1
|
Shinchi H, Nakamura T, Ota H, Nishihara S, Wakao M, Suda Y. Cell Profiling Based on Sugar‐Chain–Cell Binding Interaction and Its Application to Typing and Quality Verification of Cells. Chembiochem 2019; 20:1810-1816. [DOI: 10.1002/cbic.201900028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroyuki Shinchi
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Tomoya Nakamura
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Hayato Ota
- Graduate School of Engineering Soka University, 1-236 Tangi-machi Hachioji Tokyo 192-8577 Japan
| | - Shoko Nishihara
- Graduate School of Engineering Soka University, 1-236 Tangi-machi Hachioji Tokyo 192-8577 Japan
| | - Masahiro Wakao
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Yasuo Suda
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
- SUDx-Biotec Corporation 1-42-1 Shiroyama Kagoshima 890-0013 Japan
| |
Collapse
|
2
|
Monsanto MM, White KS, Kim T, Wang BJ, Fisher K, Ilves K, Khalafalla FG, Casillas A, Broughton K, Mohsin S, Dembitsky WP, Sussman MA. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circ Res 2017; 121:113-124. [PMID: 28446444 DOI: 10.1161/circresaha.116.310494] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
RATIONALE The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. OBJECTIVE Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. METHODS AND RESULTS Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit+ cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit- mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit+ population is further enriched by selection for a CD133+ endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. CONCLUSIONS Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients.
Collapse
Affiliation(s)
- Megan M Monsanto
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kevin S White
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Taeyong Kim
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Bingyan J Wang
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kristina Fisher
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kelli Ilves
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Farid G Khalafalla
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Alexandria Casillas
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kathleen Broughton
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Sadia Mohsin
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Walter P Dembitsky
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Mark A Sussman
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.).
| |
Collapse
|
3
|
Choong E, Guo J, Persson A, Virding S, Johansson I, Mkrtchian S, Ingelman-Sundberg M. Developmental regulation and induction of cytochrome P450 2W1, an enzyme expressed in colon tumors. PLoS One 2015; 10:e0122820. [PMID: 25844926 PMCID: PMC4386763 DOI: 10.1371/journal.pone.0122820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 2W1 (CYP2W1) is expressed predominantly in colorectal and also in hepatic tumors, whereas the levels are insignificant in the corresponding normal human adult tissues. CYP2W1 has been proposed as an attractive target for colorectal cancer (CRC) therapy by exploiting its ability to activate duocarmycin prodrugs to cytotoxic metabolites. However, its endogenous function, regulation and developmental pattern of expression remain unexplored. Here we report the CYP2W1 developmental expression in the murine and human gastrointestinal tissues. The gene expression in the colon and small intestine commence at early stages of embryonic life and is completely silenced shortly after the birth. Immunohistochemical analysis of human fetal colon revealed that CYP2W1 expression is restricted to the crypt cells. The silencing of CYP2W1 after birth correlates with the increased methylation of CpG-rich regions in both murine and human CYP2W1 genes. Analysis of CYP2W1 expression in the colon adenocarcinoma cell line HCC2998 revealed that the gene expression can be induced by e.g. the antitumor agent imatinib, linoleic acid and its derivatives. The imatinib mediated induction of CYP2W1 suggests an adjuvant therapy to treatment with duocarmycins that thus would involve induction of tumor CYP2W1 levels followed by the CYP2W1 activated duocarmycin prodrugs. Taken together these data strongly support further exploration of CYP2W1 as a specific drug target in CRC.
Collapse
Affiliation(s)
- Eva Choong
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Guo
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Persson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Virding
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
4
|
Chen F, Rao XH, Yang JL, Pan MX, Gao Y, Li ZL, Li Y, Zhu YF, Wang Y. Up-regulating CYP3A4 expression in C3A cells by transfection with a novel chimeric regulator of hPXR-p53-AD. PLoS One 2014; 9:e95752. [PMID: 24788541 PMCID: PMC4006776 DOI: 10.1371/journal.pone.0095752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/28/2014] [Indexed: 01/29/2023] Open
Abstract
Most hepatoma cell lines lack proper expression and induction of CYP3A4 enzyme, which limits their use for predicting drug metabolism and toxicity. Nuclear receptor pregnane X receptor (PXR) has been well recognized for its critical role in regulating expression of CYP3A4 gene. However, its physiological activity of binding to the particular site of promoter is significantly weakened in hepatic cell lines. To address this problem, we created “chimeric PXR” constructs by appending a strong activation domain (AD) from p53 subunit to either N- or C- termini of the human PXR (hPXR), that is, hPXR-p53 and p53-hPXR. C3A, a hepatoma cell line, was used as the cell model to test the regulation effect of chimeric hPXR over wild type (WT) hPXR on CYP3A4 expression at gene, protein, and metabolism levels, respectively. Compared with C3A cells transiently transfected with WT hPXR, the activity of CYP3A4.XREM.luc reporter gene in C3A cells transfected with hPXR-p53 or p53-hPXR increased 5- and 9-fold respectively, and the levels of CYP3A4 mRNA expression increased 3.5- and 2.6-fold, respectively. C3A cells stably transfected with hPXR-p53-AD exhibited an improved expression of CYP3A4 at both gene (2-fold) and protein (1.5-fold) levels compared to WT C3A cells. Testosterone, a CYP3A4-specific substrate, was used for detecting the metabolism activity of CYP3A4. No testosterone metabolite could be detected in microsomes from WT C3A cells and WT C3A cells-based array, while the formation of 6β-hydroxytestosterone metabolite in the transfected cells was 714 and 55 pmol/mg protein/min, respectively. In addition, all the above expression levels in the transfected cell models could be further induced with additional treatment of Rifampicin, a specific inducer for CYP3A4. In conclusion, our study established a proof-of-principle example that genetic modification with chimeric hPXR-p53-AD could improve CYP3A4 metabolism ability in hepatic cell line.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Xiao-Hui Rao
- Department of Hepatobiliary Surgery, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jin-Lian Yang
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Ming-Xing Pan
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Yi Gao
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - Zhen-Lin Li
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Yang Li
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
| | - You-Fu Zhu
- Department of Infectious Diseases, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yan Wang
- Institute of Regenerative Medicine, Southern Medical University Zhujiang Hospital, Guangzhou, China
- Department of Hepatobiliary Surgery, Southern Medical University Zhujiang Hospital, Guangzhou, China
- * E-mail:
| |
Collapse
|
5
|
Proposing a Caco-2/HepG2 cell model for in vitro iron absorption studies. J Nutr Biochem 2014; 25:710-5. [PMID: 24746839 DOI: 10.1016/j.jnutbio.2014.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 01/01/2023]
Abstract
The Caco-2 cell line is well established as an in vitro model for iron absorption. However, the model does not reflect the regulation of iron absorption by hepcidin produced in the liver. We aimed to develop the Caco-2 model by introducing human liver cells (HepG2) to Caco-2 cells. The Caco-2 and HepG2 epithelia were separated by a liquid compartment, which allowed for epithelial interaction. Ferritin levels in cocultured Caco-2 controls were 21.7±10.3 ng/mg protein compared to 7.7±5.8 ng/mg protein in monocultured Caco-2 cells. The iron transport across Caco-2 layers was increased when liver cells were present (8.1%±1.5% compared to 3.5%±2.5% at 120 μM Fe). Caco-2 cells were exposed to 0, 80 and 120 μM Fe and responded with increased hepcidin production at 120 μM Fe (3.6±0.3 ng/ml compared to 2.7±0.3 ng/ml). The expression of iron exporter ferroportin in Caco-2 cells was decreased at the hepcidin concentration of 3.6 ng/ml and undetectable at external addition of hepcidin (10 ng/ml). The apical transporter DMT1 was also undetectable at 10 ng/ml but was unchanged at the lower concentrations. In addition, we observed that sourdough bread, in comparison to heat-treated bread, increased the bioavailability of iron despite similar iron content (53% increase in ferritin formation, 97% increase in hepcidin release). This effect was not observed in monocultured Caco-2 cells. The Caco-2/HepG2 model provides an alternative approach to in vitro iron absorption studies in which the hepatic regulation of iron transport must be considered.
Collapse
|
6
|
Ulvestad M, Nordell P, Asplund A, Rehnström M, Jacobsson S, Holmgren G, Davidson L, Brolén G, Edsbagge J, Björquist P, Küppers-Munther B, Andersson TB. Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells. Biochem Pharmacol 2013; 86:691-702. [PMID: 23856292 DOI: 10.1016/j.bcp.2013.06.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% of 4 h hphep, respectively) were observed. Analyses of mRNA expression and immunocytochemistry supported the observed CYP and transporter activities and showed expression of additional CYPs and transporters. In conclusion, the stable expression and function of CYPs and transporters in hESC-Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform long term and extensive studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic system.
Collapse
Affiliation(s)
- Maria Ulvestad
- DMPK, AstraZeneca R&D Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kobayashi K, Yoshida A, Ejiri Y, Takagi S, Mimura H, Hosoda M, Matsuura T, Chiba K. Increased Expression of Drug-metabolizing Enzymes in Human Hepatocarcinoma FLC-4 Cells Cultured on Micro-space Cell Culture Plates. Drug Metab Pharmacokinet 2012; 27:478-85. [DOI: 10.2133/dmpk.dmpk-12-rg-016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sartipy P, Björquist P. Concise review: Human pluripotent stem cell-based models for cardiac and hepatic toxicity assessment. Stem Cells 2011; 29:744-8. [PMID: 21433222 DOI: 10.1002/stem.631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Considering the costs associated with drug development, there are billions of dollars to be saved by reducing late-stage attrition in the pharmaceutical industries. Reports on the use of human pluripotent stem cells (hPSCs) and their functional derivatives in applications for safety assessment of drugs have begun to appear in the scientific literature. These reports are encouraging and fuel further developments of improved human cellular models that may increase the clinical relevance and reduce the need of experimental animals in preclinical drug discovery. However, a few factors still limit the general and wide-spread industry implementation of these new stem cell-based models, including cost of manufacture, level of functionality of the differentiated cells, assay validation, verification of human relevance, and benchmarking to conventional models. This review discusses the emerging field of hPSC-based models for drug discovery and development with a focus on cardiac and hepatic toxicity testing and how these approaches may improve current applications used in the pharmaceutical industry. Although much research remains to make hPSC-based models mainstream tools in the industry, importantly, this review highlights currently available opportunities. In addition, a forward looking discussion on novel applications using tissue preparations generated from hPSCs illustrates the opportunities to create complex models in vitro with the aim of simulating the systemic response of a drug in vivo.
Collapse
|
9
|
Synnergren J, Heins N, Brolén G, Eriksson G, Lindahl A, Hyllner J, Olsson B, Sartipy P, Björquist P. Transcriptional profiling of human embryonic stem cells differentiating to definitive and primitive endoderm and further toward the hepatic lineage. Stem Cells Dev 2010; 19:961-78. [PMID: 19757991 DOI: 10.1089/scd.2009.0220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESC) can differentiate into a variety of specialized cell types, and they constitute a useful model system to study embryonic development in vitro. In order to fully utilize the potential of these cells, the mechanisms that regulate the developmental processes of specific lineage differentiation need to be better defined. The aim of this study was to explore the molecular program involved in the differentiation of hESC toward definitive endoderm (DE) and further into the hepatic lineage, and to compare that with primitive endoderm (PrE) differentiation. To that end, we applied two protocols: a specific DE differentiation protocol and an intrinsic differentiation protocol that mainly mediates PrE formation. We collected hESC, hESC-derived DE, DE-derived hepatocyte-progenitors (DE-Prog), DE-derived hepatocyte-like cells (DE-Hep), and the corresponding PrE derivatives. The samples were analyzed using microarrays, and we identified sets of genes that were exclusively up-regulated in DE derivatives (compared to PrE derivatives) at discrete developmental stages. We also investigated known protein interactions among the set of up-regulated genes in DE-Hep. The results demonstrate important differences between DE and PrE differentiation on the transcriptional level. In particular, our results identify a unique molecular program, exclusively activated during development of DE and the subsequent differentiation of DE toward the hepatic lineage. We identified key genes and pathways of potential importance for future efforts to improve hepatic differentiation from hESC. These results reveal new opportunities for rational design of specific interventions with the purpose of generating enriched populations of DE derivatives, including functional hepatocytes.
Collapse
Affiliation(s)
- Jane Synnergren
- School of Life Sciences, University of Skövde , Skövde, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang J, Hu Y, Nekvindova J, Ingelman-Sundberg M, Neve EPA. IL-4-mediated transcriptional regulation of human CYP2E1 by two independent signaling pathways. Biochem Pharmacol 2010; 80:1592-600. [PMID: 20723539 DOI: 10.1016/j.bcp.2010.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 01/21/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1), the alcohol-inducible member of the cytochrome P450 super family, plays an important role in both physiological and pathophysiological processes. The present study focused on the induction of human CYP2E1 transcription by the anti-inflammatory cytokine interleukin-4 (IL-4) in human hepatoma B16A2 cells and revealed that this regulation is mediated by two independent pathways. RNA interference and overexpression of STAT6, indicated that the JAK-STAT signaling pathway is involved in IL-4-dependent induction and mutagenesis revealed the presence of a STAT6 binding site in CYP2E1 proximal promoter region (-583/-574-bp). However, inhibition of the JAK-STAT6 pathway using JAK1 siRNA constructs could only partially inhibit the induction of CYP2E1 promoter constructs indicating the presence of a second IL-4 responsive element. Indeed by using a series of truncated CYP2E1 promoter constructs a second more distal IL-4 responsive element (-1604/-1428-bp) was identified, which was further shown to involve the activation of IRS1/2. This induction was dependent on the transcription factor NFATc1 as IL-4-induced CYP2E1 expression was altered by silencing or overexpressing NFATc1. A NFATc1 binding site was identified in the second distal IL-4 responsive element (-1551/-1545-bp) by chromatin immunoprecipitation (ChIP) analysis. Finally simultaneous siRNA-mediated down-regulation of both STAT6 and NFATc1 or mutation of both STAT6 and NFATc1 binding sites abolished the IL-4-dependent transcriptional induction of CYP2E1, demonstrating that both pathways are required for maximal activation. In conclusion, the present study indicates that the induction of CYP2E1 transcription by IL-4 is mediated through two independent parallel pathways, involving JAK-STAT6 and IRS1/2 and NFATc1.
Collapse
Affiliation(s)
- Jue Wang
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Nanna Svartz väg 2, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Küblbeck J, Reinisalo M, Mustonen R, Honkakoski P. Up-regulation of CYP expression in hepatoma cells stably transfected by chimeric nuclear receptors. Eur J Pharm Sci 2010; 40:263-72. [DOI: 10.1016/j.ejps.2010.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/22/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
12
|
Sivertsson L, Ek M, Darnell M, Edebert I, Ingelman-Sundberg M, Neve EPA. CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells. Drug Metab Dispos 2010; 38:995-1002. [PMID: 20233841 DOI: 10.1124/dmd.110.032367] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Drug-induced hepatotoxicity is an important cause for disapproval, limitations of use, or withdrawal of drugs, and there is a high need for reproducible in vitro systems that can predict such toxicity. In this study, we show that confluent growth of the human hepatoma cell line Huh7 up to 5 weeks results in increased gene expression of several cytochromes P450 (P450s), UDP-glucuronosyltransferases, transporters, transcription factors, and several liver-specific genes, as measured by low-density array. The most striking effect was seen for CYP3A4 expression. Western blot analysis revealed increased amounts of CYP3A4 together with increased levels of NADPH-P450 reductase, cytochrome b(5), and albumin with prolonged time of confluence. By using the CYP3A4-specific substrates luciferin 6' benzyl ether, testosterone, and midazolam, we could confirm that the increased CYP3A4 gene expression also was accompanied by a similar increase in catalytic activity, inhibitable by the CYP3A4-selective inhibitor ketoconazole. The CYP3A4 activity in confluent cells was also inducible by rifampicin. Finally, the cell system could support the CYP3A4-dependent hepatotoxic activation of aflatoxin B(1), which was effectively inhibited by ketoconazole. Our results show that Huh7 cells grown confluent differentiate into a more metabolically competent cell line, especially with regard to CYP3A4.
Collapse
Affiliation(s)
- Louise Sivertsson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Li D, Yang XL, Zhang SJ, Lin M, Yu WJ, Hu K. Effects of mammalian CYP3A inducers on CYP3A-related enzyme activities in grass carp (Ctenopharyngodon idellus): Possible implications for the establishment of a fish CYP3A induction model. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:17-29. [PMID: 17826359 DOI: 10.1016/j.cbpc.2007.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 07/14/2007] [Accepted: 07/15/2007] [Indexed: 11/25/2022]
Abstract
Unexpected drug-drug interactions in fish are generally associated with the induction of CYP3A activity and may lead to the formation of drug residues and thus threaten the safety of fishery products. However, little information is available about CYP3A induction in fish. In the present study, we determined the in vivo and in vitro effects of typical mammalian CYP3A inducers (rifampicin, phenobarbital and dexamethasone) on CYP3A-related enzyme activities in a freshwater teleost, the grass carp (Ctenopharyngodon idellus). Our results showed that the response to rifampicin was similar for grass carp liver cell line (GCL), liver microsomes and the primary hepatocytes of grass carp, as indicated by the activity of aminopyrine N-demethylase (APND). When erythromycin N-demethylase (ERND) and 6beta-testosterone hydroxylase (6beta-TOH) were taken into consideration, the GCL displayed a greater capacity for conducting CYP3A metabolism and induction than the C. idellus kidney cell line (CIK). Using erythromycin and testosterone as substrates, we demonstrated that CYP3A catalysis exhibited non-Michaelis-Menten kinetics in GCL cells, and that V(max)/K(m) values were significantly increased due to rifampicin-treatment. Overall, this study may have implications for the use of GCL as a CYP3A induction model to identify physiological changes in fish as well as the similarities or differences between fish and mammals.
Collapse
Affiliation(s)
- Dan Li
- Aquatic Pathogen Collection Centre of Ministry of Agriculture, Shanghai Fisheries University, 334 Jungong Road, Shanghai 200090, China
| | | | | | | | | | | |
Collapse
|
14
|
Andersson TB, Ingelman-Sundberg M. Livers cells derived from human embryonic stem cells. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e105-e148. [PMID: 24125547 DOI: 10.1016/j.ddtec.2008.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
15
|
Ek M, Söderdahl T, Küppers-Munther B, Edsbagge J, Andersson TB, Björquist P, Cotgreave I, Jernström B, Ingelman-Sundberg M, Johansson I. Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 2007; 74:496-503. [PMID: 17568565 DOI: 10.1016/j.bcp.2007.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/19/2007] [Accepted: 05/03/2007] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESC) offer a potential unlimited source for functional human hepatocytes, since they can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing several hepatic markers. Such cells could be used for, e.g. studies of drug metabolism and hepatotoxicity, which however would require a significant expression of drug metabolising enzymes. Thus, we have investigated the expression of cytochrome P450s (CYPs), UDP-glucuronosyltransferases (UGTs), drug transporters, transcription factors and other liver specific genes in hepatocyte-like cells derived from hESC using a simple direct differentiation protocol. The mRNA and protein expression of several important CYPs were determined using low density arrays, real time PCR and Western blotting. Significant CYP expression on the mRNA level was detected in hepatocyte-like cells derived from one out of two different hESC lines tested, which was much higher than in undifferentiated hESC and generally higher than in HepG2 cells. CYP1A2, CYP3A4/7 and low levels of CYP1A1 and CYP2C8/9/19 protein were detected in both lines. The mRNAs for a variety of CYPs and liver specific factors were shown to be inducible in both cell lines, and this was reflected in induced levels of CYP1A2 and CYP3A4/7 protein. This first report on expression of all major CYPs in hepatocyte-like cells derived from hESC represents an important step towards functional hepatocytes, but efforts to further differentiate the cells using optimized protocols are needed before they exhibit similar levels of drug metabolizing enzymes as primary human hepatocytes and liver.
Collapse
Affiliation(s)
- Monica Ek
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miranda SR, Meyer SA. Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7. Food Chem Toxicol 2007; 45:871-7. [PMID: 17207564 DOI: 10.1016/j.fct.2006.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 11/02/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Alachlor is cytotoxic to human hepatoblastoma HepG2s, a cell line that expresses constitutive CYP3A7 and dexamethasone (DEX)-inducible CYP3A4 and CYP3A7. CYP3A4 catalyzes alachlor N-dealkylation to 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA), precursor of 2,6-diethylbenzoquinoneimine, putative reactive metabolite for rat nasal carcinogenicity. We hypothesized that HepG2 alachlor cytotoxicity would be mediated by CYP3A4/7 and increased with DEX. Here, we report time-dependent alachlor cytotoxicity (EC(50) approximately 500 microM and 264+/-17 microM at 6 and 24h, respectively) as assessed by lactate dehydrogenase leakage. DEX pretreatment (25 microM, 48 h) significantly increased CYP3A7-catalyzed luciferin 6' benzylether O-debenzylation, but had no effect on alachlor toxicity. Further, CYP3A4/7 inhibitor triacetyloleandomycin did not prevent, but rather potentiated, alachlor cytotoxicity. In agreement, CDEPA was less toxic than parent alachlor. HepG2 CYP3A4 activity was unaffected by 48 h DEX pretreatment; therefore, studies were done in DPX-2 cells, a HepG2 derivative engineered to overexpress pregnane-X receptor (PXR) that exhibits rifampicin (RIF)-inducible endogenous CYP3A4. Alachlor cytotoxicity in DPX-2 cells occurred over a concentration range equivalent to that in HepG2. CYP3A4 activity of DPX-2 cells treated with RIF (10 microM, 48 h) was twice that of untreated cells, but RIF did not increase alachlor toxicity. These results demonstrate that neither CYP3A4 nor CYP3A7 initiate a pathway leading to a toxic alachlor metabolite.
Collapse
Affiliation(s)
- Sonia R Miranda
- Department of Toxicology, University of Louisiana at Monroe, 700 University Avenue, Sugar Hall, Room #358, Monroe, LA 71209, United States
| | | |
Collapse
|
17
|
Castaneda F, Rosin-Steiner S, Jung K. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes. Int J Med Sci 2006; 4:28-35. [PMID: 17211498 PMCID: PMC1752234 DOI: 10.7150/ijms.4.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Accepted: 12/15/2006] [Indexed: 01/12/2023] Open
Abstract
We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.
Collapse
Affiliation(s)
- Francisco Castaneda
- Laboratory for Molecular Pathobiochemistry and Clinical Research, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | | | | |
Collapse
|
18
|
Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Underexpressed Coactivators PGC1α AND SRC1 Impair Hepatocyte Nuclear Factor 4α Function and Promote Dedifferentiation in Human Hepatoma Cells. J Biol Chem 2006; 281:29840-9. [PMID: 16891307 DOI: 10.1074/jbc.m604046200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) plays critical roles during liver development and in the transcriptional regulation of many hepatic genes in adult liver. Here we have demonstrated that in human hepatoma HepG2 cells, HNF4alpha is expressed at levels as high as in human liver but its activity on target genes is very low or absent. We have discovered that the low expression of key coactivators (PGC1alpha, SRC1, SRC2, and PCAF) might account for the lack of function of HNF4alpha in HepG2 cells. Among them, PGC1alpha and SRC1 are the two most important HNF4alpha coactivators as revealed by reporter assays with an Apo-CIII promoter construct. Moreover, the expression of these two coactivators was found to be down-regulated in all human hepatomas investigated. Overexpression of SRC1 and PGC1alpha by recombinant adenoviruses led to a significant up-regulation of well characterized HNF4alpha-dependent genes (ApoCIII, ApoAV, PEPCK, AldoB, OTC, and CYP7A1) and forced HepG2 cells toward a more differentiated phenotype as demonstrated by increased ureogenic rate. The positive effect of PGC1alpha was seen to be dependent on HNF4alpha. Finally, insulin treatment of human hepatocytes and HepG2 cells caused repression of PGC1alpha and a concomitant down-regulation of ApoCIII, PEPCK, AldoB, and OTC. Altogether, our results suggest that SRC1, and notably PGC1alpha, are key coactivators for the proper function of HNF4alpha in human liver and for an integrative control of multiple hepatic genes involved in metabolism and homeostasis. The down-regulation of key HNF4alpha coactivators could be a determinant factor for the dedifferentiation of human hepatomas.
Collapse
Affiliation(s)
- Celia P Martínez-Jiménez
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, 46009 Valencia, Spain
| | | | | | | |
Collapse
|
19
|
Han J, Farnsworth RL, Tiwari JL, Tian J, Lee H, Ikonomi P, Byrnes AP, Goodman JL, Puri RK. Quality prediction of cell substrate using gene expression profiling. Genomics 2006; 87:552-9. [PMID: 16413166 DOI: 10.1016/j.ygeno.2005.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/20/2005] [Accepted: 11/24/2005] [Indexed: 11/25/2022]
Abstract
Changes in cell culture conditions influence the metabolism of cells, which consequently affects the quality of the products that they produce, such as viral vectors, recombinant proteins, or vaccines. Currently there is no effective technique available to monitor global quality of cells in cell culture. Here we describe a new method using gene expression profiling by microarray to predict the quality of cell substrates. Human embryonic kidney 293 cells are a commonly used cell substrate in the production of biological products. We demonstrate that the yield of adenoviral vectors was lower in over-confluent 293 cells, compared to 40 or 90% confluent cells. Total RNA derived from these cells of different confluence states was reverse transcribed, labeled, and used to hybridize 10K cDNA arrays to determine biomarkers for confluence states. Phenotype scatter-plot analysis and cluster analysis were used for class discovery. Based on this approach, we identified genes that were either up-regulated or down-modulated in response to different cell confluence states. By multivariate predictive models we identified a set of 37 genes that were either down-regulated or up-regulated compared to 90% confluent cells as a predictor of cell confluence and quality of 293 cell cultures. The predictive accuracy of these models was assessed by the leave-one-out cross-validation method. The expression of selected gene predictors was validated by quantitative PCR analysis. Our results demonstrate that gene expression profiling can assess the quality of cell substrates prior to large-scale production of a biological product.
Collapse
Affiliation(s)
- Jing Han
- Laboratory of Molecular Tumor Biology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Building 29B, Room 2NN20, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|