1
|
Magdy Eldaly S, Salama Zakaria D, Hanafy Metwally N. Design, Synthesis, Anticancer Evaluation and Molecular Modeling Studies of New Thiazolidinone-Benzoate Scaffold as EGFR Inhibitors, Cell Cycle Interruption and Apoptosis Inducers in HepG2. Chem Biodivers 2023; 20:e202300138. [PMID: 37695095 DOI: 10.1002/cbdv.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Synthesis of new anticancer candidates with protein kinases inhibitory potency is a major goal of pharmaceutical science and synthetic research. This current work represents the synthesis of a series of substituted benzoate-thiazolidinones. Most prepared thiazolidinones were evaluated in vitro for their potential anticancer activity against three cell lines by MTT assay, and they found to be more effective against cancer cell lines with no harm toward normal cells. Thiazolidinones 5 c and 5 h were further evaluated to be kinase inhibitors against EGFR showing effective inhibitory impact (with IC50 value; 0.2±0.009 and 0.098±0.004 μM, for 5 c and 5 h, respectively). Furthermore, 5 c and 5 h have effects on cell cycle and apoptosis induction capability in HepG2 cell lines by DNA-flow cytometry analysis and annexin V-FITC apoptosis assay, respectively. The results showed that they have effect of disrupting the cell cycle and causing cell mortality by apoptosis in the treated cells. Moreover, molecular docking studies showed better binding patterns for 5 c and 5 h with the active site of the epidermal growth factor receptor (EGFR) protein kinase (PDB code 1M17). Finally, toxicity risk and physicochemical characterization by Osiris method was performed on most of the compounds, revealing excellent properties as possible drugs.
Collapse
Affiliation(s)
- Salwa Magdy Eldaly
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Dalia Salama Zakaria
- Department of Chemistry, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | |
Collapse
|
2
|
Kamal MA, Mandour YM, Abd El-Aziz MK, Stein U, El Tayebi HM. Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:5537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Monica A. Kamal
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Mostafa K. Abd El-Aziz
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hend M. El Tayebi
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| |
Collapse
|
3
|
Jin X, Song Y, An Z, Wu S, Cai D, Fu Y, Zhang C, Chen L, Tang W, Zheng Z, Lu H, Lian J. A Predictive Model for Prognosis and Therapeutic Response in Hepatocellular Carcinoma Based on a Panel of Three MED8-Related Immunomodulators. Front Oncol 2022; 12:868411. [PMID: 35558516 PMCID: PMC9086905 DOI: 10.3389/fonc.2022.868411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
The current tumor-node-metastasis (TNM) system is limited in predicting the survival and guiding the treatment of hepatocellular carcinoma (HCC) patients since the TNM system only focuses on the anatomical factors, regardless of the intratumoral molecule heterogeneity. Besides, the landscape of intratumoral immune genes has emerged as a prognostic indicator. The mediator complex subunit 8 (MED8) is a major polymerase regulator and has been described as an oncogene in renal cell carcinoma, but its pathophysiological significance of HCC and its contribution to the prognosis of HCC remain unclear. Here, we aimed to discuss the expression profile and clinical correlation of MED8 in HCC and construct a predictive model based on MED8-related immunomodulators as a supplement to the TNM system. According to our analyses, MED8 was overexpressed in HCC tissues and increased expression of MED8 was an indicator of poor outcome in HCC. The knockdown of MED8 weakened the proliferation, colony forming, and migration of HepG2 and Huh7 cells. Subsequently, a predictive model was identified based on a panel of three MED8-related immunomodulators using The Cancer Genome Atlas (TCGA) database and further validated in International Cancer Genome Consortium (ICGC) database. The combination of the predictive model and the TNM system could improve the performance in predicting the survival of HCC patients. High-risk patients had poor overall survival in TCGA and ICGC databases, as well as in subgroup analysis with early clinicopathology classification. It was also found that high-risk patients had a higher probability of recurrence in TCGA cohort. Furthermore, low-risk score indicated a better response to immunotherapy and drug therapy. This predictive model can be served as a supplement to the TNM system and may have implications in prognosis stratification and therapeutic guidance for HCC.
Collapse
Affiliation(s)
- Xiaojun Jin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yongfei Song
- Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Zhanglu An
- Graduate School, Hebei North University, Zhangjiakou, China.,Department of Pathology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou, China
| | - Shanshan Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Dihui Cai
- School of Medicine, Ningbo University, Ningbo, China
| | - Yin Fu
- School of Medicine, Ningbo University, Ningbo, China
| | | | - Lichao Chen
- School of Medicine, Ningbo University, Ningbo, China
| | - Wen Tang
- School of Medicine, Ningbo University, Ningbo, China
| | - Zequn Zheng
- School of Medicine, Ningbo University, Ningbo, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou, China
| | - Jiangfang Lian
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
4
|
Mobasheri T, Rayzan E, Shabani M, Hosseini M, Mahmoodi Chalbatani G, Rezaei N. Neuroblastoma-targeted nanoparticles and novel nanotechnology-based treatment methods. J Cell Physiol 2020; 236:1751-1775. [PMID: 32735058 DOI: 10.1002/jcp.29979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is a complicated pediatric tumor, originating from the neural crest, which is the most prevalent in adrenal glands, but may rarely be seen in some other tissues as well. Studies are focused on developing new strategies through novel chemo- and immuno-therapeutic drug targets. Different types of oncogenes such as MYCN, tumor suppressor genes such as p53, and some structural genes such as vascular endothelial growth factor are considered as targets for neuroblastoma therapy. The individual expression patterns in NB cells make them appropriate for this purpose. The combined effect of nano-drug delivery systems and specific drug targets will result in lower systemic side effects, prolonged therapeutic effects, and improvements in the pharmacokinetic properties of the drugs. Some of these novel drug delivery systems with a focus on liposomes as carriers are also discussed. In this review, genes and protein products that are beneficial as drug targets in the treatment of neuroblastoma have been discussed.
Collapse
Affiliation(s)
- Taranom Mobasheri
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Baltimore, Maryland
| | - Mina Hosseini
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Znati S, Carter R, Vasquez M, Westhorpe A, Shahbakhti H, Prince J, Vlckova P, De Vellis C, Bascal Z, Loizidou M, Sharma RA. Radiosensitisation of Hepatocellular Carcinoma Cells by Vandetanib. Cancers (Basel) 2020; 12:cancers12071878. [PMID: 32668592 PMCID: PMC7408860 DOI: 10.3390/cancers12071878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models. Methods: Vandetanib and radiation treatment were combined in HCC cell lines grown in vitro and in vivo. In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC. Results: Vandetanib IC50s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion in vitro. In vivo, combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment. Conclusion: In 2D and 3D studies in vitro and in a syngeneic model in vivo, the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.
Collapse
Affiliation(s)
- Sami Znati
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
- Correspondence: (S.Z.); (R.A.S.)
| | - Rebecca Carter
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
| | - Marcos Vasquez
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
| | - Adam Westhorpe
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
| | - Hassan Shahbakhti
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
| | - Jessica Prince
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| | - Petra Vlckova
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
| | - Chiara De Vellis
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
- Scuola di Scienze Matematiche, Fisiche e Naturali, Università degli Studi di Firenze, 50121 Florence, Italy
| | - Zainab Bascal
- Biocompatibles UK Ltd. (A BTG International Group Company), Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey GU15 3YH, UK;
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, London NW3 2QG, UK;
| | - Ricky A. Sharma
- University College London Cancer Institute, University College London, London WC1E 6BT, UK; (R.C.); (M.V.); (A.W.); (H.S.); (P.V.); (C.D.V.)
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
- Correspondence: (S.Z.); (R.A.S.)
| |
Collapse
|
6
|
Mossenta M, Busato D, Baboci L, Cintio FD, Toffoli G, Bo MD. New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1086. [PMID: 31370258 PMCID: PMC6721310 DOI: 10.3390/cancers11081086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis that is determined by an augmented production of proangiogenesis factors by tumor and adjacent cells. This unbalanced angiogenesis process is a key feature of HCC carcinogenesis and progression. Proangiogenic factors also have a relevant role in the generation and maintenance of an immunosuppressive tumor microenvironment. Several therapeutic options for HCC treatment are based on the inhibition of angiogenesis, both in the early/intermediate stages of the disease and in the late stages of the disease. Conventional treatment options employing antiangiogenic approaches provide for the starving of tumors of their blood supply to avoid the refueling of oxygen and nutrients. An emerging alternative point of view is the normalization of vasculature leading to enhance tumor perfusion and oxygenation, potentially capable, when proposed in combination with other treatments, to improve delivery and efficacy of other therapies, including immunotherapy with checkpoint inhibitors. The introduction of novel biomarkers can be useful for the definition of the most appropriate dose and scheduling for these combination treatment approaches. The present review provides a wide description of the pharmaceutical compounds with an antiangiogenic effect proposed for HCC treatment and investigated in clinical trials, including antibodies and small-molecule kinase inhibitors.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| | - Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy.
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 33081 Aviano (PN), Italy
| |
Collapse
|
7
|
Kim D, Ko HS, Park GB, Hur DY, Kim YS, Yang JW. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med 2017; 13:1415-1425. [PMID: 28413487 PMCID: PMC5377331 DOI: 10.3892/etm.2017.4110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular signals induced by vascular endothelial growth factor (VEGF) are implicated in choroidal neovascularization (CNV) and thus, are associated with vision-limiting complications in the human retina. Vandetanib is an oral anticancer drug that selectively inhibits the activities of VEGF receptor and epidermal growth factor receptor tyrosine kinase; however, the effects of vandetanib on VEGF in retinal pigment epithelial (RPE) cells have not yet been studied. In the present study, a combined treatment of vandetanib and a disintegrin and metalloproteinase (ADAM) protein inhibitors were used to assess the regulation of Epstein-Barr virus (EBV)-infected ARPE19 cells (ARPE19/EBV) migration as a model of CNV. Vandetanib suppressed the expression of the mesenchymal markers ADAM10 and ADAM17 in ARPE19/EBV cells, and also upregulated epithelial cell markers of the RPE cells, E-cadherin and N-cadherin. The migratory activity of ARPE19/EBV induced by VEGF was efficiently blocked by vandetanib. Furthermore, co-treatment with vandetanib and an ADAM10 inhibitor (GI254023X) or ADAM17 inhibitor (Marimastat) synergistically prevented migration and the expression of vimentin, Snail and α-smooth muscle actin by regulating extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. These results suggest that a combination treatment of vandetanib and ADAM inhibitors may be developed as a novel therapeutic regimen to control retina neovascular disease.
Collapse
Affiliation(s)
- Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Hyun-Suk Ko
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Ga Bin Park
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Jae Wook Yang
- Department of Ophthalmology, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea.,Ocular Neovascular Disease Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| |
Collapse
|
8
|
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31:65-75. [PMID: 25117005 DOI: 10.1016/j.semcancer.2014.07.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany.
| |
Collapse
|
9
|
Wei Z, Doria C, Liu Y. Targeted therapies in the treatment of advanced hepatocellular carcinoma. Clin Med Insights Oncol 2013; 7:87-102. [PMID: 23761989 PMCID: PMC3667684 DOI: 10.4137/cmo.s7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and the third leading cause of cancer death. It has been a major worldwide health problem with more new cases being diagnosed each year. The current available therapies for patients with advanced HCC are extremely limited. Therefore, it is of great clinical interests to develop more effective therapies for systemic treatment of advanced HCC. Several promising target-based drugs have been tested in a number of clinical trials. One breakthrough of these efforts is the approved clinical use of sorafenib in patients with advanced HCC. Targeted therapies are becoming an attractive option for the treatment of advanced HCC. In this review, we summarize the most recent progress in clinical targeted treatments of advanced HCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Division of Surgical Research, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ
| | - Cataldo Doria
- Division of Transplantation, Department of Surgery, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Yuan Liu
- Division of Surgical Research, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ
| |
Collapse
|
10
|
An SJ, Huang YS, Chen ZH, Su J, Yang Y, Chen JG, Yan HH, Lin QX, Yang JJ, Yang XN, Zhou Q, Zhang XC, Wu YL. Posttreatment plasma VEGF levels may be associated with the overall survival of patients with advanced non-small cell lung cancer treated with bevacizumab plus chemotherapy. Med Oncol 2012; 29:627-32. [PMID: 21461966 DOI: 10.1007/s12032-011-9924-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/22/2011] [Indexed: 12/26/2022]
Abstract
We sought to find blood-based biomarkers that can be used to predict efficacy in advanced non-small cell lung cancer patients treated with bevacizumab plus chemotherapy. Blood was collected before treatment and after 6 weeks of therapy from patients who were participating in a phase 4 trial. Plasma vascular endothelial growth factor (VEGF) levels were evaluated by ELISA. A total of eight single nucleotide polymorphisms in four candidate genes were analyzed by PCR and sequencing. A total of 45 patients enrolled in a clinical trial at Guangdong General Hospital between August 2007 and March 2008 were used as subjects. The median survival times of OS was 25.6 and 13.4 months in the low and high groups, respectively, when the median posttreatment plasma VEGF level (46.63 pg/ml) was used as the cut-off point (P = 0.0284). Patients carrying the AA genotype at the -6C > A polymorphism in laminin 5 (LN5) were more likely to exhibit reduced hemoglobin compared with patients carrying the CA/CC genotype (OR = 8.364, χ(2) = 5.34, P = 0.021). Similar associations were found at the -89A > G and -260C > A polymorphisms in LN5. Patients with the CC genotype at the -6C > A polymorphism in LN5 had an increased risk of neutropenia than those with the CA/AA genotype (OR = 4.444, χ(2) = 5.116, P = 0.030). Our results show improved survival in patients with lower posttreatment plasma VEGF levels treated with bevacizumab plus chemotherapy; thus, the posttreatment plasma VEGF level may be a promising biomarker to predict clinical benefit early in the course of therapy. Polymorphisms in LN5 were associated with a reduced level of hemoglobin and neutropenia.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bevacizumab
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/mortality
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Cell Adhesion Molecules/genetics
- Enzyme-Linked Immunosorbent Assay
- Female
- Follow-Up Studies
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Male
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/mortality
- Neoplasm Staging
- Organoplatinum Compounds/administration & dosage
- Polymorphism, Genetic/genetics
- Prognosis
- Survival Rate
- Vascular Endothelial Growth Factor A/metabolism
- Kalinin
Collapse
Affiliation(s)
- She-Juan An
- Medical Research Center of Guangdong General Hospital, Guangdong Lung Cancer Institute, Guangdong Academy of Medical Sciences, 510080 Guangzhou, Guangdong, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inoue K, Torimura T, Nakamura T, Iwamoto H, Masuda H, Abe M, Hashimoto O, Koga H, Ueno T, Yano H, Sata M. Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses tumor development and improves prognosis of liver cancer in mice. Clin Cancer Res 2012; 18:3924-33. [PMID: 22611027 DOI: 10.1158/1078-0432.ccr-11-2041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE VEGF, EGF, and TGF-α are expressed in hepatocellular carcinomas (HCC) and play a role in its growth. Vandetanib, a multikinase inhibitor, suppresses the phosphorylation of VEGF receptor 2 (VEGFR-2) and EGF receptor (EGFR). The aim of this study was to clarify the antitumor effect of vandetanib in mouse HCCs. EXPERIMENTAL DESIGN We evaluated the effects of vandetanib on proliferation of human umbilical vein endothelial cells (HUVEC) and three hepatoma cell lines, as well as the phosphorylation of VEGFR-2 and EGFR in these cells. Mice were implanted with hepatoma cells subcutaneously or orthotopically in the liver and treated with 50 or 75 mg/kg vandetanib. We analyzed the effects of treatment on tumor cell proliferation and apoptosis, vessel density, phosphorylation of VEGFR-2 and EGFR, and production of VEGF, TGF-α, and EGF in tumor tissues. Adverse events on vandetanib administration were also investigated. RESULTS Vandetanib suppressed phosphorylation of VEGFR-2 in HUVECs and EGFR in hepatoma cells and inhibited cell proliferation. In tumor-bearing mice, vandetanib suppressed phosphorylation of VEGFR-2 and EGFR in tumor tissues, significantly reduced tumor vessel density, enhanced tumor cell apoptosis, suppressed tumor growth, improved survival, reduced number of intrahepatic metastases, and upregulated VEGF, TGF-α, and EGF in tumor tissues. Treatment with vandetanib was not associated with serious adverse events, including alanine aminotransferase abnormality, bone marrow suppression, or body weight loss. CONCLUSIONS The antitumor effects of vandetanib in mice suggest that it is a potentially suitable and safe chemotherapeutic agent for HCCs.
Collapse
Affiliation(s)
- Kinya Inoue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
VEGF spliced variants: possible role of anti-angiogenesis therapy. J Nucleic Acids 2011; 2012:162692. [PMID: 22013509 PMCID: PMC3195439 DOI: 10.1155/2012/162692] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney). Among these tumour types, clear cell renal cell carcinomas (RCCs) are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF). Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich) proteins implicated in VEGF splicing.
Collapse
|
13
|
Zhang Y, Wang S, Li D, Zhnag J, Gu D, Zhu Y, He F. A systems biology-based classifier for hepatocellular carcinoma diagnosis. PLoS One 2011; 6:e22426. [PMID: 21829460 PMCID: PMC3145651 DOI: 10.1371/journal.pone.0022426] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/26/2011] [Indexed: 01/12/2023] Open
Abstract
Aim The diagnosis of hepatocellular carcinoma (HCC) in the early stage is crucial to the application of curative treatments which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However, those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we developed a systems biology based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC diagnosis. Methods and Results In the Oncomine platform, genes differentially expressed in HCC tissues relative to their corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.88∼92.71%) and area under ROC curve (approximating 1.0), and that the network topological features integrated into this classifier contribute greatly to improving the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to HCC, but also to other cancers. Conclusion Our analysis suggests that the systems biology-based classifier that combines the differential gene expression and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shaochuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Nanjing Medical University Affiliated Huai'an 1st People's Hospital, Huai'an, Jiangsu, People's Republic of China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jiyang Zhnag
- Department of Automatic Control, College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Dianhua Gu
- Department of Hepatobiliary and Pancreatic Surgery, Nanjing Medical University Affiliated Huai'an 1st People's Hospital, Huai'an, Jiangsu, People's Republic of China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- * E-mail: (YZ); (FH)
| | - Fuchu He
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- * E-mail: (YZ); (FH)
| |
Collapse
|
14
|
Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology 2011; 140:1410-26. [PMID: 21406195 PMCID: PMC3682501 DOI: 10.1053/j.gastro.2011.03.006] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/27/2022]
Abstract
Unlike most solid tumors, the incidence and mortality of hepatocellular carcinoma (HCC) have increased in the United States and Europe in the past decade. Most patients are diagnosed at advanced stages, so there is an urgent need for new systemic therapies. Sorafenib, a tyrosine kinase inhibitor (TKI), has shown clinical efficacy in patients with HCC. Studies in patients with lung, breast, or colorectal cancers have indicated that the genetic heterogeneity of cancer cells within a tumor affect its response to therapeutics designed to target specific molecules. When tumor progression requires alterations in specific oncogenes (oncogene addiction), drugs that selectively block their products might slow tumor growth. However, no specific oncogene addictions are yet known to be implicated in HCC progression, so it is important to improve our understanding of its molecular pathogenesis. There are currently many clinical trials evaluating TKIs for HCC, including those tested in combination with (eg, erlotinib) or compared with (eg, linifanib) sorafenib as a first-line therapy. For patients who do not respond or are intolerant to sorafenib, TKIs such as brivanib, everolimus, and monoclonal antibodies (eg, ramucirumab) are being tested as second-line therapies. There are early stage trials investigating the efficacy for up to 60 reagents for HCC. Together, these studies might change the management strategy for HCC, and combination therapies might be developed for patients with advanced HCC. Identification of oncogenes that mediate tumor progression, and trials that monitor their products as biomarkers, might lead to personalized therapy; reagents that interfere with signaling pathways required for HCC progression might be used to treat selected populations, and thereby maximize the efficacy and cost benefit.
Collapse
Affiliation(s)
- Augusto Villanueva
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, Hospital Clinic, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Carlos III, Madrid, Spain
| | - Josep M. Llovet
- HCC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, Hospital Clinic, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Carlos III, Madrid, Spain.,Liver Cancer Program, Division of Liver Diseases, Mount Sinai School of Medicine, New York, (NY), USA.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int 2011; 31:146-62. [PMID: 21073649 DOI: 10.1111/j.1478-3231.2010.02369.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nowadays, liver cancer, cirrhosis and other liver-related diseases are the fifth most common cause of mortality in the UK. Furthermore, chronic liver diseases (CLDs) are one of the major causes of death, which are still increasing year-on-year. Therefore, knowledge about the pathophysiology of CLDs and its complications is of uttermost importance. The goal of this review is to clarify the role of angiogenesis in the disease progression of various liver diseases. Looking closer at the pathophysiology of portal hypertension (PH), fibrosis, cirrhosis, non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), we find that angiogenesis is a recurring factor in the disease progression. In PH, several factors involved in its pathogenesis, such as hypoxia, oxidative stress, inflammation and shear stress are potential mediators for the angiogenic response. The progression from fibrosis to cirrhosis, the end-point of CLDs, is distinguished by a prolonged inflammatory and fibrogenic process that leads to an abnormal angioarchitecture distinctive for cirrhosis. In several stages of NASH, a link might be made between the disease progression and hepatic microvasculature changes. HCC is one of the most vascular solid tumours in which angiogenesis plays an important role in its development, progression and metastasis. The close relationship between the progression of CLDs and angiogenesis emphasises the need for anti-angiogenic therapy as a tool for blocking or slowing down the disease progression. The fact that angiogenesis plays a pivotal role in CLDs gives rise to new opportunities for treating CLDs and its complications.
Collapse
Affiliation(s)
- Stephanie Coulon
- Department of Hepatology and Gastroenterology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The approval of sorafenib as the standard of care (SOC) for advanced hepatocellular carcinoma (HCC) fostered interest to further evaluate several other targeted therapies and extend the positioning of sorafenib alone and in combination with other drugs and local therapies at earlier stages and in an adjuvant setting. This review highlights current research using targeted therapies in HCC. Information for this review was compiled by searching PubMed and MEDLINE databases for articles published until September 2010. Several small molecules and humanized antibodies with anti-angiogenic and antiproliferative properties are currently being investigated in preclinical and/or clinical trials. Results are awaited from these clinical trials and offer promise for extending the current treatment options in HCC. Currently published data suggest that substantial progress may be achieved in the treatment of patients with HCC in the next 10 years.
Collapse
Affiliation(s)
- Sandrine Faivre
- Department of Medical Oncology, Beaujon/Bichat University Hospital, Assistance Publique-Hôpitaux de Paris, University INSERM U728, Paris 7, Clichy, France
| | | | | |
Collapse
|
17
|
Ortholan C, Durivault J, Hannoun-Levi JM, Guyot M, Bourcier C, Ambrosetti D, Safe S, Pagès G. Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment. Eur J Cancer 2010; 46:3022-3036. [PMID: 20729074 DOI: 10.1016/j.ejca.2010.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
Abstract
Bevacizumab (Bvz), a Vascular Endothelial Growth Factor (VEGF)-targeted humanised monoclonal antibody, provides clinical benefit in combination with docetaxel (DXL), a microtubule-stabilising agent, in the treatment of metastatic breast and prostate cancers. Since VEGF and their receptors are expressed by tumour cells, we hypothesised that Bvz, in addition to its impact on neo-vascularisation, could have an impact on tumour cells and enhance the DXL activity. Hence, we studied the effect of DXL and Bvz on metastatic breast (MDA MB-231) and prostate (PC3) cancer cells lines. Bvz alone did not decrease cell proliferation but in combination with DXL, Bvz enhanced the anti-proliferative activity of DXL. Other anti-angiogenic factors Sunitinib, Sorafenib and Gefitinib enhanced the anti-proliferative effect of DXL. qPCR experiments showed that DXL significantly increased the VEGF and VEGF receptor 2 (VEGF-R2) mRNA levels. Activation of VEGF and VEGF-R2 promoters demonstrated that enhanced mRNA levels are partly due to transcriptional activation. ELISA assays showed that DXL induced accumulation of cytoplasmic VEGF but decreased extracellular levels by 39% (MDA) and 48% (PC3). Cell surface localisation of VEGF-R2 was increased by DXL alone, but decreased after combined treatment of DXL plus Bvz. Abnormal expression of VEGF-R2 was also shown on breast and prostate tumour samples reinforcing the results obtained on cellular models. In conclusion, DXL and Bvz in combination decreased extracellular VEGF and VEGF-R2 levels at the plasma membrane thereby blocking an important growth/survival loop. Thus, the combined therapeutic impact of Bvz and DXL observed in clinical trials is associated with enhanced anti-proliferative activity and inhibition of the vascular network.
Collapse
Affiliation(s)
- Cécile Ortholan
- University of Nice Sophia Antipolis, UMR CNRS 6543, Institute of Signalling, Developmental Biology and Cancer Research UMR CNRS 6543, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wörns MA, Galle PR. Novel inhibitors in development for hepatocellular carcinoma. Expert Opin Investig Drugs 2010; 19:615-29. [PMID: 20374038 DOI: 10.1517/13543781003767418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD The multikinase inhibitor sorafenib was the first agent to demonstrate a survival benefit for patients with locally advanced or metastatic hepatocellular carcinoma (HCC). Although sorafenib represents a landmark in the treatment of HCC and proved molecularly targeted therapy to be effective in this disease, it represents just the first step towards an improvement in systemic therapy. Since then, novel inhibitors have been evaluated in early clinical trials, showing potential activity. AREAS COVERED IN THIS REVIEW This article aims to review novel inhibitors emerging in the field of advanced HCC. An Internet-based search was performed to identify abstracts, clinical trials ( www.clinicaltrials.gov , last accessed 30 November 2009), and original research and review articles. WHAT THE READER WILL GAIN Readers will gain a comprehensive survey of current molecularly targeted therapy approaches in advanced HCC. In addition, challenges such as the design of clinical trials, the assessment of radiological response, the role of combination therapy, and future developments in molecularly targeted therapy are discussed. TAKE HOME MESSAGE Sorafenib is the standard of care in patients with advanced HCC. However, promising novel inhibitors are under investigation. Combined molecularly targeted therapies according to an individual genomic and proteomic profiling will probably lead to more personalised medicine in advanced HCC.
Collapse
Affiliation(s)
- Marcus Alexander Wörns
- University Medicine of the Johannes Gutenberg-University Mainz, Department of Internal Medicine, Mainz, Germany.
| | | |
Collapse
|
19
|
Azzariti A, Porcelli L, Simone GM, Quatrale AE, Colabufo NA, Berardi F, Perrone R, Zucchetti M, D’Incalci M, Xu JM, Paradiso A. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol 2009; 65:335-46. [DOI: 10.1007/s00280-009-1039-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/15/2009] [Indexed: 02/05/2023]
|
20
|
Abstract
PURPOSE OF REVIEW Over the past decades, advances in the knowledge of the molecular pathogenesis of hepatocellular carcinoma (HCC) have allowed significant improvements in the therapeutic management of this devastating disease. Several investigations have established the role of aberrant activation of major intracellular signaling pathways during human hepatocarcinogenesis. Genome-wide analysis of DNA copy number changes and gene expression led to the identification of gene signatures and novel targets for cancer treatment. Numerous attempts have tried to develop a molecular classification of HCC. This review aims to summarize the most relevant genetic alterations and pathways involved in the development and progression of HCC, providing an overview of the molecular targeted therapies tested so far in human HCC. RECENT FINDINGS The discovery of sorafenib, a multikinase inhibitor, as a treatment with survival benefits in patients with advanced HCC, has become a major breakthrough in the clinical management of HCC. For the first time, a molecular therapy was able to demonstrate significant efficacy for the treatment of HCC patients. New guidelines have established the ideal endpoints for the design of clinical trials for HCC. At last, a molecular classification of HCC based on genome-wide investigations, able to identify patient subclasses according to drug sensitivity will lead to a more personalized medicine. SUMMARY In this review, we provide a comprehensive analysis of the underlying molecular mechanisms leading to human hepatocarcinogenesis, providing the scientific rationale for the development of new therapeutic targets.
Collapse
|
21
|
Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS One 2009; 4:e5172. [PMID: 19390592 PMCID: PMC2669214 DOI: 10.1371/journal.pone.0005172] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 03/09/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro. METHODOLOGY AND PRINCIPAL FINDINGS MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05). However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells. CONCLUSIONS Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways.
Collapse
|
22
|
Faivre S, Dreyer C, El Maalouf G, Sablin MP, Raymond E. Rationale for targeted therapies in hepatocellular carcinoma. Target Oncol 2008. [DOI: 10.1007/s11523-008-0079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
EGFR and VEGFR as potential target for biological therapies in HCC cells. Cancer Lett 2008; 262:257-64. [PMID: 18248788 DOI: 10.1016/j.canlet.2007.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/27/2007] [Accepted: 12/03/2007] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant cancer with poor prognosis. Inhibitors of EGFR and VEGFR for HCC treatment are currently under investigation. Gefitinib and vandetanib inhibit migration of HCC cells on Laminin-5 and Fibronectin, and invasion through matrigel. Both drugs inhibit p-EGFR after short time, while their efficacy on p-Erk1/2 and p-Akt is progressive and stable over time. PI3K/Akt and MEK/Erk1/2 inhibitors, inhibit migration and invasion as well as inducing de-phosphorylation of downstream effectors. Finally, both inhibitors, vandetanib and gefitinib down-regulated the secretion of matrix metalloproteases MMP-2 and MMP-9. All these biological effects seem to depend on the activity of gefitinib and vandetanib blocking activity towards p-EGFR mediated pathways.
Collapse
|
24
|
Conrad C, Ischenko I, Köhl G, Wiegand U, Guba M, Yezhelyev M, Ryan AJ, Barge A, Geissler EK, Wedge SR, Jauch KW, Bruns CJ. Antiangiogenic and antitumor activity of a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor model. Anticancer Drugs 2007; 18:569-79. [PMID: 17414626 DOI: 10.1097/cad.0b013e3280147d13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ZD6474 is a novel, orally available inhibitor of vascular endothelial growth factor receptor kinase insert domain receptor/flk-1 tyrosine kinase activity with additional activity against the epidermal growth factor receptor-1 tyrosine kinase. The aim of this study was to evaluate ZD6474, alone and in combination with gemcitabine, in an orthotopic model of metastatic pancreatic cancer. Nude mice (nine to 10/group) were injected orthotopically with 1x10(6) L3.6pl human pancreatic cancer cells. Eight days later, treatment was initiated with vehicle only, gemcitabine (100 mg/kg intraperitoneal twice weekly), ZD6474 (50 mg/kg oral once daily) or a combination of the two treatments. Animals were killed on day 24 posttreatment initiation. The phosphorylation status level of vascular endothelial growth factor receptor-2 and epidermal growth factor receptor as well as the phosphorylation level of AKT and extracellular signal-regulated kinase-1/2 in different human pancreatic carcinoma cells and in human umbilical vein endothelial cells was analyzed by Western blotting. Compared with controls (1231 mg), the mean weight of treated tumors was reduced to 836, 541 and 308 mg in the gemcitabine, ZD6474 and combination groups, respectively. Lymph node metastasis was significantly reduced in both the ZD6474 alone and combined treatment groups, with 3/10 and 1/5 animals developing metastases, compared with 10/10 and 9/9 in the control and gemcitabine groups (P<0.003 and <0.0003, respectively). Microvessel density and cell proliferation were significantly reduced in the ZD6474 and combined treatment groups (P<0.02). Immunohistochemistry of tumor samples following treatment with ZD6474 resulted in a reduction of the activated and phosphorylated epidermal growth factor receptor, whereas total epidermal growth factor receptor levels were comparable with control tumors. On the basis of Western blot analysis, ZD6474 provides inhibition of tumor angiogenesis through an anti-vascular endothelial growth factor receptor-2 mechanism and inhibition of cancer cell growth through an anti-epidermal growth factor receptor mechanism. ZD6474 decreased primary pancreatic tumor growth and reduced lymph node and liver metastases compared with controls or gemcitabine alone. Tumor growth was inhibited further in animals receiving ZD6474 and gemcitabine in combination.
Collapse
Affiliation(s)
- Claudius Conrad
- Department of Surgery, University of Munich-Grosshadern LMU, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a significant proportion of hepatocellular carcinomas. Recent studies of EGFR inhibitors to treat hepatocellular carcinoma have been encouraging and better understanding of EGFR signaling may lead to more effective strategies for inhibiting this key pathway. The EGFR can be phosphorylated at different tyrosine sites, leading to subsequent activation of different pathways. Cell line and animal studies have shown that MAPK and STAT-3 are important mediators of the EGFR signal in liver cells. However, little is known about EGFR phosphorylation and subsequent signaling in primary hepatocellular carcinoma. We investigated the site of EGFR phosphorylation by Western blot in 18 hepatocellular carcinomas. Fourteen of 18 hepatocellular carcinomas had detectable EGFR by Western blotting and 13 of 14 showed phosphorylation at tyrosine 845. In contrast, no EGFR phosphorylation was detected at tyrosine 998, tyrosine 1045, or tyrosine 1068, which signal through other pathways including STAT-3 and MAPK. These findings were further explored by examination of EGFR expression and signaling pathway activation in tissue arrays comprised of 73 hepatocellular carcinomas using antibodies that recognize phosphorylated (or activated) proteins. Tissue array studies also found no correlation between EGFR expression (29% of cases) and STAT-3 nuclear positivity (16%), AKT (4%), MAPK (3%), or STAT-5 (3%) positivity, all P>0.05. EGFR expression was correlated with hepatitis B infection, but not with tumor size, nuclear grade, or proliferative rate. We conclude that EGFR is phosphorylated at tyrosine 845 in most hepatocellular carcinomas and that EGFR expression by immunohistochemistry does not correlate well with STAT-3, STAT-5, MAPK, or AKT immunostaining.
Collapse
Affiliation(s)
- Rajesh Kannangai
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
26
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, burdened by a constantly increasing frequency. Therapy is currently restricted to invasive techniques but prognosis and survival are still unsatisfactory, mainly because of HCC recurrence and metastasis diffusion. This review will focus on the problem of tumor recurrence and/or metastasis, pointing out the role of the tissue microenvironment in affecting HCC behavior; new experimental findings will also be discussed in the light of their implications in medical care. Finally, new therapeutic approaches will be considered, paying particular attention to the tissue microenvironment as a potential target. In conclusion, this review will attempt to stimulate debate on translational research into HCC biology, in the field of clinical applications.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Internal Medicine, Immunology, and Infectious Diseases, Section of Internal Medicine, University of Bari Medical School, Bari, Italy.
| | | |
Collapse
|