1
|
Shirdare M, Amiri F, Samiee MP, Safari A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 2024; 51:189. [PMID: 38270694 DOI: 10.1007/s11033-023-09041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.
Collapse
Affiliation(s)
- Mandana Shirdare
- Central Medical Laboratory, Vice Chancellor for Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Pouya Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
2
|
Allenby MC, Okutsu N, Brailey K, Guasch J, Zhang Q, Panoskaltsis N, Mantalaris A. A spatiotemporal microenvironment model to improve design of a 3D bioreactor for red cell production. Tissue Eng Part A 2021; 28:38-53. [PMID: 34130508 DOI: 10.1089/ten.tea.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular microenvironments provide stimuli including paracrine and autocrine growth factors and physico-chemical cues, which support efficient in vivo cell production unmatched by current in vitro biomanufacturing platforms. While three-dimensional (3D) culture systems aim to recapitulate niche architecture and function of the target tissue/organ, they are limited in accessing spatiotemporal information to evaluate and optimize in situ cell/tissue process development. Herein, a mathematical modelling framework is parameterized by single-cell phenotypic imaging and multiplexed biochemical assays to simulate the non-uniform tissue distribution of nutrients/metabolites and growth factors in cell niche environments. This model is applied to a bone marrow mimicry 3D perfusion bioreactor containing dense stromal and hematopoietic tissue with limited red blood cell (RBC) egress. The model characterized an imbalance between endogenous cytokine production and nutrient starvation within the microenvironmental niches, and recommended increased cell inoculum density and enhanced medium exchange, guiding the development of a miniaturized prototype bioreactor. The second-generation prototype improved the distribution of nutrients and growth factors and supported a 50-fold increase in RBC production efficiency. This image-informed bioprocess modelling framework leverages spatiotemporal niche information to enhance biochemical factor utilization and improve cell manufacturing in 3D systems.
Collapse
Affiliation(s)
- Mark Colin Allenby
- Queensland University of Technology, 1969, Institute of Health and Biomedical Innovation (IHBI), Kelvin Grove, Queensland, Australia.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Naoki Okutsu
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Kate Brailey
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Joana Guasch
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Qiming Zhang
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicki Panoskaltsis
- Emory University, 1371, Winship Cancer Institute, Department of Hematology & Medical Oncology, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Haematology, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Athanasios Mantalaris
- Georgia Institute of Technology, 1372, BME, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
3
|
Zhou L, Zhang X, Zhou P, Li X, Xu X, Shi Q, Li D, Ju X. Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34 + cells in vitro. Exp Ther Med 2017; 14:4467-4475. [PMID: 29067121 DOI: 10.3892/etm.2017.5026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
Successfully expanding hematopoietic stem cells (HSCs) is advantageous for clinical HSC transplantation. The present study investigated the influence of testosterone on the proliferation, antigen phenotype and expression of hematopoiesis-related genes in umbilical cord blood-derived cluster of differentiation (CD)34+ cells under normoxic or hypoxia conditions. Cord blood (CB) CD34+ cells were separated using magnetic activated cell sorting. A cytokine cocktail and feeder cells were used to stimulate the expansion of CD34+ cells under normoxic (20% O2) and hypoxic (1% O2) conditions for 7 days and testosterone was added accordingly. Cells were identified using flow cytometry and reconstruction capacity was determined using a colony-forming unit (CFU) assay. The effects of oxygen concentration and testosterone on the expression of hematopoietic-related genes, including homeobox (HOX)A9, HOXB2, HOXB4, HOXC4 and BMI-1, were measured using reverse transcription-quantitative polymerase chain reaction. The results indicated that the number of CFUs and total cells in the testosterone group increased under normoxic and hypoxic conditions compared with the corresponding control groups. Furthermore, the presence of testosterone increased the number of CFU-erythroid colonies. In liquid culture, the growth of CD34+ cells was rapid under normoxic conditions compared with under hypoxic conditions, however CD34+ cells were maintained in an undifferentiated state under hypoxic conditions. The addition of testosterone under hypoxia promoted the differentiation of CD34+ cells into CD34+CD38+CD71+ erythroid progenitor cells. Furthermore, it was determined that the expression of hematopoietic-related genes was significantly increased (P<0.05) in the hypoxia testosterone group compared with the other groups. Therefore, the results of the current study indicate that a combination of hypoxia and testosterone may be a promising cultivation condition for HSC/hemopoietic progenitor cell expansion ex vivo.
Collapse
Affiliation(s)
- Liping Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China
| | - Xiaowei Zhang
- Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China
| | - Panpan Zhou
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xue Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuejing Xu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
4
|
Yang S, Wen Q, Liu Y, Zhang C, Wang M, Chen G, Gong Y, Zhong J, Chen X, Stucky A, Zhong JF, Zhang X. Increased expression of CX43 on stromal cells promotes leukemia apoptosis. Oncotarget 2016; 6:44323-31. [PMID: 26517241 PMCID: PMC4792559 DOI: 10.18632/oncotarget.6249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023] Open
Abstract
Connexin 43 (Cx43) induced apoptosis has been reported in solid tumors, but the effect of Cx43 expressed by bone marrow stromal cells (BMSC) in leukemia has not been fully investigated. Manipulating Cx43 expression could be a potential therapeutic strategy for leukemia. Here, we investigate the effect of Cx43 expressed by BMSCs (human Umbilical Cord Stem Cells over-expressed CX43, Cx43-hUCSC) on leukemia cells. When co-cultured with Cx43-hUCSC, leukemia cells show significant lower growth rate with increasing apoptosis activity, and more leukemia cells enter S phase. Functional assays of fluorescence recovery after photo bleaching (FRAP) showed improved gap junctional intercellular communication (GJIC) on leukemia cells when co-cultured with Cx43-hUCSC (p < 0.01). In a mouse minimal disease model, the mean survival time and mortality rate were significantly improved in mice transplanted with Cx43-hUCSC. Our results indicate that Cx43 expressed by BMSC induces apoptosis on leukemia cells. Small molecules or other pharmaceutical approaches for modulating Cx43 expression in BMSCs could be used for delaying relapse of leukemia.
Collapse
Affiliation(s)
- Shijie Yang
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Qin Wen
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yao Liu
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Cheng Zhang
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Maihong Wang
- Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Guo Chen
- Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yi Gong
- Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | | | - Xuelian Chen
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andres Stucky
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiang F Zhong
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xi Zhang
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Hematology and Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
5
|
Liu Y, Yi L, Wang L, Chen L, Chen X, Wang Y. Ginsenoside Rg1 protects human umbilical cord blood-derived stromal cells against tert-Butyl hydroperoxide-induced apoptosis through Akt-FoxO3a-Bim signaling pathway. Mol Cell Biochem 2016; 421:75-87. [PMID: 27522666 DOI: 10.1007/s11010-016-2786-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Human umbilical cord blood-derived stromal cells (hUCBDSCs) possess strong capability of supporting hematopoiesis and immune regulation, whereas some stress conditions cause reactive oxygen species (ROS) accumulation and then lead to oxidative injury and cell apoptosis. Ginsenoside Rg1 (G-Rg1) has been demonstrated to exert antioxidative and prosurvival effects in many cell types. In this study, the tert-Butyl hydroperoxide (t-BHP), an analog of hydroperoxide, was utilized to mimic the oxidative damage to hUCBDSCs. We aimed to investigate the effects of Ginsenoside Rg1 on protecting hUCBDSCs from t-BHP-induced oxidative injury and apoptosis, as well as the possible signaling pathway involved. It was shown that the treatment of hUCBDSCs with G-Rg1 markedly restored the t-BHP-induced cell viability loss, promoted the CFU-F formation, and inhibited cell apoptosis. G-Rg1 also caused a reduced production of LDH and MDA while significantly enhancing the activity of SOD. Mechanistically, G-Rg1 promoted the phosphorylation of Akt and FoxO3a and led to the cytoplasmic translocation of FoxO3a, which in turn suppressed FoxO3a-modulated expression of proapoptotic Bim and elevated the ratio of Bcl-2 to Bax. All these results suggest that G-Rg1 enhances the survival of t-BHP-induced hUCBDSCs and protects them against apoptosis at least partially through Akt-FoxO3a-Bim signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Lu Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linbo Chen
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiongbin Chen
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yaping Wang
- Department of Histology and Embryology, Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Hashemi ZS, Moghadam MF, Soleimani M. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells. In Vitro Cell Dev Biol Anim 2014; 51:495-506. [DOI: 10.1007/s11626-014-9854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/30/2014] [Indexed: 01/27/2023]
|
7
|
Hordyjewska A, Popiołek Ł, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 2014; 67:387-96. [PMID: 25373337 PMCID: PMC4371573 DOI: 10.1007/s10616-014-9796-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022] Open
Abstract
Umbilical cord blood collected from the postpartum placenta and cord is a rich source of hematopoietic stem cells (HSCs) and is an alternative to bone marrow transplantation. In this review we wanted to describe the differences (in phenotype, cytokine production, quantity and quality of cells) between stem cells from umbilical cord blood, bone marrow and peripheral blood. HSCs present in cord blood are more primitive than their counterparts in bone marrow or peripheral blood, and have several advantages including high proliferation. With using proper cytokine combination, HSCs can be effectively developed into different cell lines. This process is used in medicine, especially in hematology.
Collapse
Affiliation(s)
- Anna Hordyjewska
- Department of Medical Chemistry, Medical Univeristy of Lublin, Lublin, Poland
| | | | | |
Collapse
|
8
|
Liu SS, Zhang C, Zhang X, Chen XH. Human umbilical cord blood-derived stromal cells: A new source of stromal cells in hematopoietic stem cell transplantation. Crit Rev Oncol Hematol 2013; 90:93-8. [PMID: 24411588 DOI: 10.1016/j.critrevonc.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/21/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023] Open
Abstract
The hematopoietic inductive microenvironment (HIM), which is composed of stromal cells, extracellular matrix and cytokines, plays a vital role in hematopoietic stem cell transplantation (HSCT). Bone marrow stromal cells (BMSCs), as the main component of HIM, have been well studied. However, the highly invasive procedure of bone marrow (BM) collection limits the clinical application of BMSCs. Human umbilical cord blood-derived stromal cells (hUCBDSCs) isolated and cultured in our laboratory have attracted much attention for their ease collection and low probability of pathophoresis. Previous research demonstrated that hUCBDSCs have numerous functions that are identical to those of BMSCs, for example, hUCBDSCs can support the growth of hematopoietic stem and progenitor cells, especially during the expansion of megakaryocyte colony-forming units (CFU-Mk), promote engraftment after hematopoietic stem cell transplantation (HSCT), exert immunosuppressive effects on xenogenic T cells in vitro and suppress acute graft-versus-host disease (aGVHD) in vivo. Although hUCBDSCs, as new stromal cells, have not been used in clinical practice, they have great practical significance because of their superiority in hematopoiesis and the regulation of immunity.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Xing-Hua Chen
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China.
| |
Collapse
|
9
|
Gao L, Zhang C, Zhang X, Gao L, Hao L, Chen XH. Human umbilical cord blood-derived stromal cells: a new resource for the proliferation and apoptosis of myeloma cells. ACTA ACUST UNITED AC 2013; 19:148-57. [PMID: 23896383 DOI: 10.1179/1607845413y.0000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND/OBJECTIVE Bone marrow stromal cells (BMSCs) can support multiple myeloma (MM) disease progression and resistance to chemotherapy. The proliferation of MM cells may be suppressed by modifying the hematopoietic microenvironment (HME). We have previously isolated human umbilical cord blood-derived stromal cells (hUCBDSCs) and observed that hUCBDSCs suppressed proliferation and induced apoptosis in KM3 cells. To examine the mechanism by which hUCBDSCs drive the inhibition of MM, KM3 cells were co-cultured with hUCBDSCs. METHODS Interleukin (IL)-6 and soluble IL-6 receptor (sIL-6R) expression levels were measured by enzyme-linked immunosorbent assay. The expression levels of membrane IL-6 receptor (mIL-6R), intercellular cell adhesion molecule-1 (ICAM-1), B-cell lymphoma/leukemia-2 (Bcl-2), and Bcl-XL as well as the location of nuclear factor κB (NF-κB) were assessed by laser confocal microscopy. The expression profiles of mIL-6R and ICAM-1 were also more precisely examined by flow cytometry, and Bcl-2, Bcl-XL and inhibitor kappa B expression levels were analyzed by western blot. The mRNA expression levels of IL-6R, ICAM-1, Bcl-2, and Bcl-XL were assessed by real-time polymerase chain reaction. NF-κB DNA-binding activity was examined by electrophoretic mobility shift assay. RESULTS The protein expression levels of both sIL-6R and mIL-6R were reduced in culture conditions when KM3 cells were co-cultured with hUCBDSCs; moreover, the mRNA expression levels of IL-6R were also reduced. Nuclear translocation of the NF-κB p65 subunit was inhibited in KM3 cells by co-culture with hUCBDSCs. Moreover, hUCBDSCs inhibited NF-κB DNA-binding activity, thereby resulting in the downregulation of NF-κB-regulated proteins. CONCLUSION hUCBDSCs can suppress proliferation and induce apoptosis in KM3 cells by both downregulating IL-6R expression and inhibiting NF-κB activity.
Collapse
|
10
|
Feng Y, Zou Z, Gao L, Zhang X, Wang T, Sun H, Liu Y, Chen X. Umbilical cord blood-derived stromal cells regulate megakaryocytic proliferation and migration through SDF-1/PECAM-1 pathway. Cell Biochem Biophys 2012; 64:5-15. [PMID: 22552856 DOI: 10.1007/s12013-012-9362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously reported that human umbilical cord blood-derived stromal cells (hUCBDSCs) are able to enhance the expansion of CFU-Meg in vitro, particularly promote the megakaryocytic lineage recovery, and effectively protect the survival of irradiated mice. In this study, we demonstrated that hUCBDSCs secreted SDF-1 to stimulate PECAM-1 expression in HEL cells (MK cell line), and consequently promoted the proliferation and migration of HEL cells. On the other hand, SDF-1 knock down in hUCBDSCs or PECAM-1 knock down in HEL cells diminished or abrogated the above effect. In addition, SDF-1/PECAM-1 probably activated PI3K/Akt and MAPK/ERK1/2 pathways. This report for the first time defines a SDF-1/PECAM-1 signaling pathway in the proliferation and migration of MKs, which provides supportive evidence for the clinical applications of hUCBDSCs in the treatment of megakaryocytic injury.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration. Front Med 2012; 6:41-7. [DOI: 10.1007/s11684-012-0175-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
|
12
|
Liu Y, Chen XH, Si YJ, Li ZJ, Gao L, Gao L, Zhang C, Zhang X. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS One 2012; 7:e31741. [PMID: 22384064 PMCID: PMC3285638 DOI: 10.1371/journal.pone.0031741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/12/2012] [Indexed: 01/13/2023] Open
Abstract
The hematopoietic inductive microenvironment (HIM) is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood–derived stromal cells (HUCBSCs) and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1)-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were “homed in” to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xing-hua Chen
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Ying-jian Si
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- Department of Pediatric Hematology/Oncology, BaYi Children's Hospital, The Military General Hospital of Beijing, Beijing, China
| | - Zhong-jun Li
- Department of Blood Transfusion, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
13
|
Hao L, Sun H, Wang J, Wang T, Wang M, Zou Z. Mesenchymal stromal cells for cell therapy: besides supporting hematopoiesis. Int J Hematol 2012; 95:34-46. [PMID: 22183780 DOI: 10.1007/s12185-011-0991-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023]
Abstract
Mesenchymal stromal cells (MSC) have attracted the attention of scientists and clinicians due to their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. Some essential problems remain to be solved before the clinical application of MSC. Platelet lysate (PL) has recently been used as a substitute for FBS in MSC amplification in vitro to achieve clinically applicable numbers of MSC. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC have shown therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. It has been confirmed that MSC promote hematopoietic cell engraftment and immune recovery after allogeneic hematopoietic stem cell transplantation, probably through the provision of cytokines, matrix proteins, and cell-to-cell contacts. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. These cells thus present as promising candidates for cellular therapy in the fields of regenerative medicine, allogeneic hematopoietic stem cell transplantation, and autoimmune disorders.
Collapse
Affiliation(s)
- Lei Hao
- Department of Internal Medicine, No. 324 Hospital of PLA, Chongqing 400020, China
| | | | | | | | | | | |
Collapse
|
14
|
Sun HP, Zhang X, Chen XH, Zhang C, Gao L, Feng YM, Peng XG, Gao L. Human umbilical cord blood-derived stromal cells are superior to human umbilical cord blood-derived mesenchymal stem cells in inducing myeloid lineage differentiation in vitro. Stem Cells Dev 2011; 21:1429-40. [PMID: 22023173 DOI: 10.1089/scd.2011.0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stromal cells and mesenchymal stem cells (MSCs), 2 important cell populations within the hematopoietic microenvironment, may play an important role in the development of hematopoietic stem/progenitor cells. We have successfully cultured human umbilical cord blood-derived stromal cells (hUCBDSCs). It has been demonstrated that MSCs also exist in hUCB. However, we have not found any reports on the distinct characteristics of hUCBDSCs and human umbilical cord blood-derived mesenchymal stem cells (hUCBDMSCs). In this study, hUCBDSCs and hUCBDMSCs were isolated from the cord blood of full-term infants using the same density gradient centrifugation and cultured in the appropriate medium. Some biological characteristics and hematopoietic supportive functions were compared in vitro. hUCBDSCs were distinct from hUCBDMSCs in morphology, proliferation, cell cycle, passage, immunophenotype, and the capacity for classical tri-lineage differentiation. Finally, quantitative real-time polymerase chain reaction analysis revealed that granulocyte colony-stimulating factor (G-CSF) gene expression was higher in hUCBDSCs than that in hUCBDMSCs. Enzyme-linked immunosorbent assay revealed that the secretion of G-CSF, thrombopoietin (TPO), and granulocyte macrophage colony-stimulating factor (GM-CSF) by hUCBDSCs was higher than that by hUCBDMSCs. After coculture, the granulocyte/macrophage colony-forming units (CFU-GM) of hematopoietic cells from the hUCBDSC feeder layer was more than that from the hUCBDMSC feeder layer. Flow cytometry was used to detect CD34(+) hematopoietic stem/progenitor cell committed differentiation during 14 days of coculture; the results demonstrated that CD14 and CD33 expression in hUCBDSCs was significantly higher than their expression in hUCBDMSCs. This observation was also true for the granulocyte lineage marker, CD15. This marker was expressed beginning at day 7 in hUCBDSCs. It was expressed earlier and at a higher level in hUCBDSCs compared with hUCBDMSCs. In conclusion, hUCBDSCs are different from hUCBDMSCs. hUCBDSCs are superior to hUCBDMSCs in supporting hematopoiesis stem/progenitor cells differentiation into myeloid lineage cells at an early stage in vitro.
Collapse
Affiliation(s)
- Hao-Ping Sun
- Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The hematopoietic microenvironment, and in particular the hematopoietic stromal cell element, are intimately involved in megakaryocyte development. The process of megakaryocytopoiesis occurs within a complex bone marrow microenvironment where adhesive interactions, chemokines, as well as cytokines play a pivotal role. Here we review the effect of stromal cells and cytokines on megakaryocytopoiesis with the aim of exploring new therapeutic strategies for platelet recovery after hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
16
|
Zhang C, Chen XH, Zhang X, Gao L, Gao L, Kong PY, Peng XG, Sun AH, Wang QY. Regulation of acute graft-versus-host disease by human umbilical cord blood derived stromal cells in haploidentical stem cell transplantation in mice through very late activation antigen-4. Clin Immunol 2011; 139:94-101. [DOI: 10.1016/j.clim.2011.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/16/2010] [Accepted: 01/13/2011] [Indexed: 12/13/2022]
|
17
|
Liang X, Hao L, Chen X, Zhang X, Kong P, Peng X, Gao L, Zhang C, Wang Q. Effects of bone marrow stromal cells and umbilical cord blood-derived stromal cells on daunorubicin-resistant residual Jurkat cells. Transplant Proc 2011; 42:3767-72. [PMID: 21094854 DOI: 10.1016/j.transproceed.2010.08.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/15/2010] [Accepted: 08/26/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To observe the effects of the hematopoietic inductive microenvironment (HIM) simulated by stromal cells of different origins on daunorubicin-resistant residual Jurkat cells (Jurkat/DNR cells). METHODS Jurkat/DNR cells were cultured and identified. Human umbilical cord blood-derived stromal cells (UCBDSCs) and normal human bone marrow stromal cells (BMSCs) were isolated and cocultured with Jurkat/DNR cells. Jurkat/DNR cells were collected after 14 days of coculture and analyzed with regard to cell proliferation and differentiation abilities, apoptosis, drug sensitivity, and MRD1 multidrug resistance gene mRNA expression. RESULTS UCBDSC-simulated HIM suppressed proliferation and promoted apoptosis, differentiation, and drug sensitivity of Jurkat/DNR cells more significantly than BMSC-simulated HIM. CONCLUSIONS Both BMSCs and UCBDSCs reconstruct the leukemic HIM and reverse drug resistance in Jurkat/DNR cells. UCBDSCs reconstruct the leukemic HIM and reverse drug resistance more significantly than BMSCs.
Collapse
Affiliation(s)
- X Liang
- Department of Hematology, Xinqiao Hospital, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang C, Chen XH, Zhang X, Gao L, Kong PY, Peng XG, Liang X, Gao L, Wang QY. Human umbilical cord blood-derived stromal cells: a new resource in hematopoietic reconstitution in mouse haploidentical transplantation. Transplant Proc 2011; 42:3739-44. [PMID: 21094849 DOI: 10.1016/j.transproceed.2010.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/16/2010] [Accepted: 08/26/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Our previous study showed that human umbilical cord blood-derived stromal cells (hUcBdSCs) expanded CD34(+) cells in vitro. This study further explored the role of hUcBdSCs in vivo. METHODS The cultured hUcBdSCs were infused into transplanted haploidentical mice to observe hematopoietic recovery and complications. RESULTS The engraftment was faster in transplantation with hUcBdSCs than without hUcBdSCs. The numbers of fibroblast (CFU-F), granulocyte/monocyte (CFU-GM), erythrocytic (CFU-E), and megakaryocyte (CFU-Mg) colony-forming units were greater among mice transplanted with hUcBdSCs than without hUcBdSCs. The scoring of graft-versus-host disease was significantly lower in mice that had been subjected to transplantation with hUcBdSCs than without hUcBdSCs. The infused hUcBdSCs migrated to the bone marrow of the recipients. CONCLUSIONS These data indicated that hUcBdSCs improved hematopoietic reconstitution in haploidentical transplantation in mice.
Collapse
Affiliation(s)
- C Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang C, Chen XH, Zhang X, Gao L, Kong PY, Peng XG, Liang X, Gao L, Gong Y, Wang QY. Human umbilical cord blood-derived stromal cells, a new resource in the suppression of acute graft-versus-host disease in haploidentical stem cell transplantation in sublethally irradiated mice. J Biol Chem 2011; 286:13723-32. [PMID: 21349838 DOI: 10.1074/jbc.m110.144691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human umbilical cord blood-derived stromal cells (hUCBDSCs), a novel population isolated from CD34(+) cells by our laboratory, exerted an immunosuppressive effect on xenogenic T cells. This study aimed to investigate whether hUCBDSCs play a critical role in the suppression of acute graft-versus-host disease (aGVHD). The hUCBDSCs were co-cultured with splenocytes (SPCs) of donor C57BL/6 mice. The aGVHD in the recipient (B6×BALB/c) F1 mice was induced by the infusion of bone marrow cells and SPCs from donor mice following sublethal irradiation. The shift in vivo for hUCBDSCs was detected. The proliferation and cell cycle of SPCs were tested by cell counting kit-8 and flow cytometry, respectively. The expression of CD49b natural killer (NK) cells and CD3 T cells was detected by flow cytometry in co-culture and post-transplantation. IL-4, and IFN-γ were detected by ELISA in the serum of co-culture and post-transplantation. The survival time, body weight, clinical score, and histopathological score were recorded for mice post-transplantation. The hUCBDSCs promoted the proliferation of SPCs and significantly increased the ratio of the S and G(2)/M phase (p < 0.05). The hUCBDSCs significantly increased the expression of CD49b NK cells and IL-4 protein and decreased the expression of CD3 T cells and IFN-γ protein both in vitro and in vivo. The survival time of mice with co-transplantation of hUCBDSCs was significantly prolonged, and decreased clinical and histopathological scores were also observed. The hUCBDSCs were continually detected in the target organs of GVHD. These results suggest that hUCBDSCs possess the capability of suppressing aGVHD, possibly via their influence on CD3 T cells, NK cells, and cytokines.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Chongqing 400037, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G, Feng H. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 2010; 38:2181-2189. [PMID: 20711072 DOI: 10.1097/ccm.0b013e3181f17c0e] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury. DESIGN AND SETTING Rats were randomly divided into three groups: sham operation group, control group, and human umbilical cord mesenchymal stem cell group. All groups were subjected to spinal cord injury by weight drop device except for sham group. SUBJECTS Thirty-six female Sprague-Dawley rats. INTERVENTIONS The control group received Dulbecco's modified essential media/nutrient mixture F-12 injections, whereas the human umbilical cord mesenchymal stem cell group undertook cells transplantation at the dorsal spinal cord 2 mm rostrally and 2 mm caudally to the injury site at 24 hrs after spinal cord injury. MEASUREMENTS Rats from each group were examined for neurologic function and contents of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and neurotrophin-3. Survival, migration, and differentiation of human umbilical cord mesenchymal stem cells, regeneration of axons, and formation of glial scar were also explored by using immunohistochemistry and immunofluorescence. MAIN RESULTS Recovery of hindlimb locomotor function was significantly enhanced in the human umbilical cord mesenchymal stem cells grafted animals at 5 wks after transplantation. This recovery was accompanied by increased length of neurofilament-positive fibers and increased numbers of growth cone-like structures around the lesion site. Transplanted human umbilical cord-mesenchymal stem cells survived, migrated over short distances, and produced large amounts of glial cell line-derived neurotrophic factor and neurotrophin-3 in the host spinal cord. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the human umbilical cord-mesenchymal stem cell group than in the control group. CONCLUSIONS Treatment with human umbilical cord mesenchymal stem cells can facilitate functional recovery after traumatic spinal cord injury and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
Collapse
Affiliation(s)
- Sheng-Li Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chong-Qing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hao L, Gao L, Chen XH, Zou ZM, Zhang X, Kong PY, Zhang C, Peng XG, Sun AH, Wang QY. Human umbilical cord blood-derived stromal cells prevent graft-versus-host disease in mice following haplo-identical stem cell transplantation. Cytotherapy 2010; 13:83-91. [PMID: 20662609 DOI: 10.3109/14653249.2010.501786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Human umbilical cord blood-derived stromal cells (hUCBDSC) comprise a novel population of CD34(+) cells that has been isolated in our laboratory. They have been shown previously not only to be non-immunogenic but also to exert immunosuppressive effects on xenogenic T cells in vitro. This study investigated the role of hUCBDSC in immunomodulation in an acute graft-versus-host disease (GvHD) mouse model after haplo-identical stem cell transplantation. METHODS Acute GvHD was induced in recipient (B6 × BALB/c)F(1) mice by irradiation (750 cGy) followed by infusion of bone marrow cells and splenocytes from donor C57BL/6 mice. hUCBDSC were co-transplanted in the experimental group. The survival time, body weight and clinical and histopathologic scores were recorded after transplantation. The expression of surface markers [major histocompatibility complex (MHC) I, MHC II, CD80 and CD86] on CD11c(+) dendritic cells (DC), and the percentage of CD4(+) regulatory T cells (Treg), in the spleens of recipient mice were examined by flow cytometry. RESULTS The survival time was significantly prolonged, and the clinical and histopathologic scores were reduced in mice co-transplanted with hUCBDSC. The expression levels of the surface markers on DC were significantly lower in mice transplanted with hUCBDSC compared with those without. The proportion of CD4(+) Treg in the spleen was also increased in mice transplanted with hUCBDSC. CONCLUSIONS These results from a GvHD mouse model are in agreement with previous in vitro findings, suggesting that hUCBDSC possess immunosuppressive properties and may act via influencing DC and CD4(+) Treg.
Collapse
Affiliation(s)
- Lei Hao
- Department of Hematology, Xinqiao Hospital, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feng Y, Chen X, Gao L. Hypothesis: Human Umbilical Cord Blood-derived Stromal Cells Promote Megakaryocytopoiesis Through the Influence of SDF-1 and PECAM-1. Cell Biochem Biophys 2010; 58:25-30. [DOI: 10.1007/s12013-010-9086-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Hao L, Zhang C, Chen XH, Zou ZM, Zhang X, Kong PY, Liang X, Gao L, Peng XG, Sun AH, Wang QY. Human umbilical cord blood-derived stromal cells suppress xenogeneic immune cell response in vitro. Croat Med J 2009; 50:351-60. [PMID: 19673035 PMCID: PMC2728383 DOI: 10.3325/cmj.2009.50.351] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To explore immunological properties of human umbilical cord blood-derived stromal cells (hUCBDSC) and their effect on xenogeneic immune cells in vitro. METHODS Immunological phenotype of freshly isolated and cryopreserved hUCBDSCs was evaluated by flow cytometry. Xenogeneic splenic T-cells were stimulated by phytohemaglutinin A (PHA) or dendritic cells in the absence or presence of hUCBDSCs. T-cell proliferation was measured by cell counting kit-8 after 7-day incubation. The proportion of apoptotic cells and CD4+CD25+Foxp3+ regulatory T-cells (Tregs) was determined in T-cells activated by PHA in the absence or presence of hUCBDSCs by flow cytometry. Phenotype of dendritic cells, cultured alone or with hUCBDSCs, was analyzed by flow cytometry. RESULTS Levels of immune molecule expression on freshly isolated hUCBDSCs were as follows: human leukocyte antigen-I (HLA-I) (84.1+/-2.9%), HLA-II (1.6+/-0.3%), CD80 (0.8+/-0.1%), CD86 (0.8+/-0.1%), CD40 (0.6+/-0.1%), and CD40L (0.5+/-0.1%), which was not influenced by cryopreservation. T-cell proliferation in the presence of hUCBDSCs was significantly lower than that of positive control. The coculture led to a 10-fold increase (from 1.2+/-0.3% to 12.1+/-1.4%, P<0.001) in the proportion of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) and a reversion of mature dendritic cells, as indicated by the down-regulation of major histocompatibility complex (MHC)-II molecule (49.3% vs 25.9%, P=0.001), CD80 (47.2% vs 23.3%, P=0.001), and CD86 (40.6% vs 25.1%, P=0.002). When subjected to annexin V binding and propidium iodide uptake assay, the hUCBDSCs did not show the ability to induce apoptosis of xenogeneic T-cells. CONCLUSION These results demonstrate low immunogenicity and immunomodulation effect of the hUCBDSCs. Reversion of mature dendritic cells and increase in Treg proportion, but not cell apoptosis, can possibly contribute to the suppression of xenogeneic T-cell proliferation by the hUCBDSCs.
Collapse
Affiliation(s)
- Lei Hao
- The first two authors contributed equally to this work
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Cheng Zhang
- The first two authors contributed equally to this work
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xing-hua Chen
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zhong-min Zou
- Department of Chemical Defense and Toxicology, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Pei-yan Kong
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xue Liang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xian-gui Peng
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Ai-hua Sun
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qing-yu Wang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
24
|
Baek EJ, Kim HS, Kim S, Jin H, Choi TY, Kim HO. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells. Transfusion 2008; 48:2235-45. [PMID: 18673341 DOI: 10.1111/j.1537-2995.2008.01828.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is no appropriate alternative source of red blood cells (RBCs) to relieve the worsening shortage of blood available for transfusion. Therefore, in vitro generation of clinically available RBCs from hematopoietic stem cells could be a promising new source to supplement the blood supply. However, there have been few studies about the generation of clinical-grade RBCs by coculture on human mesenchymal stem cells (MSCs) and various cytokine supplements, even though the production of pure RBCs requires coculture on stromal cells and proper cytokine supplements. STUDY DESIGN AND METHODS Umbilical cord blood (CB) CD34+ cells were cultured in serum-free medium supplemented with two cytokine sets of stem cell factor (SCF) plus interleukin-3 (IL-3) plus erythropoietin (EPO) and SCF plus IL-3 plus EPO plus thrombopoietin (TPO) plus Flt-3 for 1 week, followed by coculture upon MSCs derived from bone marrow (BM) or CB for 2 weeks. RESULTS Almost pure clinical-grade RBCs could be generated by coculturing with CB-MSCs but not BM-MSCs. Expansion fold and enucleation rate were significantly higher in coculture with CB-MSCs than BM-MSCs. Despite a 2.5-fold expansion of erythroblasts in the presence of TPO and Flt-3 for 8 days, the final RBC count was higher without TPO and Flt-3. CONCLUSIONS This study is the first report on generating clinical-grade RBCs by in vitro culture with human MSCs and compared effectiveness of several cytokines for RBC production. This provides a useful basis for future production of clinically available RBCs and a model of erythropoiesis that is analogous to the in vivo system.
Collapse
Affiliation(s)
- Eun Jung Baek
- The Department of Laboratory Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton's jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they grow as adherent cells with mesenchymal morphology, they are self-renewing, they express cell surface markers displayed by MSCs, and they may be differentiated into bone, cartilage, adipose, muscle, and neural cells. Like other stromal cells, WJCs support the expansion of other stem cells, such as hematopoietic stem cells, are well-tolerated by the immune system, and they have the ability to home to tumors. In contrast to bone marrow MSCs, WJCs have greater expansion capability, faster growth in vitro, and may synthesize different cytokines. WJCs are therapeutic in several different pre-clinical animal models of human disease such as neurodegenerative disease, cancer, heart disease, etc. The preclinical work suggests that the WJCs are therapeutic via trophic rescue and immune modulation. In summary, WJCs meet the definition of MSCs. Since WJCs expand faster and to a greater extent than adult-derived MSCs, these findings suggest that WJCs are a primitive stromal cell population with therapeutic potential. Further work is needed to determine whether WJCs engraft long-term and display self-renewal and multipotency in vivo and, as such, demonstrate whether Wharton's jelly cells are a true stem cell population.
Collapse
Affiliation(s)
- Deryl L Troyer
- Kansas State University, Department of Anatomy and Physiology, 1600 Denison Avenue, 228 Coles Hall, Manhattan, Kansas 66506-5602, USA.
| | | |
Collapse
|
26
|
Chen N, Kamath S, Newcomb J, Hudson J, Garbuzova-Davis S, Bickford P, Davis-Sanberg C, Sanberg P, Zigova T, Willing A. Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. J Neural Eng 2007; 4:130-45. [PMID: 17409487 PMCID: PMC2680126 DOI: 10.1088/1741-2560/4/2/013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mononuclear fraction of human umbilical cord blood (HUCBmnf) is a mixed cell population that multiple research groups have shown contains cells that can express neural proteins. In these studies, we have examined the ability of the HUCBmnf to express neural antigens after in vitro exposure to defined media supplemented with a cocktail of growth and neurotrophic factors. It is our hypothesis that by treating the HUCBmnf with these developmentally-relevant factors, we can expand the population, enhance the expression of neural antigens and increase cell survival upon transplantation. Prior to growth factor treatment in culture, expression of stem cell antigens is greater in the non-adherent HUCBmnf cells compared to the adherent cells (p < 0.05). Furthermore, treatment of the non-adherent cells with growth factors, increases BrdU incorporation, especially after 14 days in vitro (DIV). In HUCBmnf-embryonic mouse striata co-culture, a small number of growth factor treated HUCBmnf cells were able to integrate into the growing neural network and express immature (nestin and TuJ1) and mature (GFAP and MAP2) neural markers. Treated HUCBmnf cells implanted in the subventricular zone predominantly expressed GFAP although some grafted HUCBmnf cells were MAP2 positive. While short-term treatment of HUCBmnf cells with growth and neurotrophic factors enhanced proliferative capacity in vitro and survival of the cells in vivo, the treatment regimen employed was not enough to ensure long-term survival of HUCBmnf-derived neurons necessary for cell replacement therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ning Chen
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|