but which are yet to be defined at a molecular level. Here we show that these pathways are resistant to trypsin but are abolished by treatment of intact infected erythrocytes with chymotrypsin. On resuspension of chymotrypsinized cells in chymotrypsin-free medium the pathways progressively reappear, a process that can be inhibited by cytotoxic agents, and by brefeldin A which inhibits protein secretion. Our results provide evidence for the involvement of parasite encoded proteins in the generation of the pathways, either as components of the pathways themselves or as auxiliary factors.
Collapse
Affiliation(s)
- Stefan Baumeister
- Department of Biology, Philipps-University of Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Ginsburg H, Stein WD. How many functional transport pathways does Plasmodium falciparum induce in the membrane of its host erythrocyte? Trends Parasitol 2005; 21:118-21. [PMID: 15734658 DOI: 10.1016/j.pt.2005.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intraerythrocytic malaria parasites induce considerable change in the permeability of the membrane of their host cell. Using classical techniques of radiolabel uptake and iso-osmotic lysis, the permeability characteristics of the host-cell membrane have been determined. In a recent analysis of these results, we concluded that there are at least two types of channel that conform to the data: a low copy number (four channels per cell) type that mediates the transport of cations, anions and most other osmolytes that were tested, and a high copy number (300-400 channels per cell) type that is an anion channel that could also mediate the translocation of purine nucleosides. Patch-clamping experiments using cells infected with Plasmodium falciparum reveal 200-1000 anion channels of more than one type that are of host-cell endogenous provenance. Recent reports show that parasites can grow normally in erythrocytes that lack these endogenous agencies and in which the anion channels are not expressed, although their osmolyte permeability is present. We suggest that only the latter type of channel is important for normal development of the parasite.
Collapse
Affiliation(s)
- Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | |
Collapse
|
30
|
Biagini GA, Ward SA, Bray PG. Malaria parasite transporters as a drug-delivery strategy. Trends Parasitol 2005; 21:299-301. [PMID: 15923144 DOI: 10.1016/j.pt.2005.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/10/2005] [Accepted: 05/13/2005] [Indexed: 11/30/2022]
Abstract
The recent characterization of the choline carrier of the malaria parasite and its role in the selective delivery of novel antimalarial drugs has reignited interest in parasite transporters as a drug-delivery strategy. In this article, we discuss these findings in relation to the wider context of developing a sustainable antimalarial-drug-development portfolio.
Collapse
Affiliation(s)
- Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK, L35 QA.
| | | | | |
Collapse
|
31
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|