1
|
Hu X, Liu H, Luo T, Chen L, Peng T, Wen M, Luo W, Xu Q, Xie Y, Li M, Liu M, Liu X, Liu S, Zhu S, Zou Z, Luo Z. Naphthoquinone-derived ZSW-4B induces apoptosis in triple-negative breast cancer via AMPK signalling activation. Sci Rep 2024; 14:28559. [PMID: 39558000 PMCID: PMC11574302 DOI: 10.1038/s41598-024-79592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant molecular subtype of breast cancer and is characterized by aggressiveness, high mortality, significant heterogeneity, and poor prognosis. AMPK plays a critical role in maintaining the cellular energy balance, and its inactivation is associated with malignant breast cancer. Here, we identified the pharmacological mechanism of the 1,4-naphthoquinone derivative ZSW-4B. MTT, colony formation, and nude mouse xenograft tumour models demonstrated that ZSW-4B selectively inhibits the proliferation of TNBC cells both in vitro and in vivo. Flow cytometry and Western blot analysis revealed that ZSW-4B induces apoptosis in TNBC cells. Phosphoproteomic analysis revealed activation of the AMPK signalling pathway by ZSW-4B. Additionally, the application of the CRISPR-Cas9 system to genetically knockout AMPK in TNBC cell lines was demonstrated to reverse the antitumour effects elicited by ZSW-4B both in vitro and in vivo. In summary, ZSW-4B inhibits TNBC by inducing cellular apoptosis through the activation of AMPK.
Collapse
Affiliation(s)
- Xiyuan Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hongdou Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410008, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Ting Peng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Min Wen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qunfang Xu
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Mo Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Mingquan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Xiaohe Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China.
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Wilcockson SG, Guglielmi L, Araguas Rodriguez P, Amoyel M, Hill CS. An improved Erk biosensor detects oscillatory Erk dynamics driven by mitotic erasure during early development. Dev Cell 2023; 58:2802-2818.e5. [PMID: 37714159 PMCID: PMC7615346 DOI: 10.1016/j.devcel.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Extracellular signal-regulated kinase (Erk) signaling dynamics elicit distinct cellular responses in a variety of contexts. The early zebrafish embryo is an ideal model to explore the role of Erk signaling dynamics in vivo, as a gradient of activated diphosphorylated Erk (P-Erk) is induced by fibroblast growth factor (Fgf) signaling at the blastula margin. Here, we describe an improved Erk-specific biosensor, which we term modified Erk kinase translocation reporter (modErk-KTR). We demonstrate the utility of this biosensor in vitro and in developing zebrafish and Drosophila embryos. Moreover, we show that Fgf/Erk signaling is dynamic and coupled to tissue growth during both early zebrafish and Drosophila development. Erk activity is rapidly extinguished just prior to mitosis, which we refer to as mitotic erasure, inducing periods of inactivity, thus providing a source of heterogeneity in an asynchronously dividing tissue. Our modified reporter and transgenic lines represent an important resource for interrogating the role of Erk signaling dynamics in vivo.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Pablo Araguas Rodriguez
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
3
|
Lozynskyi A, Senkiv J, Ivasechko I, Finiuk N, Klyuchivska O, Kashchak N, Lesyk D, Karkhut A, Polovkovych S, Levytska O, Karpenko O, Boshkayeva A, Sayakova G, Gzella A, Stoika R, Lesyk R. 1,4-Naphthoquinone Motif in the Synthesis of New Thiopyrano[2,3-d]thiazoles as Potential Biologically Active Compounds. Molecules 2022; 27:molecules27217575. [PMID: 36364402 PMCID: PMC9658586 DOI: 10.3390/molecules27217575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were established by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI protocols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on HCT116wt, and it may be an interesting feature of the mechanism action.
Collapse
Affiliation(s)
- Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Andriy Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Svyatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Oksana Levytska
- Department of Organization and Economics of Pharmacy, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | | | - Assyl Boshkayeva
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Galiya Sayakova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
- Correspondence: ; Tel.: +380-677-038-010
| |
Collapse
|
4
|
Abdelwahab AB, El-Sawy ER, Hanna AG, Bagrel D, Kirsch G. A Comprehensive Overview of the Developments of Cdc25 Phosphatase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082389. [PMID: 35458583 PMCID: PMC9031484 DOI: 10.3390/molecules27082389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Cdc25 phosphatases have been considered promising targets for anticancer development due to the correlation of their overexpression with a wide variety of cancers. In the last two decades, the interest in this subject has considerably increased and many publications have been launched concerning this issue. An overview is constructed based on data analysis of the results of the previous publications covering the years from 1992 to 2021. Thus, the main objective of the current review is to report the chemical structures of Cdc25s inhibitors and answer the question, how to design an inhibitor with better efficacy and lower toxicity?
Collapse
Affiliation(s)
| | - Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt; (E.R.E.-S.); (A.G.H.)
| | - Atef G. Hanna
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt; (E.R.E.-S.); (A.G.H.)
| | - Denyse Bagrel
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57050 Metz, France;
| | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57078 Metz, France
- Correspondence: ; Tel.: +33-03-72-74-92-00; Fax: +33-03-72-74-91-87
| |
Collapse
|
5
|
Córdova-Rivas S, Araujo-Huitrado JG, Rivera-Avalos E, Escalante-García IL, Durón-Torres SM, López-Hernández Y, Hernández-López H, López L, de Loera D, López JA. Differential Proliferation Effect of the Newly Synthesized Valine, Tyrosine and Tryptophan-Naphthoquinones in Immortal and Tumorigenic Cervical Cell Lines. Molecules 2020; 25:molecules25092058. [PMID: 32354078 PMCID: PMC7248809 DOI: 10.3390/molecules25092058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
We previously showed that microwave assisted synthesis is the best method for the synthesis of naphthoquinone amino acid and chloride-naphthoquinone amino acid derivatives by a complete evaluation of reaction conditions such as stoichiometry, bases, and pH influence. Following the same strategy, we synthesized chloride and non-chloride tyrosine, valine, and tryptophan-naphthoquinones achieving 85–95%, 80–92%, and 91–95% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone amino acid derivatives mainly display one redox reaction process. Overall, chloride naphthoquinone amino acid derivatives exhibited redox potential values (E1/2) more positive than non-chloride compounds. The six newly synthesized compounds were tested in HPV positive and negative as well as in immortal and tumorigenic cell lines to observe the effects in different cellular context simulating precancerous and cancerous status. A dose-response was achieved to determine the IC50 of six newly synthesized compounds in SiHa (Tumorigenic and HPV16 positive), CaLo (Tumorigenic and HPV18 positive), C33-A (Tumorigenic and HPV negative) and HaCaT (Keratinocytes immortal HPV negative) cell lines. Non-chloride tryptophan-naphthoquinone (3c) and chloride tyrosine-naphthoquine (4a) effects were more potent in tumorigenic SiHa, CaLo, and C33-A cells with respect to non-tumorigenic HaCaT cells. Interestingly, there seems to be a differential effect in non-chloride and chloride naphthoquinone amino acid derivatives in tumorigenic versus non tumorigenic cells. Considering all naphthoquinone amino acid derivatives that our group synthesized, it seems that hydrophobic and aromatic amino acids have the greatest effect on cell proliferation inhibition. These results show promising compounds for cervical cancer treatment.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Jorge Gustavo Araujo-Huitrado
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Ernesto Rivera-Avalos
- School of Chemistry, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Sergio M. Durón-Torres
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Yamilé López-Hernández
- CONACYT, Laboratorio de Metabolómica y Proteómica, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Lluvia López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78377, Mexico
| | - Denisse de Loera
- School of Chemistry, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Correspondence: (D.d.L.); (J.A.L.); Tel.: +52-444-826-2300 x6415 (D.d.L.); +52-492-149-2648 (J.A.L.)
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
- Correspondence: (D.d.L.); (J.A.L.); Tel.: +52-444-826-2300 x6415 (D.d.L.); +52-492-149-2648 (J.A.L.)
| |
Collapse
|
6
|
Synthesis of Amino Acid-Naphthoquinones and In Vitro Studies on Cervical and Breast Cell Lines. Molecules 2019; 24:molecules24234285. [PMID: 31775253 PMCID: PMC6930466 DOI: 10.3390/molecules24234285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
We performed an extensive analysis about the reaction conditions of the 1,4-Michael addition of amino acids to 1,4-naphthoquinone and substitution to 2,3-dichloronaphthoquinone, and a complete evaluation of stoichiometry, use of different bases, and the pH influence was performed. We were able to show that microwave-assisted synthesis is the best method for the synthesis of naphthoquinone–amino acid and chloride–naphthoquinone–amino acid derivatives with 79–91% and 78–91% yields, respectively. The cyclic voltammetry profiles showed that both series of naphthoquinone–amino acid derivatives mainly display one quasi-reversible redox reaction process. Interestingly, it was shown that naphthoquinone derivatives possess a selective antitumorigenic activity against cervix cancer cell lines and chloride–naphthoquinone–amino acid derivatives against breast cancer cell lines. Furthermore, the newly synthetized compounds with asparagine–naphthoquinones (3e and 4e) inhibited ~85% of SiHa cell proliferation. These results show promising compounds for specific cervical and breast cancer treatment.
Collapse
|
7
|
Schepetkin IA, Karpenko AS, Khlebnikov AI, Shibinska MO, Levandovskiy IA, Kirpotina LN, Danilenko NV, Quinn MT. Synthesis, anticancer activity, and molecular modeling of 1,4-naphthoquinones that inhibit MKK7 and Cdc25. Eur J Med Chem 2019; 183:111719. [PMID: 31563013 DOI: 10.1016/j.ejmech.2019.111719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
Cell division cycle 25 (Cdc25) and mitogen-activated protein kinase kinase 7 (MKK7) are enzymes involved in intracellular signaling but can also contribute to tumorigenesis. We synthesized and characterized the biological activity of 1,4-naphthoquinones structurally similar to reported Cdc25 and(or) MKK7 inhibitors with anticancer activity. Compound 7 (3-[(1,4-dioxonaphthalen-2-yl)sulfanyl]propanoic acid) exhibited high binding affinity for MKK7 (Kd = 230 nM), which was greater than the affinity of NSC 95397 (Kd = 1.1 μM). Although plumbagin had a lower binding affinity for MKK7, this compound and sulfur-containing derivatives 4 and 6-8 were potent inhibitors of Cdc25A and Cdc25B. Derivative 22e containing a phenylamino side chain was selective for MKK7 versus MKK4 and Cdc25 A/B, and its isomer 22f was a selective inhibitor of Cdc25 A/B. Docking studies performed on several naphthoquinones highlighted interesting aspects concerning the molecule orientation and hydrogen bonding interactions, which could help to explain the activity of the compounds toward MKK7 and Cdc25B. The most potent naphthoquinone-based inhibitors of MKK7 and/or Cdc25 A/B were also screened for their cytotoxicity against nine cancer cell lines and primary human mononuclear cells, and a correlation was found between Cdc25 A/B inhibitory activity and cytotoxicity of the compounds. Quantum chemical calculations using BP86 and ωB97X-D3 functionals were performed on 20 naphthoquinone derivatives to obtain a set of molecular electronic properties and to correlate these properties with cytotoxic activities. Systematic theoretical DFT calculations with subsequent correlation analysis indicated that energy of the lowest unoccupied molecular orbital E(LUMO), vertical electron affinity (VEA), and reactivity index ω of these molecules were important characteristics related to their cytotoxicity. The reactivity index ω was also a key characteristic related to Cdc25 A/B phosphatase inhibitory activity. Thus, 1,4-naphthoquinones displaying sulfur-containing and phenylamino side chains with additional polar groups could be successfully utilized for further development of efficacious Cdc25 A/B and MKK7 inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Alexander S Karpenko
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, 65080, Ukraine
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia; Faculty of Chemistry, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Marina O Shibinska
- A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Odessa, 65080, Ukraine
| | - Igor A Levandovskiy
- Department of Organic Chemistry, Kiev Polytechnic Institute, Kiev, 03056, Ukraine
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
8
|
Xiao Y, Yu Y, Gao D, Jin W, Jiang P, Li Y, Wang C, Song Y, Zhan P, Gu F, Zhang C, Wang B, Chen Y, Du B, Zhang R. Inhibition of CDC25B With WG-391D Impedes the Tumorigenesis of Ovarian Cancer. Front Oncol 2019; 9:236. [PMID: 31024841 PMCID: PMC6463794 DOI: 10.3389/fonc.2019.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Novel inhibitors are urgently needed for use as targeted therapies to improve the overall survival (OS) of patients with ovarian cancer. Here, we show that cell division cycle 25B (CDC25B) is over-expressed in ovarian tumors and associated with poor patient prognosis. All previously reported CDC25B inhibitors have been identified by their ability to reversibly inhibit the catalytic dephosphorylation activity of CDC25B in vitro; however, none of these compounds have entered clinical trials for ovarian cancer therapy. In this study, we synthesized a novel small molecule compound, WG-391D, that potently down-regulates CDC25B expression without affecting its catalytic dephosphorylation activity. The inhibition of CDC25B by WG-391D is irreversible, and WG-391D should therefore exhibit potent antitumor activity against ovarian cancer. WG-391D induces cell cycle progression arrest at the G2/M phase. Half maximal inhibitory concentration (IC50) values of WG-391D for inhibition of the proliferation and migration of eight representative ovarian cancer cell lines (SKOV3, ES2, OVCAR8, OVTOKO, A2780, IGROV1, HO8910PM, and MCAS) and five primary ovarian tumor cell lines (GFY004, GFY005, CZ001, CZ006, and CZ008) were lower than 10 and 1 μM, respectively. WG-391D inhibited tumor growth in nude mice inoculated with SKOV3 cells or a patient-derived xenograft (PDX). The underlying mechanisms were associated with the down-regulation of CDC25B and subsequent inactivation of cell division cycle 2 (CDC2) and the serine/threonine kinase, AKT. In conclusion, this study demonstrates that WG-391D exhibits strong antitumor activity against ovarian cancer and indicates that the down-regulation of CDC25B by inhibitors could provide a rationale for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pengcheng Jiang
- Department of Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yuhong Li
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Cancan Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Bin Wang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Yihua Chen
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| |
Collapse
|
9
|
|
10
|
Zhivetyeva S, Tretyakov E, Bagryanskaya I. Synthesis of novel phosphonium betaines and bis-betaines derived from hexafluoro-1,4-naphthoquinone. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wang M, Liang L, Li L, Han K, Li Q, Peng Y, Peng X, Zeng K. Increased miR-424-5p expression in peripheral blood mononuclear cells from patients with pemphigus. Mol Med Rep 2017; 15:3479-3484. [PMID: 28393203 PMCID: PMC5436295 DOI: 10.3892/mmr.2017.6422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Pemphigus is an autoimmune disease that causes blisters and erosions in the skin and mucous membranes. The development of pemphigus is associated with the imbalance of T‑cell and humoral responses. MicroRNAs (miRNAs) can regulate many cell functions. However, whether miRNA expression is altered in peripheral blood mononuclear cells (PBMCs) during the pathogenesis of pemphigus has not been clarified. The aim of the present study was to examine the miRNA expression profiles of PBMCs from patients with pemphigus. The expression profiles of miRNAs in PBMCs from patients with active pemphigus (n=3) and healthy subjects (n=3) were analyzed by microarray. The relative levels of miR-424-5p expression in PBMCs from 9 patients and controls were validated by RT-qPCR. The functional and biological processes of the differentially expressed miRNAs were analyzed by bioinformatics. There were 124 differentially expressed miRNAs in PBMCs from the patients with pemphigus, compared with healthy controls, including 71 that were upregulated (P<0.05, fold change >2), and 53 that were downregulated (P<0.05, fold change <0.5). miR-424-5p was highly expressed in patients with pemphigus. Bioinformatics analysis indicated that the genes targeted by miR-424-5p were involved in intracellular signaling cascades, phosphate metabolism and regulation of kinase activity. The predicted target genes were associated with the T-cell receptor and mitogen-activated protein kinase signaling pathways as well as others. In conclusion, the results have demonstrated the miRNA expression profile, and verified that miR-424-5p was upregulated in PBMCs from patients with pemphigus. The biological function and potential pathways of miR-424-5p in pemphigus were predicted. Thus, miR-424-5p may contribute to the pathogenesis of pemphigus.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kai Han
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yusheng Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuebiao Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
12
|
Phosphonium betaines derived from hexafluoro-1,4-naphthoquinone: Synthesis and cytotoxic and antioxidant activities. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kim DJ, Choi CK, Lee CS, Park MH, Tian X, Kim ND, Lee KI, Choi JK, Ahn JH, Shin EY, Shin I, Kim EG. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain. Exp Mol Med 2016; 48:e229. [PMID: 27126178 PMCID: PMC4855275 DOI: 10.1038/emm.2016.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/09/2022] Open
Abstract
p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors.
Collapse
Affiliation(s)
- Duk-Joong Kim
- Research Institute and Quality Management Team, NanoPharm Corp., Jincheon-gun, Korea
| | - Chang-Ki Choi
- Division of Planning and Research, Korea National Institute of Health, KCDC, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Chan-Soo Lee
- Livestock Products Standard Division, Food Standard Planning Office, Food Safety Policy Bureau, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Mee-Hee Park
- Division of Medical Science Knowledge Management, Center of Biomedical Sciences, Korea National Institutes of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Xizhe Tian
- Department of Chemistry, Yanbian University, Yanji, China
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kee-In Lee
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Joong-Kwon Choi
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Jin Hee Ahn
- Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Eun-Young Shin
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
14
|
Zhivetyeva S, Selivanova G, Goryunov L, Bagryanskaya I, Shteingarts V. Triphenylphosphanodefluorination of fluoranil and its derivatives. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Troshkova N, Goryunov L, Shteingarts V, Zakharova O, Ovchinnikova L, Nevinsky G. Synthesis and cytotoxicity evaluation of polyfluorinated 1,4-naphthoquinones containing amino acid substituents. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Free-radical selective functionalization of 1,4-naphthoquinones by perfluorodiacyl peroxides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Kong WY, Chen XF, Shi J, Baloch SK, Qi JL, Zhu HL, Wang XM, Yang YH. Design and Synthesis of Fluoroacylshikonin as an Anticancer Agent. Chirality 2013; 25:757-62. [DOI: 10.1002/chir.22209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/29/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Wen-Yao Kong
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Xiao-Feng Chen
- Department of oncology; the First Affiliated Hospital of Nanjing Medical University; Nanjing People's Republic of China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Shahla Karim Baloch
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing People's Republic of China
| |
Collapse
|
18
|
Tandon VK, Kumar S. Recent development on naphthoquinone derivatives and their therapeutic applications as anticancer agents. Expert Opin Ther Pat 2013; 23:1087-108. [DOI: 10.1517/13543776.2013.798303] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Kotha S, Misra S, Srinivas V. Diversity Oriented Approach to Polycyclic Compounds through the Diels-Alder Reaction and the Suzuki Coupling. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Zakharova OD, Ovchinnikova LP, Goryunov LI, Troshkova NM, Shteingarts VD, Nevinsky GA. Cytotoxicity of new polyfluorinated 1,4-naphtoquinones with diverse substituents in the quinone moiety. Bioorg Med Chem 2011; 19:256-60. [PMID: 21134760 DOI: 10.1016/j.bmc.2010.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Fluorinated derivatives of 1,4-naphthoquinones are highly potent inhibitors of Cdc25A and Cdc25B phosphatases and growth of tumor cells. Eight new derivatives of polyfluoro-1,4-naphthoquinone were synthesized and their cytotoxicity in human myeloma, human mammary adenocarcinoma, mouse fibroblasts and primary mouse fibroblast cells as well as their mutagenic and antioxidant properties in a Salmonella tester strain were studied. The efficiency of suppressing the growth of two lines of tumor cells decreased in the order: 2-(2-hydroxy-ethylamino)-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (1), 2,3-dimethoxy-5,6,7,8-tetrafluoro-1,4-naphthoquinone (2), 2-[2-hydroxyethyl(methyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (3), 2-morpholino-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (4), 2-[bis-(2-hydroxyethyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (5), 2-[(2-hydroxy)ethylsulfanyl)]-5,6,7,8-tetrafluoro-1,4-naphthoquinone (6), 2-methoxy-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (7), and 1,4-dioxo-3-(1-pyridinio)-1,4-dihydro-5,6,7,8-tetrafluoronaphthalene-2-olate (8). Taking into account these data together with the better cytotoxic effect against cancer cells as compared with normal mammalian cells, protecting of bacterial cells from spontaneous and H(2)O(2)-dependent mutagenesis, and lower general toxicity of the compounds towards different cells, one can propose that compounds 3-5 may be considered as useful potential inhibitors of growth of tumor cells.
Collapse
Affiliation(s)
- Ol'ga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Muus U, Hose C, Yao W, Kosakowska-Cholody T, Farnsworth D, Dyba M, Lountos GT, Waugh DS, Monks A, Burke TR, Michejda CJ. Development of antiproliferative phenylmaleimides that activate the unfolded protein response. Bioorg Med Chem 2010; 18:4535-41. [PMID: 20472436 PMCID: PMC2892248 DOI: 10.1016/j.bmc.2010.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 11/16/2022]
Abstract
The current paper presents the synthesis and evaluation of a series of maleimides that were designed to inhibit the Cdc25 phosphatase by alkylation of catalytically essential cysteine residues. Although in HepB3 cell culture assays the analogues did exhibit antiproliferative IC(50) values ranging from sub-micromolar to greater than 100 microM, inhibition of Cdc25 through cysteine alkylation could not be demonstrated. It was also found that analysis using fluorescence activated cell sorting (FACS) following treatment with the most potent analogue (1t) did not provide data consistent with inhibition at one specific point in the cell cycle, as would be expected if Cdc25A were inhibited. Further studies with a subset of analogues resulted in a correlation of antiproliferative potencies with activation of the unfolded protein response (UPR). The UPR is a regulatory pathway that temporarily suspends protein production when misfolding of proteins occurs within the endoplastic reticulum (ER). In addition, ER chaperones that promote proper refolding become up-regulated. If cellular damage cannot be resolved by these mechanisms, then the UPR can initiate apoptosis. The current study indicates that these maleimide analogues lead to UPR activation, which is predictive of the selective antiproliferative activity of the series.
Collapse
Affiliation(s)
- Ulrike Muus
- Chemical Biology Laboratory, Molecular Discovery Program, NCI-Frederick, Frederick, MD 21702
| | - Curtis Hose
- Screening Technologies Branch, SAIC-Frederick, Frederick, MD 21702
| | - Wei Yao
- Structural Biophysics Laboratory, Molecular discovery Program, NCI-Frederick, Frederick, MD 21702
| | | | - David Farnsworth
- Chemical Biology Laboratory, Molecular Discovery Program, NCI-Frederick, Frederick, MD 21702
| | - Marzena Dyba
- Structural Biophysics Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - George T. Lountos
- Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, MD 21702
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, MD 21702
| | - Anne Monks
- Screening Technologies Branch, SAIC-Frederick, Frederick, MD 21702
| | - Terrence R. Burke
- Chemical Biology Laboratory, Molecular Discovery Program, NCI-Frederick, Frederick, MD 21702
| | - Christopher J. Michejda
- Structural Biophysics Laboratory, Molecular discovery Program, NCI-Frederick, Frederick, MD 21702
| |
Collapse
|
22
|
Zakharova OD, Ovchinnikova LP, Goryunov LI, Troshkova NM, Shteingarts VD, Nevinsky GA. Cytotoxicity of new alkylamino- and phenylamino-containing polyfluorinated derivatives of 1,4-naphthoquinone. Eur J Med Chem 2010; 45:2321-6. [DOI: 10.1016/j.ejmech.2010.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
|
23
|
Cytotoxicity of new n-butylamino and sulfur-containing derivatives of polyfluorinated 1,4-naphthoquinone. Eur J Med Chem 2010; 45:270-4. [DOI: 10.1016/j.ejmech.2009.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/28/2009] [Accepted: 10/01/2009] [Indexed: 11/19/2022]
|
24
|
Cao S, Murphy BT, Foster C, Lazo JS, Kingston DGI. Bioactivities of simplified adociaquinone B and naphthoquinone derivatives against Cdc25B, MKP-1, and MKP-3 phosphatases. Bioorg Med Chem 2009; 17:2276-81. [PMID: 19028102 PMCID: PMC2860877 DOI: 10.1016/j.bmc.2008.10.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 10/03/2008] [Accepted: 10/31/2008] [Indexed: 12/21/2022]
Abstract
Some simplified adociaquinone B analogs and a series of 1,4-naphthoquinone derivatives were synthesized and tested against the three enzymes Cdc25B, MKP-1, and MKP-3. Cdc25B and MKP-1 in particular are enzymes overexpressed in human cancer cells, and they represent potential molecular targets for novel cancer chemotherapeutic treatments. A number of analogs exhibited significant inhibitory activity against these enzymes, and the bioassay data in addition to structure-activity relationships of these compounds will be discussed.
Collapse
Affiliation(s)
- Shugeng Cao
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Brian T. Murphy
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Caleb Foster
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - John S. Lazo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - David G. I. Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
25
|
Keinan S, Paquette WD, Skoko JJ, Beratan DN, Yang W, Shinde S, Johnston PA, Lazo JS, Wipf P. Computational design, synthesis and biological evaluation of para-quinone-based inhibitors for redox regulation of the dual-specificity phosphatase Cdc25B. Org Biomol Chem 2008; 6:3256-63. [PMID: 18802630 PMCID: PMC2752828 DOI: 10.1039/b806712k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Quinoid inhibitors of Cdc25B were designed based on the Linear Combination of Atomic Potentials (LCAP) methodology. In contrast to a published hypothesis, the biological activities and hydrogen peroxide generation in reducing media of three synthetic models did not correlate with the quinone half-wave potential, E(1/2).
Collapse
Affiliation(s)
- Shahar Keinan
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yan X, Chua MS, He J, So SK. Small interfering RNA targeting CDC25B inhibits liver tumor growth in vitro and in vivo. Mol Cancer 2008; 7:19. [PMID: 18269767 PMCID: PMC2276234 DOI: 10.1186/1476-4598-7-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/12/2008] [Indexed: 01/09/2023] Open
Abstract
Background Using gene expression profiling, we previously identified CDC25B to be significantly highly expressed in hepatocellular carcinoma (HCC) compared to non-tumor liver. CDC25B is a cell cycle-activating phosphatase that positively regulates the activity of cyclin-dependent kinases, and is over-expressed in a variety of human malignancies. In this study, we validated the over-expression of CDC25B in HCC, and further investigated its potential as a therapeutic target for the management of HCC. Results Quantitative real-time polymerase chain reaction and immunohistochemical staining of patient samples confirmed the significant over-expression of CDC25B in HCC compared to non-tumor liver samples (P < 0.001). Thus, intefering with the expression and activity of CDC25B may be a potential way to intervene with HCC progression. We used RNA interference to study the biological effects of silencing CDC25B expression in HCC cell lines (Hep3B and Hep40), in order to validate its potential as a therapeutic target. Using small oligo siRNAs targeting the coding region of CDC25B, we effectively suppressed CDC25B expression by up to 90%. This was associatetd with significant reductions in cell growth rate, cell migration and invasion through the matrigel membrane, and caused significant cell cycle delay at the G2 phase. Finally, suppression of CDC25B significantly slowed the growth of Hep40 xenografts in nude mice. Conclusion Our data provide evidence that the inhibition of CDC25B expression and activity lead to suppression of tumor cell growth and motility, and may therefore be a feasible approach in the clinical management of HCC.
Collapse
Affiliation(s)
- Xinrui Yan
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
27
|
2-Methoxyestradiol inhibits hepatocellular carcinoma cell growth by inhibiting Cdc25 and inducing cell cycle arrest and apoptosis. Cancer Chemother Pharmacol 2008; 62:831-40. [PMID: 18246350 DOI: 10.1007/s00280-007-0670-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE 2-Methoxyestradiol (2-ME) is a physiological metabolite of estrogen, which can inhibit growth of many types of tumor cells, including hepatocellular carcinoma, both in vitro and in vivo. The exact mechanisms of its action are still unclear. We have studied the mechanisms of growth inhibition of several of human and rat hepatoma and normal liver cells by 2-ME. METHODS Human (Hep3B, HepG2, PLC/PRF5) and rat (McA-RH7777, JM-1) hepatoma and normal rat (CRL-1439) and human (CRL-11233) liver cell lines were cultured in vitro, in presence of 2-ME, and its IC50s were determined. Cell cycle arrest, Cdc25 phosphatase inhibition and apoptosis induction were studied. Finally, the effect of 2-ME on the growth of JM-1 rat hepatoma cells in rat liver was determined in vivo. RESULTS The IC50 range for growth inhibition of hepatoma cells was found to be between 0.5 and 3 microM. In contrast, normal rat hepatocytes and liver cell lines were resistant to 2-ME up to 20 microM. JM-1 cells were arrested in the G2/M phase of the cell cycle. Cdc25A and Cdc25B, cell cycle controlling phosphatases, activities were inhibited in vitro and 2-ME was found to likely bind to their catalytic site cysteines. As a consequence, their cellular substrates Cdk1 and Cdk2 were tyrosine phosphorylated. Caspase-3 was cleaved suggesting apoptotic cell death. Moreover, growth of JM-1 tumors, which were transplanted into rat liver, was also inhibited by treatment with 2-ME in vivo. CONCLUSIONS 2-Methoxyestradiol is a selective, potent and relatively non-toxic hepatoma growth inhibitor both in vitro and in vivo. Cell cycle arrest of hepatoma cells was likely mediated by binding and inactivation of the Cdc25 phosphatases and induction of apoptosis.
Collapse
|
28
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
29
|
Panchal RG, Ruthel G, Brittingham KC, Lane D, Kenny TA, Gussio R, Lazo JS, Bavari S. Chemical Genetic Screening Identifies Critical Pathways in Anthrax Lethal Toxin-Induced Pathogenesis. ACTA ACUST UNITED AC 2007; 14:245-55. [PMID: 17379140 DOI: 10.1016/j.chembiol.2007.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/28/2006] [Accepted: 01/09/2007] [Indexed: 11/23/2022]
Abstract
Anthrax lethal toxin (LT)-induced cell death via mitogen-activated protein kinase kinase (MAPKK) cleavage remains questionable. Here, a chemical genetics approach was used to investigate what pathways mediate LT-induced cell death. Several small molecules were found to protect macrophages from anthrax LT cytotoxicity and MAPKK from cleavage by lethal factor (LF), without inhibiting LF enzymatic activity or cellular proteasome activity. Interestingly, the compounds activated MAPK-signaling molecules, induced proinflammatory cytokine production, and inhibited LT-induced macrophage apoptosis in a concentration-dependent manner. We propose that induction of antiapoptotic responses by MAPK-dependent or -independent pathways and activation of host innate responses may protect macrophages from anthrax LT-induced cell death. Altering host responses through a chemical genetics approach can help identify critical cellular pathways involved in the pathogenesis of anthrax and can be exploited to further explore host-pathogen interactions.
Collapse
Affiliation(s)
- Rekha G Panchal
- Target Structure-Based Drug Discovery Group, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|