1
|
Soto-Arriaza M, Cena Ahumada E, Bonardd S, Melendez J. Calcein release from DPPC liposomes by phospholipase A2 activity: Effect of cholesterol and amphipathic copolymers. J Liposome Res 2024; 34:617-629. [PMID: 38850012 DOI: 10.1080/08982104.2024.2361610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
In this study, we evaluated the impact of incorporating diblock and triblock amphiphilic copolymers, as well as cholesterol into DPPC liposomes on the release of a model molecule, calcein, mediated by exogenous phospholipase A2 activity. Our findings show that calcein release slows down in the presence of copolymers at low concentration, while at high concentration, the calcein release profile resembles that of the DPPC control. Additionally, calcein release mediated by exogenous PLA2 decreases as the amount of solubilized cholesterol increases, with a maximum between 18 mol% and 20 mol%. At concentrations higher than 24 mol%, no calcein release was observed. Studies conducted on HEK-293 and HeLa cells revealed that DPPC liposomes reduced viability by only 5% and 12%, respectively, after 3 hours of incubation, while DPPC liposome in presence of 33 mol% of Cholesterol reduced viability by approximately 11% and 23%, respectively, during the same incubation period. For formulations containing copolymers at low and high concentrations, cell viability decreased by approximately 20% and 40%, respectively, after 3 hours of incubation. Based on these preliminary results, we can conclude that the presence of amphiphilic copolymers at low concentration can be used in the design of new DPPC liposomes, and together with cholesterol, they can modulate liposome stabilization. The new formulations showed low cytotoxicity in HEK-293 cells, and it was observed that calcein release depended entirely on PLA2 activity and the presence of calcium ions.
Collapse
Affiliation(s)
- Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eduardo Cena Ahumada
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Bonardd
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Donostia-San Sebastían, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | | |
Collapse
|
2
|
Shchegravina ES, Tretiakova DS, Sitdikova AR, Usova SD, Boldyrev IA, Alekseeva AS, Svirshchevskaya EV, Vodovozova EL, Fedorov AY. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. J Liposome Res 2024; 34:399-410. [PMID: 37867342 DOI: 10.1080/08982104.2023.2274428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.
Collapse
Affiliation(s)
- Ekaterina S Shchegravina
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Alsu R Sitdikova
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| | - Sofia D Usova
- N.D. Zelinsky Insitute of Organic Chemistry RAS, Moscow, Russian Federation
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | | | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Alexey Yu Fedorov
- Department of Organic Chemistry, UNN Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
3
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
4
|
Liu Y, Ma J, Xu J, Li P, Wang D, Zhang M, Geng Z. A study on the catalytic domain of pork phospholipase A 2: Enzymatic properties and hydrolysis characteristics of phosphatidylcholine and its hydroperoxide. Int J Biol Macromol 2024; 270:132516. [PMID: 38768921 DOI: 10.1016/j.ijbiomac.2024.132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Endogenous phospholipase A2 (PLA2) plays an important role in phospholipids degradation during cured meat products manufacturing. The present study was undertaken to reveal more information about the endogenous PLA2 in muscles and its role in degradation of intramuscular phospholipids. With the catalytic domain of pork calcium-independent PLA2 (iPLA2cd), impacts of physic-chemical factors on the activity were investigated and substrate specificity of the enzyme were tested respectively. The optimum temperature and pH of pork iPLA2cd were 40 °C and 7.5, respectively. The iPLA2cd could be stimulated by adequate contents of NaCl and ATP, and inhibited by CaCl2 and NaNO2. For native phospholipids, the iPLA2cd was of a little higher affinity towards phosphatidylcholine (PC) than phosphatidylethanolamine (PE), phosphoserine (PS) and phosphatidylinositol (PI). The iPLA2cd could preferentially hydrolyze peroxidized PC over the native PC. The results would help better understand the degradation of phospholipids and the role played by endogenous enzymes during meat products manufacturing.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingjing Ma
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jiamei Xu
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengpeng Li
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Muhan Zhang
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Zhiming Geng
- Institute of Agri-products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| |
Collapse
|
5
|
Salabi F, Jafari H. Whole transcriptome sequencing reveals the activity of the PLA2 family members in Androctonus crassicauda (Scorpionida: Buthidae) venom gland. FASEB J 2024; 38:e23658. [PMID: 38742809 DOI: 10.1096/fj.202400178rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Phospholipase A2 is the most abundant venom gland enzyme, whose activity leads to the activation of the inflammatory response by accumulating lipid mediators. This study aimed to identify, classify, and investigate the properties of venom PLA2 isoforms. Then, the present findings were confirmed by chemically measuring the activity of PLA2. The sequences representing PLA2 annotation were extracted from the Androctonus crassicauda transcriptome dataset using BLAS searches against the local PLA2 database. We found several cDNA sequences of PLA2 classified and named by conducting multiple searches as platelet-activating factor acetylhydrolases, calcium-dependent PLA2s, calcium-independent PLA2s, and secreted PLA2s. The largest and smallest isoforms of these proteins range between approximately 70.34 kDa (iPLA2) and 17.75 kDa (cPLA2). Among sPLA2 isoforms, sPLA2GXIIA and sPLA2G3 with ORF encoding 169 and 299 amino acids are the smallest and largest secreted PLA2, respectively. These results collectively suggested that A. crassicauda venom has PLA2 activity, and the members of this protein family may have important biological roles in lipid metabolism. This study also revealed the interaction between members of PLA2s in the PPI network. The results of this study would greatly help with the classification, evolutionary relationships, and interactions between PLA2 family proteins in the gene network.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
6
|
Jaramillo-Granada AM, Li J, Flores Villarreal A, Lozano O, Ruiz-Suárez JC, Monje-Galvan V, Sierra-Valdez FJ. Modulation of Phospholipase A 2 Membrane Activity by Anti-inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7038-7048. [PMID: 38511880 DOI: 10.1021/acs.langmuir.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Jinhui Li
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | | - Omar Lozano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León 64460, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | |
Collapse
|
7
|
Xu S, Tuo QZ, Meng J, Wu XL, Li CL, Lei P. Thrombin induces ferroptosis in triple-negative breast cancer through the cPLA2α/ACSL4 signaling pathway. Transl Oncol 2024; 39:101817. [PMID: 37939630 PMCID: PMC10652120 DOI: 10.1016/j.tranon.2023.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Ferroptosis is a recently identified form of regulated cell death that plays a crucial role in tumor suppression. In this study, we found that F2 (the gene encoding thrombin) was strongly upregulated in breast cancer (BRCA, TCGA Study Abbreviations) compared with normal samples and that lower F2 levels were associated with poorer prognosis in breast cancer patients. Thrombin induces ferroptosis in triple-negative breast cancer (TNBC) cells by activation of cytosolic phospholipase A2α (cPLA2α) activity to increase the release of arachidonic acid (AA). TNBC in all breast cancer subtypes exhibited the highest levels of PLA2G4A (the gene encoding cPLA2α) and Acsl4, and inhibition of cPLA2α and its downstream enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) reversed thrombin toxicity. In a mouse xenograft model of TNBC, thrombin treatment suppressed breast cancer growth which can be inhibited by ferroptosis inhibitor Liproxstatin-1 (Lip-1). Our study underscores the potential of the thrombin-ACSL4 axis as a promising therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Shuo Xu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Lei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chang-Long Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
9
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
10
|
Mehta D, Shaikh S, Mohanty B, Chaudhari P, Waghmare SK. Secretory phospholipase (sPLA 2-IIA) regulates breast cancer stem cells differentiation and metastatic potential. Biochem Biophys Res Commun 2023; 677:98-104. [PMID: 37566923 DOI: 10.1016/j.bbrc.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Breast cancer is the second most cancer worldwide in females. The primary factor responsible for tumor recurrence is the presence of breast cancer stem cells (BCSCs), which escape the chemo-radiotherapy. In this study, we have investigated the role of Secretory phospholipase-A2 Group 2A (sPLA2-IIA) that is overexpressed in BCSCs of MCF7 and MDA-MB-231 breast cancer cell lines. Further, overexpression of sPLA2-IIA revealed an increased EGFR/JNK/c-JUN/c-FOS signaling in BCSCs, while sPLA2-IIA knockdown significantly reduced the percentage of BCSCs and decreased signaling in both the cell lines. Importantly, sPLA2-IIA knockdown showed differentiation of BCSCs. Strikingly, PET imaging showed a decreased metastatic potential of BCSCs. Our study revealed a novel role of sPLA2-IIA in regulating BCSCs, which play a crucial role in regulating the differentiation and metastatic potential of BCSCs.
Collapse
Affiliation(s)
- Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sana Shaikh
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Bhabani Mohanty
- Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India; Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
11
|
Torres Costa KC, Santana Vieira Santos V, Rezende Vaz E, Natalie Cirilo Gimenes S, Ian Veloso Correia L, Brito de Souza J, de Almeida Araújo Santos F, de Melo Rodrigues V, Ricardo Goulart L, Alonso Goulart V. A novel peptide able to reduce PLA 2 activity and modulate inflammatory cytokine production. Toxicon 2023; 231:107207. [PMID: 37364619 DOI: 10.1016/j.toxicon.2023.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Phospholipases A2 (PLA2s) are associated with inflammatory response, performing a complex process involving, specially, cytokines. The excess of pro-inflammatory cytokines induces a chronic inflammatory response and can cause several disorders in the body. Therefore, the inhibition or regulation of cytokines' signaling pathways is a target for new treatment development strategies. Thus, this study aimed to select PLA2 inhibitor mimetic peptides through phage display technology with anti-inflammatory activity. Specific mimetic peptides were selected using BpPLA2-TXI, a PLA2 isolated from Bothrops pauloensis, as a target, and γCdcPL, a PLA2 inhibitor isolated from Crotalus durissus collilineatus, which was used as a competitor during the elution step. We selected the peptide C2PD, which seems to play a pivotal role in the modulation of IL-6, IL-1β, and IL-10 cytokines in inflammatory cells. The C2PD showed a significant reduction in PLA2 activity. Furthermore, the synthetic peptide was tested in PBMC and showed a significant down-modulation of IL-6 and IL-1β release, whereas IL-10 responses were up-regulated. Our findings suggest that this novel peptide may be a potential therapeutic candidate for the treatment of inflammatory diseases, mainly due to its anti-inflammatory properties and absence of cytotoxicity.
Collapse
Affiliation(s)
- Kellen Cristina Torres Costa
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil.
| | - Vanessa Santana Vieira Santos
- Laboratory of Environmental Health, Department of Environmental Health, Institute of Biotechnology, Federal University of Uberlandia, Santa Monica Campus, Avenida João Naves de Ávila, 2121, 38.408-100, Uberlandia, Minas Gerais, Brazil
| | - Emília Rezende Vaz
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | | | - Lucas Ian Veloso Correia
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Jessica Brito de Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil; Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| | - Vivian Alonso Goulart
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Federal University of Uberlândia, Umuarama Campus, Avenida Pará, 1720, 38.400-902, Minas Gerais, Brazil
| |
Collapse
|
12
|
Ramanadham S, Turk J, Bhatnagar S. Noncanonical Regulation of cAMP-Dependent Insulin Secretion and Its Implications in Type 2 Diabetes. Compr Physiol 2023; 13:5023-5049. [PMID: 37358504 PMCID: PMC10809800 DOI: 10.1002/cphy.c220031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Impaired glucose tolerance (IGT) and β-cell dysfunction in insulin resistance associated with obesity lead to type 2 diabetes (T2D). Glucose-stimulated insulin secretion (GSIS) from β-cells occurs via a canonical pathway that involves glucose metabolism, ATP generation, inactivation of K ATP channels, plasma membrane depolarization, and increases in cytosolic concentrations of [Ca 2+ ] c . However, optimal insulin secretion requires amplification of GSIS by increases in cyclic adenosine monophosphate (cAMP) signaling. The cAMP effectors protein kinase A (PKA) and exchange factor activated by cyclic-AMP (Epac) regulate membrane depolarization, gene expression, and trafficking and fusion of insulin granules to the plasma membrane for amplifying GSIS. The widely recognized lipid signaling generated within β-cells by the β-isoform of Ca 2+ -independent phospholipase A 2 enzyme (iPLA 2 β) participates in cAMP-stimulated insulin secretion (cSIS). Recent work has identified the role of a G-protein coupled receptor (GPCR) activated signaling by the complement 1q like-3 (C1ql3) secreted protein in inhibiting cSIS. In the IGT state, cSIS is attenuated, and the β-cell function is reduced. Interestingly, while β-cell-specific deletion of iPLA 2 β reduces cAMP-mediated amplification of GSIS, the loss of iPLA 2 β in macrophages (MØ) confers protection against the development of glucose intolerance associated with diet-induced obesity (DIO). In this article, we discuss canonical (glucose and cAMP) and novel noncanonical (iPLA 2 β and C1ql3) pathways and how they may affect β-cell (dys)function in the context of impaired glucose intolerance associated with obesity and T2D. In conclusion, we provide a perspective that in IGT states, targeting noncanonical pathways along with canonical pathways could be a more comprehensive approach for restoring β-cell function in T2D. © 2023 American Physiological Society. Compr Physiol 13:5023-5049, 2023.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sushant Bhatnagar
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
13
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
14
|
Manson A, Winter T, Aukema HM. Phospholipase A 2 enzymes differently impact PUFA release and oxylipin formation ex vivo in rat hearts. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102555. [PMID: 36878084 DOI: 10.1016/j.plefa.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Phospholipase A2 (PLA2) enzymes cleave cell membrane phospholipids and release polyunsaturated fatty acids (PUFA), which can be converted into oxylipins. However, little is known about PLA2 preference for PUFA, and even less is known about how this further impacts oxylipin formation. Therefore, we investigated the role of different PLA2 groups in PUFA release and oxylipin formation in rat hearts. Sprague-Dawley rat heart homogenates were incubated without or with varespladib (VAR), methyl arachidonyl fluorophosphonate (MAFP) or EDTA. Free PUFA and oxylipins were determined by HPLC-MS/MS, and isoform expressions by RT-qPCR. Inhibition of sPLA2 IIA and/or V by VAR reduced the release of ARA and DHA, but only DHA oxylipins were inhibited. MAFP reduced the release of ARA, DHA, ALA, and EPA, and the formation of ARA, LA, DGLA, DHA, ALA, and EPA oxylipins. Interestingly, cyclooxygenase and 12-lipoxygenase oxylipins were not inhibited. mRNA expression levels of sPLA2 and iPLA2 isoforms were highest whereas levels of cPLA2 were low, consistent with activity. In conclusion, sPLA2 enzymes lead to the formation of DHA oxylipins, while iPLA2 is likely responsible for the formation of most other oxylipins in healthy rat hearts. Oxylipin formation cannot be implied from PUFA release, thus, both should be evaluated in PLA2 activity studies.
Collapse
Affiliation(s)
- Anne Manson
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Tanja Winter
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg MB, Canada.
| |
Collapse
|
15
|
Saddhe AA, Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1118670. [PMID: 36909415 PMCID: PMC9995887 DOI: 10.3389/fpls.2023.1118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plant secretory phospholipase A2 (sPLA2) is a family of lipolytic enzymes involved in the sn-2 hydrolysis of phospholipid carboxyester bonds, characterized by the presence of a conserved PA2c domain. PLA2 produces free fatty acids and lysophospholipids, which regulate several physiological functions, including lipid metabolism, plant growth and development, signal transduction, and response to various environmental stresses. In the present work, we have performed a comparative analysis of PA2c domain-containing genes across plants, focusing on gene distribution, phylogenetic analysis, tissue-specific expression, and homology modeling. Our data revealed the widespread occurrence of multiple sPLA2 in most land plants and documented single sPLA2 in multiple algal groups, indicating an ancestral origin of sPLA2. We described a novel PA2c-containing gene family present in all plant lineages and lacking secretory peptide, which we termed PLA2-like. Phylogenetic analysis revealed two independent clades in canonical sPLA2 genes referred to as α and β clades, whereas PLA2-like genes clustered independently as a third clade. Further, we have explored clade-specific gene expressions showing that while all three clades were expressed in vegetative and reproductive tissues, only sPLA2-β and PLA2-like members were expressed in the pollen and pollen tube. To get insight into the conservation of the gene regulatory network of sPLA2 and PLA2-like genes, we have analyzed the occurrence of various cis-acting promoter elements across the plant kingdom. The comparative 3D structure analysis revealed conserved and unique features within the PA2c domain for the three clades. Overall, this study will help to understand the evolutionary significance of the PA2c family and lay the foundation for future sPLA2 and PLA2-like characterization in plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
17
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
18
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
19
|
Migliolo L, de A. Boleti A, de O. Cardoso P, Frihling BF, e Silva P, de Moraes LRN. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen Res 2023; 18:38-46. [PMID: 35799506 PMCID: PMC9241402 DOI: 10.4103/1673-5374.343891] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Noreen S, Hasan S, Ishtiaq M, Ghumman SA. Phospholipases in cancer progression and metastasis. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:303-313. [DOI: 10.1016/b978-0-323-95697-0.00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Huang D, Luo J, OuYang X, Song L. Subversion of host cell signaling: The arsenal of Rickettsial species. Front Cell Infect Microbiol 2022; 12:995933. [PMID: 36389139 PMCID: PMC9659576 DOI: 10.3389/fcimb.2022.995933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 10/10/2023] Open
Abstract
Rickettsia is a genus of nonmotile, Gram-negative, non-spore-forming, highly pleomorphic bacteria that cause severe epidemic rickettsioses. The spotted fever group and typhi group are major members of the genus Rickettsia. Rickettsial species from the two groups subvert diverse host cellular processes, including membrane dynamics, actin cytoskeleton dynamics, phosphoinositide metabolism, intracellular trafficking, and immune defense, to promote their host colonization and intercellular transmission through secreted effectors (virulence factors). However, lineage-specific rickettsiae have exploited divergent strategies to accomplish such challenging tasks and these elaborated strategies focus on distinct host cell processes. In the present review, we summarized current understandings of how different rickettsial species employ their effectors' arsenal to affect host cellular processes in order to promote their own replication or to avoid destruction.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jingjing Luo
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Song
- Department of Respiratory Medicine, Center of Pathogen Biology and Infectious Disease, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Molecular Characterization and In Silico Analyses of Maurolipin Structure as a Secretory Phospholipase ( ) from Venom Glands of Iranian Scorpio maurus (Arachnida: Scorpionida). J Trop Med 2022; 2022:1839946. [PMID: 36226273 PMCID: PMC9550507 DOI: 10.1155/2022/1839946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
The venom is a mixture of various compounds with specific biological activities, such as the phospholipase A2 (PLA2) enzyme present in scorpion venom. PLA2 plays a key role in inhibiting ryanodine receptor channels and has neurotoxic activity. This study is the first investigation of molecular characterization, cloning, and in silico analyses of PLA2 from Iranian Scorpio maurus, named Maurolipin. After RNA extraction from S. maurus venom glands, cDNA was synthesized and amplified through RT-PCR using specific primers. Amplified Maurolipin was cloned in TA cloning vector, pTG19. For in silico analyses, the characterized gene was analyzed utilizing different software. Maurolipin coding gene with 432 base pair nucleotide length encoded a protein of 144 amino acid residues and 16.34 kilodaltons. Comparing the coding sequence of Maurolipin with other characterized PLA2 from different species of scorpions showed that this protein was a member of the PLA2 superfamily. According to SWISS-MODEL prediction, Maurolipin had 38.83% identity with bee venom PLA2 with 100% confidence and 39% identity with insect phospholipase A2 family, which Phyre2 predicted. According to the three-dimensional structure prediction, Maurolipin with five disulfide bonds has a very high similarity to the structure of PLA2 that belonged to the group III subfamily. The in silico analyses showed that phospholipase A2 coding gene and protein structure is different based on scorpion species and geographical condition in which they live.
Collapse
|
23
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
24
|
Wang R, Gao D, Yu F, Han J, Yuan H, Hu F. Phospholipase A 2 inhibitor varespladib prevents wasp sting-induced nephrotoxicity in rats. Toxicon 2022; 215:69-76. [PMID: 35724947 DOI: 10.1016/j.toxicon.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023]
Abstract
This study aimed to clarify whether varespladib, a phospholipase A2 (PLA2) inhibitor, can be used as a therapeutic agent for wasp sting-induced acute kidney injury (AKI). Rats were divided into control, AKI, and AKI + varespladib groups. The AKI model was established by subcutaneously injecting wasp venom at five different sites in rats. Varespladib treatment showed a significant inhibitory effect on wasp venom PLA2in vitro and in vivo. Moreover, we observed that varespladib decreased the levels of rhabdomyolysis and hemolysis markers compared with that in the AKI group. Histopathological changes in the kidney decreased significantly, and rat serum creatinine levels were reduced after varespladib administration. The significantly regulated genes in the kidney of the AKI group were mostly involved in inflammatory response pathway, and the administration of varespladib remarkably attenuated the expression of these genes. Therefore, varespladib inhibited wasp sting-induced functional and pathological damage to the kidneys. We propose that the PLA2 inhibitor varespladib protects the kidney tissue in a wasp sting-induced AKI model by inhibiting PLA2 activity.
Collapse
Affiliation(s)
- Rui Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Dan Gao
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Jiamin Han
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
| |
Collapse
|
25
|
Frihling BEF, Boleti APDA, de Oliveira CFR, Sanches SC, Cardoso PHDO, Verbisck N, Macedo MLR, Rita PHS, Carvalho CME, Migliolo L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops moojeni. Pharmaceuticals (Basel) 2022; 15:ph15060724. [PMID: 35745643 PMCID: PMC9230114 DOI: 10.3390/ph15060724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nature presents a wide range of biomolecules with pharmacological potential, including venomous animal proteins. Among the protein components from snake venoms, phospholipases (PLA2) are of great importance for the development of new anticancer compounds. Thus, we aimed to evaluate the PLA2 anticancer properties from Bothrops moojeni venom. The crude venom was purified through three chromatographic steps, monitored by enzymatic activity and SDS-PAGE (12%). The purified PLA2 denominated BmPLA2 had its molecular mass and N-terminal sequence identified by mass spectrometry and Edman degradation, respectively. BmPLA2 was assayed against human epithelial colorectal adenocarcinoma cells (Caco-2), human rhabdomyosarcoma cells (RD) and mucoepidermoid carcinoma of the lung (NCI-H292), using human fibroblast cells (MRC-5) and microglia cells (BV-2) as a cytotoxicity control. BmPLA2 presented 13,836 Da and a 24 amino acid-residue homologue with snake PLA2, which showed a 90% similarity with other Bothrops moojeni PLA2. BmPLA2 displayed an IC50 of 0.6 µM against Caco-2, and demonstrated a selectivity index of 1.85 (compared to MRC-5) and 6.33 (compared to BV-2), supporting its selectivity for cancer cells. In conclusion, we describe a new acidic phospholipase, which showed antitumor activity and is a potential candidate in the development of new biotechnological tools.
Collapse
Affiliation(s)
- Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Caio Fernando Ramalho de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Simone Camargo Sanches
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | | | - Maria Lígia Rodrigues Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Paula Helena Santa Rita
- Biotério e Serpentário, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
26
|
Age- and Diet-Dependent Changes in Hepatic Lipidomic Profiles of Phospholipids in Male Mice: Age Acceleration in Cyp2b-Null Mice. J Lipids 2022; 2022:7122738. [PMID: 35391786 PMCID: PMC8983274 DOI: 10.1155/2022/7122738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Increases in traditional serum lipid profiles are associated with obesity, cancer, and cardiovascular disease. Recent lipidomic analysis has indicated changes in serum lipidome profiles, especially in regard to specific phosphatidylcholines, associated with obesity. However, little work has evaluated murine hepatic liver lipidomic profiles nor compared these profiles across age, high-fat diet, or specific genotypes, in this case the lack of hepatic Cyp2b enzymes. In this study, the effects of age (9 months old), high-fat diet (4.5 months old), and the loss of three primarily hepatic xeno- and endobiotic metabolizing cytochrome P450 (Cyp) enzymes, Cyp2b9, Cyp2b10, and Cyp2b13 (Cyp2b-null mice), on the male murine hepatic lipidome were compared. Hierarchical clustering and principal component analysis show that age perturbs hepatic phospholipid profiles and serum lipid markers the most compared to young mice, followed by a high-fat diet and then loss of Cyp2b. Several lipid biomarkers such as PC/PE ratios, PE 38 : 6, and LPC concentrations indicate greater potential for NAFLD and hypertension with mixed effects in Cyp2b-null mice(less NAFLD and greater hypertension-associated markers). Lipid profiles from older mice contain greater total and n-6 fatty acids than normal diet (ND)-fed young mice; however, surprisingly, young Cyp2b-null mice contain high n-6 : n-3 ratios. Overall, the lack of Cyp2b typically enhanced adverse physiological parameters observed in the older (9 mo) mice with increased weight gain combined with a deteriorating cholesterol profile, but not necessarily all phospholipid profiles were adversely perturbed.
Collapse
|
27
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
28
|
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J. Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 2022; 36:2042-2060. [PMID: 35302260 PMCID: PMC9111001 DOI: 10.1002/ptr.7436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The high incidence of post-covid symptoms in humans confirms the need for effective treatment. Due to long-term complications across several disciplines, special treatment programs emerge for affected patients, emphasizing multidisciplinary care. For these reasons, we decided to look at current knowledge about possible long-term complications of COVID-19 disease and then present the effect of flavonoids, which could help alleviate or eliminate complications in humans after overcoming the COVID-19 infection. Based on articles published from 2003 to 2021, we summarize the flavonoids-based molecular mechanisms associated with the post-COVID-19 syndrome and simultaneously provide a complex view regarding their prophylactic and therapeutic potential. Review clearly sorts out the outcome of post-COVID-19 syndrome according particular body systems. The conclusion is that flavonoids play an important role in prevention of many diseases. We suggest that flavonoids as critical nutritional supplements, are suitable for the alleviation and shortening of the period associated with the post-COVID-19 syndrome. The most promising flavonoid with noteworthy therapeutic and prophylactic effect appears to be quercetin.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Andrej Miroššay
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Jindřich Šoltýs
- Institute of Parasitology, Slovak Academy of Science, Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
29
|
Mehta D, Roy S, Joshi P, Parab M, Waghmare SK. Secretory phospholipase sPLA 2-IIAloss impairs tumorigenic and metastatic potential in breast cancer cells. Biochem Biophys Res Commun 2022; 597:102-108. [PMID: 35134607 DOI: 10.1016/j.bbrc.2022.01.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
Abstract
Breast cancer stem cells (BCSCs) are slow cycling cells that escape the traditional chemo-radio-therapy, thereby contributing in resistance and recurrence. Although several markers have been identified, it is still challenging to develop strategies targeting them. In this study, we have isolated BCSCs from MCF-7 cell line using markers CD44+/CD24-/low, which showed higher percentage of mammospheres in CSC population. Moreover, in vivo tumorigenic potential of BCSCs showed as low as 10,000 cells had the ability to develop tumors when transplanted into NOD-SCID mice. We observed an increased level of EMT markers in CSC population. Overexpression of secretory phospholipase sPLA2-IIA was found in CSCs. Further, we have uncovered the upregulation of sPLA2-IIA mediated through JNK signaling in breast cancer cells whereas knockdown of sPLA2-IIA reduces JNK signaling, cell proliferation, EMT and in vivo tumorigenic potential in breast cancer cells. Our study reveals overexpression of sPLA2-IIA in two different breast cancer cells such as MCF7 (ER+,PR+) and a triple negative, MDA-MB-231 (ER-PR-HER2-). Further, the novel role of sPLA2-IIA was discerned by unraveling the molecular mechanism, which regulates the cell proliferation and metastasis in breast cancer cells.
Collapse
Affiliation(s)
- Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Sayoni Roy
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Priyanka Joshi
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mitali Parab
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
30
|
Hindy G, Dornbos P, Chaffin MD, Liu DJ, Wang M, Selvaraj MS, Zhang D, Park J, Aguilar-Salinas CA, Antonacci-Fulton L, Ardissino D, Arnett DK, Aslibekyan S, Atzmon G, Ballantyne CM, Barajas-Olmos F, Barzilai N, Becker LC, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Bown MJ, Brody JA, Broome JG, Burtt NP, Cade BE, Centeno-Cruz F, Chan E, Chang YC, Chen YDI, Cheng CY, Choi WJ, Chowdhury R, Contreras-Cubas C, Córdova EJ, Correa A, Cupples LA, Curran JE, Danesh J, de Vries PS, DeFronzo RA, Doddapaneni H, Duggirala R, Dutcher SK, Ellinor PT, Emery LS, Florez JC, Fornage M, Freedman BI, Fuster V, Garay-Sevilla ME, García-Ortiz H, Germer S, Gibbs RA, Gieger C, Glaser B, Gonzalez C, Gonzalez-Villalpando ME, Graff M, Graham SE, Grarup N, Groop LC, Guo X, Gupta N, Han S, Hanis CL, Hansen T, He J, Heard-Costa NL, Hung YJ, Hwang MY, Irvin MR, Islas-Andrade S, Jarvik GP, Kang HM, Kardia SLR, Kelly T, Kenny EE, Khan AT, Kim BJ, Kim RW, Kim YJ, Koistinen HA, Kooperberg C, Kuusisto J, Kwak SH, Laakso M, Lange LA, Lee J, Lee J, Lee S, Lehman DM, Lemaitre RN, Linneberg A, Liu J, Loos RJF, et alHindy G, Dornbos P, Chaffin MD, Liu DJ, Wang M, Selvaraj MS, Zhang D, Park J, Aguilar-Salinas CA, Antonacci-Fulton L, Ardissino D, Arnett DK, Aslibekyan S, Atzmon G, Ballantyne CM, Barajas-Olmos F, Barzilai N, Becker LC, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Bown MJ, Brody JA, Broome JG, Burtt NP, Cade BE, Centeno-Cruz F, Chan E, Chang YC, Chen YDI, Cheng CY, Choi WJ, Chowdhury R, Contreras-Cubas C, Córdova EJ, Correa A, Cupples LA, Curran JE, Danesh J, de Vries PS, DeFronzo RA, Doddapaneni H, Duggirala R, Dutcher SK, Ellinor PT, Emery LS, Florez JC, Fornage M, Freedman BI, Fuster V, Garay-Sevilla ME, García-Ortiz H, Germer S, Gibbs RA, Gieger C, Glaser B, Gonzalez C, Gonzalez-Villalpando ME, Graff M, Graham SE, Grarup N, Groop LC, Guo X, Gupta N, Han S, Hanis CL, Hansen T, He J, Heard-Costa NL, Hung YJ, Hwang MY, Irvin MR, Islas-Andrade S, Jarvik GP, Kang HM, Kardia SLR, Kelly T, Kenny EE, Khan AT, Kim BJ, Kim RW, Kim YJ, Koistinen HA, Kooperberg C, Kuusisto J, Kwak SH, Laakso M, Lange LA, Lee J, Lee J, Lee S, Lehman DM, Lemaitre RN, Linneberg A, Liu J, Loos RJF, Lubitz SA, Lyssenko V, Ma RCW, Martin LW, Martínez-Hernández A, Mathias RA, McGarvey ST, McPherson R, Meigs JB, Meitinger T, Melander O, Mendoza-Caamal E, Metcalf GA, Mi X, Mohlke KL, Montasser ME, Moon JY, Moreno-Macías H, Morrison AC, Muzny DM, Nelson SC, Nilsson PM, O'Connell JR, Orho-Melander M, Orozco L, Palmer CNA, Palmer ND, Park CJ, Park KS, Pedersen O, Peralta JM, Peyser PA, Post WS, Preuss M, Psaty BM, Qi Q, Rao DC, Redline S, Reiner AP, Revilla-Monsalve C, Rich SS, Samani N, Schunkert H, Schurmann C, Seo D, Seo JS, Sim X, Sladek R, Small KS, So WY, Stilp AM, Tai ES, Tam CHT, Taylor KD, Teo YY, Thameem F, Tomlinson B, Tsai MY, Tuomi T, Tuomilehto J, Tusié-Luna T, Udler MS, van Dam RM, Vasan RS, Viaud Martinez KA, Wang FF, Wang X, Watkins H, Weeks DE, Wilson JG, Witte DR, Wong TY, Yanek LR, Kathiresan S, Rader DJ, Rotter JI, Boehnke M, McCarthy MI, Willer CJ, Natarajan P, Flannick JA, Khera AV, Peloso GM. Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes. Am J Hum Genet 2022; 109:81-96. [PMID: 34932938 PMCID: PMC8764201 DOI: 10.1016/j.ajhg.2021.11.021] [Show More Authors] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
Collapse
Affiliation(s)
- George Hindy
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lucinda Antonacci-Fulton
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Diego Ardissino
- ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy; Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Universitˆ, degli Studi di Parma, Parma, Italy
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gil Atzmon
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; University of Haifa, Faculty of Natural Science, Haifa, Israel
| | - Christie M Ballantyne
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX 77030, USA; Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwin Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Bown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ching-Yu Cheng
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Won Jung Choi
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Non-Communicable Disease Research, Bangladesh
| | | | | | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; NHLBI Framingham Heart Study, Framingham, MA 01702, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 770030, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Valentin Fuster
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Guanajuanto, Mexico
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio Gonzalez
- Unidad de Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Pœblica, Cuernavaca, Morelos, Mexico
| | | | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah E Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute for Molecular Genetics, University of Helsinki, Helsinki, Finland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA; Tulane University Translational Science Institute, New Orleans, LA 70112, USA
| | - Nancy L Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL 35294, USA
| | - Sergio Islas-Andrade
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga," Secretaría de Salud, Mexico City, Mexico
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Eimear E Kenny
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Ryan W Kim
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98103, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Seonwook Lee
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ruth J F Loos
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; University of Bergen, Bergen, Norway
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lisa Warsinger Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02912, USA
| | - Ruth McPherson
- Ruddy Canadian Cardiovascuar Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; General Medicine Division, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Meitinger
- Deutsches Forschungszentrum fŸr Herz-Kreislauferkrankungen, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Department of Emergency and Internal Medicine, SkŒne University Hospital, Malmö, Sweden
| | | | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - May E Montasser
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jeffrey R O'Connell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cheol Joo Park
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael Preuss
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische UniversitŠt München, Deutsches Zentrum fŸr Herz-Kreislauf-Forschung, München, Germany
| | - Claudia Schurmann
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany; Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daekwan Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Jeong-Sun Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiinamaija Tuomi
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Departments of Medicine & Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA 02118, USA
| | | | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hugh Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel E Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Tien-Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Verve Therapeutics, Cambridge, MA 02139, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason A Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
31
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
32
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
33
|
Al-Khalaf AA, Hassan HM, Alrajhi AM, Mohamed RAEH, Hozzein WN. Anti-Cancer and Anti-Inflammatory Potential of the Green Synthesized Silver Nanoparticles of the Red Sea Sponge Phyllospongia lamellosa Supported by Metabolomics Analysis and Docking Study. Antibiotics (Basel) 2021; 10:1155. [PMID: 34680736 PMCID: PMC8532725 DOI: 10.3390/antibiotics10101155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. PURPOSE To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. MATERIALS AND METHODS We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV-vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis and molecular docking were also applied.
Collapse
Affiliation(s)
- Areej A. Al-Khalaf
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Aisha M Alrajhi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Rania Ali El Hadi Mohamed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (A.M.A.); (R.A.E.H.M.)
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11671, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
34
|
Putta P, Smith AH, Chaudhuri P, Guardia-Wolff R, Rosenbaum MA, Graham LM. Activation of the cytosolic calcium-independent phospholipase A 2 β isoform contributes to TRPC6 externalization via release of arachidonic acid. J Biol Chem 2021; 297:101180. [PMID: 34509476 PMCID: PMC8498464 DOI: 10.1016/j.jbc.2021.101180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
During vascular interventions, oxidized low-density lipoprotein and lysophosphatidylcholine (lysoPC) accumulate at the site of arterial injury, inhibiting endothelial cell (EC) migration and arterial healing. LysoPC activates canonical transient receptor potential 6 (TRPC6) channels, leading to a prolonged increase in intracellular calcium ion concentration that inhibits EC migration. However, an initial increase in intracellular calcium ion concentration is required to activate TRPC6, and this mechanism remains elusive. We hypothesized that lysoPC activates the lipid-cleaving enzyme phospholipase A2 (PLA2), which releases arachidonic acid (AA) from the cellular membrane to open arachidonate-regulated calcium channels, allowing calcium influx that promotes externalization and activation of TRPC6 channels. The focus of this study was to identify the roles of calcium-dependent and/or calcium-independent PLA2 in lysoPC-induced TRPC6 externalization. We show that lysoPC induced PLA2 enzymatic activity and caused AA release in bovine aortic ECs. To identify the specific subgroup and the isoform(s) of PLA2 involved in lysoPC-induced TRPC6 activation, transient knockdown studies were performed in the human endothelial cell line EA.hy926 using siRNA to inhibit the expression of genes encoding cPLA2α, cPLA2γ, iPLA2β, or iPLA2γ. Downregulation of the β isoform of iPLA2 blocked lysoPC-induced release of AA from EC membranes and TRPC6 externalization, as well as preserved EC migration in the presence of lysoPC. We propose that blocking TRPC6 activation and promoting endothelial healing could improve the outcomes for patients undergoing cardiovascular interventions.
Collapse
Affiliation(s)
- Priya Putta
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
| | - Andrew H Smith
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pinaki Chaudhuri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rocio Guardia-Wolff
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Rosenbaum
- Surgical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Zhao Z, Li J, Feng X, Tang X, Guo X, Meng Q, Rao Z, Zhao X, Feng L, Zhang H. Lipid metabolism is a novel and practical source of potential targets for antiviral discovery against porcine parvovirus. Vet Microbiol 2021; 261:109177. [PMID: 34391196 DOI: 10.1016/j.vetmic.2021.109177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023]
Abstract
How parvovirus manipulates host lipid metabolism to facilitate its propagation, pathogenicity and consequences for disease, is poorly characterized. Here, we addressed this question using porcine parvovirus (PPV) to understand the complex interactions of parvovirus with lipid metabolism networks contributing to the identification of novel and practical antiviral candidates. PPV significantly alters host lipid composition, characteristic of subclasses of phospholipids and sphingolipids, and induces lipid droplets (LDs) formation via regulating calcium-independent PLA2β (iPLA2β), phospholipase Cγ2 (PLCγ2), diacylglycerol kinase α (DKGα), phosphoinositide 3-kinase (PI3K), lysophosphatidic acid acyltransferase θ (LPAATθ), and sphingosine kinases (SphK1 and SphK2). PPV utilizes and exploits these enzymes as well as their metabolites and host factors including MAPKs (p38 and ERK1/2), protein kinase C (PKC) and Ca2+ to induce S phase arrest, apoptosis and incomplete autophagy, all benefit to PPV propagation. PPV also suppresses prostaglandin E2 (PGE2) synthesis via downregulating cyclooxygenase-1 (COX-1), indicating PPV hijacks COX-1-PGE2 axis to evade immune surveillance. Our data support a model where PPV to establishes an optimal environment for its propagation and pathogenicity via co-opting host lipid metabolism, being positioned as a source of potential targets.
Collapse
Affiliation(s)
- Zhanzhong Zhao
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaoyu Guo
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Zhenghua Rao
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xinghui Zhao
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| |
Collapse
|
36
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
37
|
Ray U, Roy D, Jin L, Thirusangu P, Staub J, Xiao Y, Kalogera E, Wahner Hendrickson AE, Cullen GD, Goergen K, Oberg AL, Shridhar V. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:182. [PMID: 34082797 PMCID: PMC8173968 DOI: 10.1186/s13046-021-01985-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/16/2021] [Indexed: 11/13/2022]
Abstract
Background Aberrant lipogenicity and deregulated autophagy are common in most advanced human cancer and therapeutic strategies to exploit these pathways are currently under consideration. Group III Phospholipase A2 (sPLA2-III/PLA2G3), an atypical secretory PLA2, is recognized as a regulator of lipid metabolism associated with oncogenesis. Though recent studies reveal that high PLA2G3 expression significantly correlates with poor prognosis in several cancers, however, role of PLA2G3 in ovarian cancer (OC) pathogenesis is still undetermined. Methods CRISPR-Cas9 and shRNA mediated knockout and knockdown of PLA2G3 in OC cells were used to evaluate lipid droplet (LD) biogenesis by confocal and Transmission electron microscopy analysis, and the cell viability and sensitization of the cells to platinum-mediated cytotoxicity by MTT assay. Regulation of primary ciliation by PLA2G3 downregulation both genetically and by metabolic inhibitor PFK-158 induced autophagy was assessed by immunofluorescence-based confocal analysis and immunoblot. Transient transfection with GFP-RFP-LC3B and confocal analysis was used to assess the autophagic flux in OC cells. PLA2G3 knockout OVCAR5 xenograft in combination with carboplatin on tumor growth and metastasis was assessed in vivo. Efficacy of PFK158 alone and with platinum drugs was determined in patient-derived primary ascites cultures expressing PLA2G3 by MTT assay and immunoblot analysis. Results Downregulation of PLA2G3 in OVCAR8 and 5 cells inhibited LD biogenesis, decreased growth and sensitized cells to platinum drug mediated cytotoxicity in vitro and in in vivo OVCAR5 xenograft. PLA2G3 knockdown in HeyA8MDR-resistant cells showed sensitivity to carboplatin treatment. We found that both PFK158 inhibitor-mediated and genetic downregulation of PLA2G3 resulted in increased number of percent ciliated cells and inhibited cancer progression. Mechanistically, we found that PFK158-induced autophagy targeted PLA2G3 to restore primary cilia in OC cells. Of clinical relevance, PFK158 also induces percent ciliated cells in human-derived primary ascites cells and reduces cell viability with sensitization to chemotherapy. Conclusions Taken together, our study for the first time emphasizes the role of PLA2G3 in regulating the OC metastasis. This study further suggests the therapeutic potential of targeting phospholipases and/or restoration of PC for future OC treatment and the critical role of PLA2G3 in regulating ciliary function by coordinating interface between lipogenesis and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01985-9.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Alcorn State University, Lorman, MS, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Grace D Cullen
- Department of Internal Medicine, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Krista Goergen
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
39
|
Aldbass A, Amina M, Al Musayeib NM, Bhat RS, Al-Rashed S, Marraiki N, Fahmy R, El-Ansary A. Cytotoxic and anti-excitotoxic effects of selected plant and algal extracts using COMET and cell viability assays. Sci Rep 2021; 11:8512. [PMID: 33875747 PMCID: PMC8055880 DOI: 10.1038/s41598-021-88089-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Excess glutamate in the central nervous system may be a major cause of neurodegenerative diseases with gradual loss and dysfunction of neurons. Primary or secondary metabolites from medicinal plants and algae show potential for treatment of glutamate-induced excitotoxicity. Three plant extracts were evaluated for impact on glutamate excitotoxicity-induced in primary cultures of retinal ganglion cells (RGC). These cells were treated separately in seven groups: control; Plicosepalus. curviflorus treated; Saussurea lappa treated; Cladophora glomerate treated. Cells were treated independently with 5, 10, 50, or 100 µg/ml of extracts of plant or alga material, respectively, for 2 h. Glutamate-treated cells (48 h with 5, 10, 50, or 100 µM glutamate); and P. curviflorus/glutamate; S. lappa/glutamate; C. glomerata/glutamate [pretreatment with extract for 2 h (50 and 100 µg/ml) before glutamate treatment with 100 µM for 48 h]. Comet and MTT assays were used to assess cell damage and cell viability. The number of viable cells fell significantly after glutamate exposure. Exposure to plant extracts caused no notable effect of viability. All tested plants extracts showed a protective effect against glutamate excitotoxicity-induced RGC death. Use of these extracts for neurological conditions related to excitotoxicity and oxidative stress might prove beneficial.
Collapse
Affiliation(s)
- Abeer Aldbass
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nawal M Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sara Al-Rashed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rania Fahmy
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
- CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
40
|
Wei Y, Yan L, Luo L, Gui T, Jang B, Amirshaghaghi A, You T, Tsourkas A, Qin L, Cheng Z. Phospholipase A 2 inhibitor-loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. SCIENCE ADVANCES 2021; 7:7/15/eabe6374. [PMID: 33827816 PMCID: PMC8026133 DOI: 10.1126/sciadv.abe6374] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 05/08/2023]
Abstract
Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any notable clinical success, in part, due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in the articular cartilage in human and mouse OA cartilage tissues. We hypothesize that the inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop an sPLA2-responsive and nanoparticle (NP)-based interventional platform for OA management, we incorporated an sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar NPs (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lesan Yan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lijun Luo
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bian Jang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianyan You
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhiliang Cheng
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Zhang S, Gong W, Han Z, Liu Y, Li C. Insight into Shared Properties and Differential Dynamics and Specificity of Secretory Phospholipase A 2 Family Members. J Phys Chem B 2021; 125:3353-3363. [PMID: 33780247 DOI: 10.1021/acs.jpcb.1c01315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding generic mechanisms of functions shared by the secretory phospholipase A2 (sPLA2) family involved in the lipid metabolism and cell signaling and the molecular basis of function specificity for family members is an intriguing but challenging problem for biologists. Here, we explore the issue through extensive analyses using a combination of structure-based methods and bioinformatics tools on130 sPLA2 family members. The principal component analysis of the structure ensemble reveals that the enzyme has an open-close motion which helps widen the substrate binding channel, facilitating its binding to phospholipid. Performing elastic network model and sequence analyses found that the residues critical for family functions, such as cysteine and catalytic residues, are highly conserved and undergo minimal movements, which is evolutionarily essential as their perturbation would impact the function, while the four residue regions involved in the association with the calcium ion/membrane are lowly conserved and of high mobility and large variations in low-to-intermediate frequency modes, which reflects the specificity of members. The analyses from perturbation response scanning also reveal that the above four regions with high sensitivity to an external perturbation are member-specific, suggesting their different roles in allosteric modulation, while the minimal sensitive residues are the shared characteristics across family members, which play an important role in maintaining structural stability as the folding core. This study is helpful for understanding how sequences, structures, and dynamics of sPLA2 family members evolve to ensure their common and specific functions and can provide a guide for accurate design of proteins with finely tuned activities.
Collapse
Affiliation(s)
- Shan Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yang Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
42
|
Yu J, Liu Y, Zhou S, Wang Y, Wang Y. Stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles for drug delivery and theranostics. Int J Pharm 2020; 590:119920. [PMID: 33002539 DOI: 10.1016/j.ijpharm.2020.119920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Liposomes represent one of the most successful nano-drug delivery systems among enormous nano-carriers. Although great progress has been made in conventional liposomes, the emerging shortcomings still impair the therapeutic index. The proposal of stimuli-responsive phospholipid-drug conjugates (PDCs)-based nanovesicles solves the challenges that conventional liposomes are faced with, showing great potential for cancer diagnosis and therapy. Herein, we intend to overview the current progress and unique advantages of stimuli-responsive PDCs-based nanovesicles. First, the challenges of conventional liposomes and the development of PDCs-based nanovesicles are summarized. Next, the stimuli-responsive elements used in current stimuli-responsive PDCs-based nanovesicles are outlined. Then, the unique superiorities of stimuli-responsive PDCs-based nanovesicles for drug delivery and theranostics are highlighted in detail. Finally, the future opportunities and challenges of stimuli-responsive PDCs-based nanovesicles for clinical translation are put forward.
Collapse
Affiliation(s)
- Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ying Liu
- National Institute for Food and Drug Control, Beijing 102629, China
| | - Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yingli Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
43
|
Verma A, Najahi-Missaoui W, Cummings BS, Somanath PR. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase-1 and secreted phospholipase A 2 suppress prostate cancer growth and metastasis. Oncol Lett 2020; 20:179. [PMID: 32934746 PMCID: PMC7471734 DOI: 10.3892/ol.2020.12040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Metastatic prostate cancer (PCa) has a very high mortality rate in men, in Western countries and lacks reliable treatment. The advanced-stage PCa cells overexpress P21 (RAC1) activated kinase-1 (PAK1) and secreted phospholipase A2 (sPLA2) suggesting the potential utility of pharmacologically targeting these molecules to treat metastatic PCa. The small molecule, inhibitor targeting PAK1 activation-3 (IPA3) is a highly specific allosteric inhibitor of PAK1; however, it is metabolically unstable once in the plasma thus, limiting its utility as a chemotherapeutic agent. In the present study, the efficacy and specificity of IPA3 were combined with the stability and the sPLA2-targeted delivery method of two sterically stabilized liposomes [sterically stabilized long-circulating liposomes (SSL)-IPA3 and sPLA2 responsive liposomes (SPRL)-IPA3, respectively] to inhibit PCa growth and metastasis. It was found that twice-a-week administration of either SSL-IPA3 or SPRL-IPA3 for 3 weeks effectively suppressed the growth of PC-3 cell tumor xenografts implanted in athymic nude mice. Both drug formulations also inhibited the metastasis of intravenously administered murine RM1 PCa cells to the lungs of C57BL/6 mice. Whereas the twice-a-week administration of SSL-IPA3 significantly inhibited the spontaneous PCa metastasis to the lungs in Transgenic Adenocarcinoma of the Mouse Prostate mice, the administration of free IPA3 had no significant therapeutic benefit. The results present two novel IPA3 encapsulated liposomes to treat metastatic PCa.
Collapse
Affiliation(s)
- Arti Verma
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Augusta, GA 30602, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
- Department of Medicine and Cancer Center, Augusta University, Augusta, GA 30602, USA
| |
Collapse
|
44
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
45
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
46
|
Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res 2020; 117:411-422. [PMID: 32666079 DOI: 10.1093/cvr/cvaa211] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation has been long regarded as a key contributor to atherosclerosis. Inflammatory cells and soluble mediators play critical roles throughout arterial plaque development and accordingly, targeting inflammatory pathways effectively reduces atherosclerotic burden in animal models of cardiovascular (CV) diseases. Yet, clinical translation often led to inconclusive or even contradictory results. The Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) followed by the Colchicine Cardiovascular Outcomes Trial (COLCOT) were the first two randomized clinical trials to convincingly demonstrate the effectiveness of specific anti-inflammatory treatments in the field of CV prevention, while other phase III trials-including the Cardiovascular Inflammation Reduction Trial one using methotrexate-were futile. This manuscript reviews the main characteristics and findings of recent anti-inflammatory Phase III trials in cardiology and discusses their similarities and differences in order to get further insights into the contribution of specific inflammatory pathways on CV outcomes. CANTOS and COLCOT demonstrated efficacy of two anti-inflammatory drugs (canakinumab and colchicine, respectively) in the secondary prevention of major adverse CV events (MACE) thus providing the first confirmation of the involvement of a specific inflammatory pathway in human atherosclerotic CV disease (ASCVD). Also, they highlighted the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome-related pathway as an effective therapeutic target to blunt ASCVD. In contrast, other trials interfering with a number of inflammasome-independent pathways failed to provide benefit. Lastly, all anti-inflammatory trials underscored the importance of balancing the risk of impaired host defence with an increase in infections and the prevention of MACE in CV patients with residual inflammatory risk.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Lena Schwarz
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092, Zurich, Switzerland
| |
Collapse
|
47
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
48
|
Tjørnelund HD, Madsen JJ, Peters GHJ. Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT. J Phys Chem B 2020; 124:1881-1891. [PMID: 32064878 DOI: 10.1021/acs.jpcb.9b10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secretory phospholipases A2 (sPLA2s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA2-IIA pass by the aromatic residues Phe5 and Tyr51 and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA2 complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that (Z)-unsaturated phospholipid is a good substrate for sPLA2-IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA2-IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.
Collapse
Affiliation(s)
- Helena D Tjørnelund
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper J Madsen
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33620, United States
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
49
|
Sales TA, Marcussi S, Ramalho TC. Current Anti-Inflammatory Therapies and the Potential of Secretory Phospholipase A2 Inhibitors in the Design of New Anti-Inflammatory Drugs: A Review of 2012 - 2018. Curr Med Chem 2020; 27:477-497. [PMID: 30706775 DOI: 10.2174/0929867326666190201120646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023]
Abstract
The inflammatory process is a natural self-defense response of the organism to damage agents and its action mechanism involves a series of complex reactions. However, in some cases, this process can become chronic, causing much harm to the body. Therefore, over the years, many anti-inflammatory drugs have been developed aiming to decrease the concentrations of inflammatory mediators in the organism, which is a way of controlling these abnormal chain reactions. The main target of conventional anti-inflammatory drugs is the cyclooxygenase (COX) enzyme, but its use implies several side effects. Thus, based on these limitations, many studies have been performed, aiming to create new drugs, with new action mechanisms. In this sense, the phospholipase A2 (PLA2) enzymes stand out. Among all the existing isoforms, secretory PLA2 is the major target for inhibitor development, since many studies have proven that this enzyme participates in various inflammatory conditions, such as cancer, Alzheimer and arthritis. Finally, for the purpose of developing anti-inflammatory drugs that are sPLA2 inhibitors, many molecules have been designed. Accordingly, this work presents an overview of inflammatory processes and mediators, the current available anti-inflammatory drugs, and it briefly covers the PLA2 enzymes, as well as the diverse structural array of the newest sPLA2 inhibitors as a possible target for the production of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thais A Sales
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Teodorico C Ramalho
- Molecular Modeling Laboratory, Chemistry Department, Federal University of Lavras, 37200-000 Lavras, Brazil.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 62, 50003 Rokitanskeho, Czech Republic
| |
Collapse
|
50
|
Filkin SY, Lipkin AV, Fedorov AN. Phospholipase Superfamily: Structure, Functions, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2020; 85:S177-S195. [DOI: 10.1134/s0006297920140096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|