1
|
Templeton HN, Tobet SA, Schwerdtfeger LA. Gut neuropeptide involvement in Parkinson's disease. Am J Physiol Gastrointest Liver Physiol 2025; 328:G716-G733. [PMID: 40279198 DOI: 10.1152/ajpgi.00383.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 04/21/2025] [Indexed: 04/27/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting over 10 million people. A key pathological feature of PD is the accumulation of misfolded α-synuclein (aSyn) protein in the substantia nigra pars compacta. Aggregation of aSyn can form Lewy bodies that contribute to dopaminergic neuron degeneration and motor symptoms, such as tremor, rigidity, and bradykinesia. Beyond the central nervous system, aSyn aggregates have been detected in the gastrointestinal (GI) tract, suggesting a link between peripheral aSyn and nonmotor PD symptoms. GI symptoms, often preceding motor symptoms by up to 20 years, highlight the bidirectional communication between the central nervous system and the enteric nervous system (gut-brain axis) in PD. Although microbiome alterations and intestinal inflammation have been associated with PD, functional impacts on gut-brain signaling or aSyn aggregation remain unclear. Intestinal neuropeptides are key modulators of gut-brain communication, alter immune response to pathogens and environmental toxins, and may contribute to the function of the luminal gut barrier. Dysregulation of gut neuropeptide signaling, including vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, ghrelin, cholecystokinin, glucagon-like peptide 1, and substance P, have been associated with pathologic effects of PD in animal models. Despite their potential role in pathogenesis and disease modulation, gut neuropeptide roles in PD are underexplored. This article reviews current knowledge surrounding microbial metabolite and immune influences on gut neuropeptide signaling, aSyn aggregation in the enteric nervous system, and downstream neuroimmune pathway alterations within the context of PD and its mouse models.
Collapse
Affiliation(s)
- Hayley N Templeton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States
| | - Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
- Ann Romney Center for Neurological Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Shahbazi A, Sepehrinezhad A, Vahdani E, Jamali R, Ghasempour M, Massoudian S, Sahab Negah S, Larsen FS. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11:1272. [PMID: 37238943 PMCID: PMC10215854 DOI: 10.3390/biomedicines11051272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.
Collapse
Affiliation(s)
- Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Ali Sepehrinezhad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Edris Vahdani
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Raika Jamali
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Monireh Ghasempour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Shirin Massoudian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Fin Stolze Larsen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Inge Lehmanns Vej 5, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
You Z, Liu B, Qi H. Neuronal regulation of B-cell immunity: Anticipatory immune posturing? Neuron 2022; 110:3582-3596. [PMID: 36327899 DOI: 10.1016/j.neuron.2022.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The brain may sense, evaluate, modulate, and intervene in the operation of immune system, which would otherwise function autonomously in defense against pathogens. Antibody-mediated immunity is one arm of adaptive immunity that may achieve sterilizing protection against infection. Lymphoid organs are densely innervated. Immune cells supporting the antigen-specific antibody response express receptors for neurotransmitters and glucocorticoid hormones, and they are subjected to collective regulation by the neuroendocrine and the autonomic nervous system. Emerging evidence reveals a brain-spleen axis that regulates antigen-specific B cell responses and antibody-mediated immunity. In this article, we provide a synthesis of those studies as pertinent to neuronal regulation of B cell responses in secondary lymphoid organs. We propose the concept of defensive immune posturing as a brain-initiated top-down reaction in anticipation of potential tissue injury that requires immune protection.
Collapse
Affiliation(s)
- Zhiwei You
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Liu Y, Tang W, Ao J, Zhang J, Feng L. Transcriptomics integrated with metabolomics reveals the effect of Bisphenol F (BPF) exposure on intestinal inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151644. [PMID: 34774955 DOI: 10.1016/j.scitotenv.2021.151644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
As a viable alternative to Bisphenol A (BPA), Bisphenol F (BPF) has been detected in humans at comparable concentrations and detection frequencies. Emerging evidence reveals that BPF induces intestinal toxicity. However, less information is available concerning BPF and its potential effects on intestinal inflammation, which has been associated with numerous disorders. The results from the present study showed that BPF exposure triggered lipopolysaccharide (LPS)-induced explosion of pro-inflammatory cytokines interleukin-17A (IL-17A), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) and impairment of the intestinal epithelial barrier by downregulating the expression of tight junction proteins Zonula Occludens-1 (ZO-1) and Claudin-1 (CLDN1) in normal colonic epithelial cells (NCM460). A multi-omics analysis integrating the transcriptomics with metabolomics revealed an altered transcripts and metabolites profile following BPF exposure. Correlation analysis indicated that RAS Guanyl Releasing Protein 2 (RASGRP2) and Phospholipase A2 Group IVE (PLA2G4E) were positively associated with the increased serotonin which was positively associated with the stimulated IFN-γ in BPF-treated NCM460 cells. Pyrogallol, pyridoxine, and N-acetylputrescine were positively associated with IL-17A levels. Collectively, the integrative analyses demonstrated an orchestrated coordination between the inflammatory response, transcriptomic, and metabolomics changes. Data presented herein provide evidence for the possible roles of BPF in the pathogenesis of intestinal inflammation. These results illustrate the advantages of using integrative analyses of high throughput datasets for characterizing the effects and mechanisms of toxicants.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weifeng Tang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Ao
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
5
|
You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021; 12:659716. [PMID: 34135754 PMCID: PMC8201607 DOI: 10.3389/fphar.2021.659716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease, irritable bowel syndrome and severe central nervous system injury can lead to intestinal mucosal barrier damage, which can cause endotoxin/enterobacteria translocation to induce infection and is closely related to the progression of metabolic diseases, cardiovascular and cerebrovascular diseases, tumors and other diseases. Hence, repairing the intestinal barrier represents a potential therapeutic target for many diseases. Enteral afferent nerves, efferent nerves and the intrinsic enteric nervous system (ENS) play key roles in regulating intestinal physiological homeostasis and coping with acute stress. Furthermore, innervation actively regulates immunity and induces inherent and adaptive immune responses through complex processes, such as secreting neurotransmitters or hormones and regulating their corresponding receptors. In addition, intestinal microorganisms and their metabolites play a regulatory role in the intestinal mucosal barrier. This paper primarily discusses the interactions between norepinephrine and β-adrenergic receptors, cholinergic anti-inflammatory pathways, nociceptive receptors, complex ENS networks, gut microbes and various immune cells with their secreted cytokines to summarize the key roles in regulating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Xin-Yu You
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han-Yu Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Wang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
7
|
Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol 2019; 62:54-61. [PMID: 31841704 DOI: 10.1016/j.coi.2019.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The mammalian gastrointestinal tract harbors a large reservoir of tissue macrophages, which, in concert with other immune cells, help to maintain a delicate balance between tolerance to commensal microbes and food antigens, and resistance to potentially harmful microbes or toxins. Beyond their roles in resistance and tolerance, recent studies have uncovered novel roles played by tissue-resident, including intestinal-resident macrophages in organ physiology. Here, we will discuss recent advances in the understanding of the origin, phenotype and function of macrophages residing in the different layers of the intestine during homeostasis and under pathological conditions.
Collapse
Affiliation(s)
- Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Lee S, Jo S, Talbot S, Zhang HXB, Kotoda M, Andrews NA, Puopolo M, Liu PW, Jacquemont T, Pascal M, Heckman LM, Jain A, Lee J, Woolf CJ, Bean BP. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife 2019; 8:48118. [PMID: 31765298 PMCID: PMC6877086 DOI: 10.7554/elife.48118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.
Collapse
Affiliation(s)
- Seungkyu Lee
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | | | - Masakazu Kotoda
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Nick A Andrews
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, United States
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas Jacquemont
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Maud Pascal
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Laurel M Heckman
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Aakanksha Jain
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Jinbo Lee
- Sage Partner International, Andover, United States
| | - Clifford J Woolf
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
9
|
Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018; 30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nerve-mucosa interactions control various elements of gastrointestinal functions, including mucosal host defense, gut barrier function, and epithelial cell growth and differentiation. In both intestinal and extra-intestinal diseases, alterations of autonomic nerve activity have been observed to be concurrent with the disease course, such as in inflammatory and functional bowel diseases, and neurodegenerative diseases. This is relevant as the extrinsic autonomic nervous system is increasingly recognized to modulate gut inflammatory responses. The molecular and cellular mechanisms through which the extrinsic and intrinsic nerve pathways may regulate digestive mucosal functions have been investigated in several pre-clinical and clinical studies. PURPOSE The present review focuses on the involvement of neural pathways in gastrointestinal disease, and addresses the current strategies to intervene with neuronal pathway as a means of treatment.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Nullens S, De Man J, Bridts C, Ebo D, Francque S, De Winter B. Identifying Therapeutic Targets for Sepsis Research: A Characterization Study of the Inflammatory Players in the Cecal Ligation and Puncture Model. Mediators Inflamm 2018; 2018:5130463. [PMID: 30174555 PMCID: PMC6098915 DOI: 10.1155/2018/5130463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023] Open
Abstract
During sepsis, disturbed gastrointestinal motility and increased mucosal permeability can aggravate sepsis due to the increased risk of bacterial translocation. To help identify new therapeutic targets, there is a need for animal models that mimic the immunological changes in the gastrointestinal tract as observed during human sepsis. We therefore characterized in detail the gastrointestinal neuroimmune environment in the cecal ligation and puncture (CLP) model, which is the gold standard animal model of microbial sepsis. Mice were sacrificed at day 2 and day 7, during which gastrointestinal motility was assessed and cytokines were measured in the serum and the colon. In the spleen, lymph nodes, ileum, and colon, subsets of leukocyte populations were identified by flow cytometry. Septic animals displayed an impaired gastrointestinal motility at day 2 and day 7. Two days post-CLP, increased serum and colonic levels of proinflammatory cytokines were measured. Flow cytometry revealed an influx of neutrophils in the colon and ileum, increased numbers of macrophages in the spleen and mesenteric lymph nodes, and an enhanced number of mast cells in all tissues. At day 7 post-CLP, lymphocyte depletion was observed in all tissues coinciding with increased IL-10 and TGF-β levels, as well as increased colonic levels of IL-17A and IFN-γ. Thus, CLP-induced sepsis in mice results in simultaneous activation of pro- and anti-inflammatory players at day 2 and day 7 in different tissues, mimicking human sepsis.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Chris Bridts
- Immunology-Allergology-Rheumatology Department, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Didier Ebo
- Immunology-Allergology-Rheumatology Department, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Abstract
As potent antigen-presenting cells, dendritic cells (DCs) comprise the most heterogeneous cell population with significant cellular phenotypic and functional plasticity. They form a sentinel network to modulate immune responses, since intrinsic cellular mechanisms and complex external, environmental signals endow DCs with the distinct capacity to induce protective immunity or tolerance to self. Interactions between DCs and other cells of the immune system mediate this response. This interactive response depends on DC maturation status and subtype, as well as the microenvironment of the tissue location and DC-intrinsic regulators. Dysregulated DCs can initiate and perpetuate various immune disorders, which creates attractive therapeutic targets. In this review, we provide a detailed outlook on DC ontogeny and functional specialization. We highlight recent advances on the regulatory role that DCs play in immune responses, the putative molecular regulators that control DC functional responding and the contribution of DCs to inflammatory disease physiopathology.
Collapse
|
12
|
Buckinx R, Alpaerts K, Pintelon I, Cools N, Van Nassauw L, Adriaensen D, Timmermans JP. In situ proximity of CX3CR1-positive mononuclear phagocytes and VIP-ergic nerve fibers suggests VIP-ergic immunomodulation in the mouse ileum. Cell Tissue Res 2017; 368:459-467. [PMID: 28190088 DOI: 10.1007/s00441-017-2578-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022]
Abstract
Being continuously exposed to a plethora of antigens ranging from food antigens to potential pathogenic organisms, the gastrointestinal (GI) tract harbors the largest collection of immune cells in the mammalian body. This immune system has to maintain a delicate balance between mounting an active immune response and maintaining tolerance. The GI tract is also home to an elaborate intrinsic nervous system, the enteric nervous system (ENS). Various in vitro studies of neuro-immune communication have suggested that vasoactive intestinal peptide (VIP), an important GI neurotransmitter, modulates mononuclear phagocytes (MNPs), i.e., dendritic cells and macrophages. Using a combined approach of reverse transcription plus the polymerase chain reaction, immunofluorescence, three-dimensional maximum intensity projections and immunoelectron microscopy, we investigate the interaction between the enteric innervation and MNPs in the ileal lamina propria (LP). We demonstrate that VIP-ergic fibers of the ENS lie adjacent to CX3CR1+ MNPs and that VPAC1 is constitutively expressed on ileal CX3CR1+ cells in the LP of the mouse. We also identify, for the first time, CX3CR1+ immune cells in the LP at the ultrastructural level. Our data thus reveal the in situ presence of the molecular components that are necessary for a VIP-mediated neuro-immune interaction between the ENS and CX3CR1-expressing immune cells in the LP of the ileum.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Katrien Alpaerts
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
14
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
15
|
Wu H, Chen J, Song S, Yuan P, Liu L, Zhang Y, Zhou A, Chang Y, Zhang L, Wei W. β2-adrenoceptor signaling reduction in dendritic cells is involved in the inflammatory response in adjuvant-induced arthritic rats. Sci Rep 2016; 6:24548. [PMID: 27079168 PMCID: PMC4832233 DOI: 10.1038/srep24548] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by inflammation of the synovium, which leads to the progressive destruction of cartilage and bone. Adrenoreceptor (AR) signaling may play an important role in modulating dendritic cell (DC), which may be involved in the pathogenesis of RA. We examined the effect of the β-AR agonist isoprenaline (ISO) on DC function, the impact of the β2-AR agonist salbutamol on adjuvant-induced arthritic (AA) rats, and changes in β2-AR signaling in DCs during the course of AA. ISO inhibited the expression of the surface molecules CD86 and MHC-II, inhibited the stimulation of T lymphocyte proliferation by DC and TNF-α secretion, and promoted DC antigen uptake and IL-10 secretion. The effects of ISO on MHC-II expression, DC stimulation of T lymphocyte proliferation, and DC antigen uptake were mediated by β2-AR. Treatment with salbutamol ameliorated the severity of AA and histopathology of the joints and inhibited proliferation of thymus lymphocytes and FLS in vivo. β2-AR signaling was weaker in AA rats compared to the control. Elevated GRK2 and decreased β2-AR expression in DC cytomembranes were observed in AA and may have decreased the anti-inflammatory effect of β2-AR signaling. Decreased β2-AR signaling may be relevant to the exacerbation of arthritis inflammation.
Collapse
Affiliation(s)
- Huaxun Wu
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shasha Song
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Pingfan Yuan
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lihua Liu
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yunfang Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Aiwu Zhou
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yan Chang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology of Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| |
Collapse
|
16
|
Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses. J Neuroimmunol 2015; 289:43-55. [DOI: 10.1016/j.jneuroim.2015.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
|
17
|
Affiliation(s)
- Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Bai A, Chen J, Liao W, Lu N, Guo Y. Catecholamine Mediates Psychological Stress-Induced Colitis Through a2-Adrenoreceptor. J Interferon Cytokine Res 2015; 35:580-4. [PMID: 25867043 DOI: 10.1089/jir.2014.0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Aiping Bai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wangdi Liao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
19
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Nijhuis LE, Olivier BJ, Dhawan S, Hilbers FW, Boon L, Wolkers MC, Samsom JN, de Jonge WJ. Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS One 2014; 9:e85086. [PMID: 24465481 PMCID: PMC3898911 DOI: 10.1371/journal.pone.0085086] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/21/2013] [Indexed: 01/02/2023] Open
Abstract
Vagal nerve efferent activation has been shown to ameliorate the course of many inflammatory disease states. This neuro-modulatory effect has been suggested to rest on acetylcholine receptor (AChR) activation on tissue macrophages or dendritic cells (DCs). In more recent studies, vagal anti-inflammatory activity was shown involve adrenergic, splenic, pathways. Here we provide evidence that the adrenergic, rather than cholinergic, receptor activation on bone marrow derived DCs results in enhanced endocytosis uptake, enhanced IL-10 production but a decreased IL-6, IL-12p70 and IL-23 production. In antigen specific T cell stimulation assays, adrenergic β2 receptor activation on bone marrow DCs led to an enhanced potential to induce Foxp3 positive suppressive Treg cells. These effects were independent of IL10-R activation, TGFβ release, or retinoic acid (RA) secretion. Hence, adrenergic receptor β2 activation modulates DC function resulting in skewing towards anti-inflammatory T cell phenotypes.
Collapse
Affiliation(s)
- Laurens E. Nijhuis
- Tytgat Institute for Gastro-Intestinal and Liver Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Brenda J. Olivier
- Tytgat Institute for Gastro-Intestinal and Liver Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Shobit Dhawan
- Tytgat Institute for Gastro-Intestinal and Liver Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Francisca W. Hilbers
- Tytgat Institute for Gastro-Intestinal and Liver Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Louis Boon
- Bioceros B.V., Yalelaan 46, Utrecht, The Netherlands
| | - Monika C. Wolkers
- Sanquin Research/Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam, The Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatric Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wouter J. de Jonge
- Tytgat Institute for Gastro-Intestinal and Liver Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
22
|
Kraneveld AD, de Theije CGM, van Heesch F, Borre Y, de Kivit S, Olivier B, Korte M, Garssen J. The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol 2013; 114:128-36. [PMID: 24118847 DOI: 10.1111/bcpt.12154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
Disturbed bidirectional pathways between the (central) nervous system and immune system have been implicated in various mental disorders, including depressive and neurodevelopmental disorders. In this minireview, the role of the neuro-immune axis and its targetability in relation to major depression and autism spectrum disorder will be discussed. All together, the management of these and possibly other multi-factorial mental disorders needs a new and integrated therapeutic approach. Pharmacologically bioactive molecules as well as medical nutrition targeting the (gut)-immune-brain axis could be such an approach.
Collapse
Affiliation(s)
- Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. Am J Physiol Gastrointest Liver Physiol 2013; 304:G949-57. [PMID: 23538492 PMCID: PMC3680683 DOI: 10.1152/ajpgi.00493.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS), referred to as the "second brain," comprises a vast number of neurons that form an elegant network throughout the gastrointestinal tract. Neuropeptides produced by the ENS play a crucial role in the regulation of inflammatory processes via cross talk with the enteric immune system. In addition, neuropeptides have paracrine effects on epithelial secretion, thus regulating epithelial barrier functions and thereby susceptibility to inflammation. Ultimately the inflammatory response damages the enteric neurons themselves, resulting in deregulations in circuitry and gut motility. In this review, we have emphasized the concept of neurogenic inflammation and the interaction between the enteric immune system and enteric nervous system, focusing on neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). The alterations in the expression of NPY and VIP in inflammation and their significant roles in immunomodulation are discussed. We highlight the mechanism of action of these neuropeptides on immune cells, focusing on the key receptors as well as the intracellular signaling pathways that are activated to regulate the release of cytokines. In addition, we also examine the direct and indirect mechanisms of neuropeptide regulation of epithelial tight junctions and permeability, which are a crucial determinant of susceptibility to inflammation. Finally, we also discuss the potential of emerging neuropeptide-based therapies that utilize peptide agonists, antagonists, siRNA, oligonucleotides, and lentiviral vectors.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
24
|
Shields AM, Panayi GS, Corrigall VM. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis? Clin Exp Immunol 2011; 165:292-300. [PMID: 21671907 PMCID: PMC3170978 DOI: 10.1111/j.1365-2249.2011.04433.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 12/22/2022] Open
Abstract
The resolution of inflammation is central to the maintenance of good health and immune homeostasis. Recently, several intracellular stress proteins have been described as having extracellular properties that are anti-inflammatory or favour the resolution of inflammation. We propose that these molecules should be defined as resolution-associated molecular patterns (RAMPs). RAMPs are released at times of cellular stress and help to counterbalance the inflammatory effects of pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns. We propose that heat shock protein 10 (HSP10), αB-crystallin (αBC), HSP27 and binding immunoglobulin protein (BiP) should be considered founding members of the RAMP family. A greater understanding of RAMP biology may herald the development of novel immunotherapies.
Collapse
Affiliation(s)
- A M Shields
- Academic Department of Rheumatology, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
25
|
Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 2011; 32:412-9. [PMID: 21816673 DOI: 10.1016/j.it.2011.06.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023]
Abstract
CD103(+) dendritic cells (DCs) in the intestinal mucosa play a crucial role in tolerance to commensal bacteria and food antigens. These cells originate in the lamina propria (LP) and migrate to the mesenteric lymph nodes (MLNs), where they drive the differentiation of gut-homing FoxP3(+) regulatory T cells by producing retinoic acid from dietary vitamin A. Local 'conditioning' factors in the LP might also contribute to this tolerogenic profile of CD103(+) DCs. Considerably less is understood about the generation of active immunity or inflammation in the intestinal mucosa. This might require alterations in pre-existing CD103(+) DCs, arrival of new DCs, or the action of a distinct DC population. Here, we discuss our current knowledge of this as yet incompletely understood population.
Collapse
Affiliation(s)
- Charlotte L Scott
- Institute of Infection, Immunology and Inflammation, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | |
Collapse
|
26
|
Matzinger P, Kamala T. Tissue-based class control: the other side of tolerance. Nat Rev Immunol 2011; 11:221-30. [PMID: 21350581 DOI: 10.1038/nri2940] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Essay, we offer a new perspective on how immune responses are regulated. We do not cover how they are turned on and off, but focus instead on the second major aspect of an immune response: the control of effector class. Although it is generally thought that the class of an immune response is tailored to fit the invading pathogen, we suggest here that it is primarily tailored to fit the tissue in which the response occurs. To this end, we cover such topics as the nature of T helper (T(H)) cell subsets (current and yet to be discovered), the nature of privileged sites, the difference between oral tolerance and oral vaccination, why the route of immunization matters, whether the T(H)1-type response is really the immune system's primary defense, and whether there might be a different role for some regulatory T cells.
Collapse
Affiliation(s)
- Polly Matzinger
- Laboratory of Cellular and Molecular Immunology, T-Cell Tolerance and Memory Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
27
|
Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 2010; 343:23-32. [PMID: 20941511 DOI: 10.1007/s00441-010-1050-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 02/08/2023]
Abstract
Psychological stress has profound effects on gastrointestinal function, and investigations over the past few decades have examined the mechanisms by which neural and hormonal stress mediators act to modulate gut motility, epithelial barrier function and inflammatory states. With its cellular diversity and large commensal bacterial population, the intestinal mucosa and its overlying mucous environment constitute a highly interactive environment for eukaryotic host cells and prokaryotic bacteria. The elaboration of stress mediators, particularly norepinephrine, at this interface influences host cells engaged in mucosal protection and the bacteria which populate the mucosal surface and gut lumen. This review will address growing evidence that norepinephrine and, in some cases, other mediators of the adaptation to stress modulate mucosal interactions with enteric bacteria. Stress-mediated changes in this delicate interplay may shift the microbial colonization patterns on the mucosal surface and alter the susceptibility of the host to infection. Moreover, changes in host-microbe interactions in the digestive tract may also influence ongoing neural activity in stress-responsive brain areas.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, 3601 4th Street, MS 8162, Lubbock, TX 79430-8162, USA.
| | | | | |
Collapse
|