1
|
Yeni Y, Genc S, Nadaroglu H, Hacımuftuoglu A. Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5147-5156. [PMID: 39527310 DOI: 10.1007/s00210-024-03610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One aspect of glutamate (Glut) toxicity may be the opening of the blood-brain barrier to albumin (Al), which in itself can cause nerve cell death. Quercetin (Q) is a polyphenolic substance and has a neuroprotective effect. Cerium oxide nanoparticles (Ce2O3NPs) are highly interested in biological applications due to their antioxidant properties. The current study aimed to investigate the impact of Q-immobilized Al+Ce2O3NPs in Glut-induced neurotoxicity, mainly focusing on cell viability and neurobiochemical changes. Hydrothermal synthesis and characterization of Q-immobilized Al+Ce2O3NPs were performed. After preparing the primary neuron culture, it was exposed to Glut to induce neurotoxicity. Then, various doses of Ce2O3NP, Al+Ce2O3NP, and Q+Al+Ce2O3NPs (1, 5, 10, and 25 µg/ml) were applied to the wells and incubated for 24 h. Then, cell viability was determined by MTT analysis. Additionally, oxidative stress parameters were measured. When the obtained data were examined, it was shown that cell viability decreased with Glut concentration but significantly increased with Q+Al+Ce2O3NPs treatment. When oxidative stress markers were considered, Glut treatment increased LDH, AChE, and TOS levels, while TAC and GSH levels decreased. However, the trend changed after Q+Al+Ce2O3NPs treatment, suggesting that damaged neurons were protected against oxidative stress. The results of this study indicate that Q+Al+Ce2O3NP can ameliorate Glut-induced neurotoxicity, especially when used at a dose of 25 µg/ml.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, Battalgazi, Malatya, 44210, Turkey.
| | - Sıdıka Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, Erzurum, 25240, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
3
|
Shabbir M, Atiq A, Wang J, Atiq M, Saeed N, Yildiz I, Yan X, Xing R, Abbas M. Metal‐coordinated amino acid/peptide/protein‐based supramolecular self‐assembled nanomaterials for anticancer applications. AGGREGATE 2025; 6. [DOI: 10.1002/agt2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
AbstractBiomolecules with metals can form supramolecular nanomaterials through coordination assembly, opening new avenues for cancer theranostics and bringing unique insights into personalized nanomedicine. These biomaterials have been considered versatile and innovative nanoagents due to their structure‒function control, biological nature, and simple preparation methods. This review article summarized the recent developments in multicomponent nanomaterials formed from metal coordination interactions with amino acids, peptides, and proteins, together with anticancer drugs, for cancer theranostics. We discussed the role of functional groups anchored in building blocks for coordination interactions, and subsequently, the types of interactions were examined from a structure‒function perspective. Amino acids with different metals and anticancer drugs forming supramolecular nanomaterials and their anticancer mechanisms were highlighted. Peptides with different metals and anticancer drugs, proteins with metals and anticancer drugs used for material formations, and anticancer activity have been discussed. Ultimately, the conclusion and future outlook for multicomponent supramolecular nanomaterials offer fundamental insights into fabrication design and precision medicine.
Collapse
Affiliation(s)
- Maryam Shabbir
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Atia Atiq
- Division of Science and Technology Department of Physics University of Education Lahore Pakistan
| | - Jiahua Wang
- Department of Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Maria Atiq
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Nyla Saeed
- Institute of Physics The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Ibrahim Yildiz
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| | - Xuehai Yan
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Ruirui Xing
- University of Chinese Academy of Sciences Beijing China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing China
| | - Manzar Abbas
- Department of Chemistry Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
- Functional Biomaterials Group Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
| |
Collapse
|
4
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Al-Samydai A, Abu Hajleh MN, Al-Sahlawi F, Nsairat H, Khatib AA, Alqaraleh M, Ibrahim AK. Advancements of metallic nanoparticles: A promising frontier in cancer treatment. Sci Prog 2024; 107:368504241274967. [PMID: 39370817 PMCID: PMC11459474 DOI: 10.1177/00368504241274967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incidence of cancer is increasing and evolving as a major source of mortality. Nanotechnology has garnered considerable scientific interest in recent decades and can offer a promising solution to the challenges encountered with traditional chemotherapy. Nanoparticle utilization holds promise in combating cancer and other diseases, offering exciting prospects for drug delivery systems and medicinal applications. Metallic nanoparticles exhibit remarkable physical and chemical properties, such as their minute size, chemical composition, structure, and extensive surface area, rendering them versatile and cost-effective. Research has demonstrated their significant and beneficial impact on cancer treatment, characterized by enhanced targeting abilities, gene activity suppression, and improved drug delivery efficiency. By incorporating targeting ligands, functionalized metal nanoparticles ensure precise energy deposition within tumors, thereby augmenting treatment accuracy. Moreover, beyond their therapeutic efficacy, metal nanoparticles serve as valuable tools for cancer cell visualization, contributing to diagnostic techniques. Utilizing metal nanoparticles in therapeutic systems allows for simultaneous cancer diagnosis and treatment, while also facilitating controlled drug release, thus revolutionizing cancer care. This narrative review investigates the advancements of metal nanoparticles in cancer treatment, types and mechanisms in targeting cancer cells, application in clinical scenarios, and potential toxicity in medicine.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Farah Al-Sahlawi
- Department of Pharmaceutics at the College of Pharmacy, University of Alkafeel, AlNajaf, Iraq
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Alia K. Ibrahim
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
6
|
Saeed HE, Ibrahim RR, Kamel S, El-Nahass ES, Khalifa AG. Behavioral, biochemical, histopathological evaluation and gene expression of brain injury induced by nanoceria injected intranasal or intraperitoneal in mice. Toxicol Res (Camb) 2024; 13:tfae095. [PMID: 38966091 PMCID: PMC11221883 DOI: 10.1093/toxres/tfae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.
Collapse
Affiliation(s)
- Hanan E Saeed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rasha Ragab Ibrahim
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - El-Shaymaa El-Nahass
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahlam G Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
7
|
Sarnatskaya V, Shlapa Y, Kolesnik D, Lykhova O, Klymchuk D, Solopan S, Lyubchyk S, Golovynska I, Qu J, Stepanov Y, Belous A. Bioactivity of cerium dioxide nanoparticles as a function of size and surface features. Biomater Sci 2024; 12:2689-2704. [PMID: 38597367 DOI: 10.1039/d3bm01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.
Collapse
Affiliation(s)
- Veronika Sarnatskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Yuliia Shlapa
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina ave., Kyiv, 03142, Ukraine.
| | - Denis Kolesnik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Olexandra Lykhova
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Dmytro Klymchuk
- M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2, Tereshchenkivska str., Kyiv, 01601, Ukraine
| | - Serhii Solopan
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Svitlana Lyubchyk
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
- Quinta de Torre, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Iuliia Golovynska
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Junle Qu
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa, Portugal
- Quinta de Torre, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Yurii Stepanov
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, 45, Vasylkivska Str., Kyiv, 03022, Ukraine.
| | - Anatolii Belous
- V. I. Vernadsky Institute of General & Inorganic Chemistry of the NAS of Ukraine, 32/34, Palladina ave., Kyiv, 03142, Ukraine.
| |
Collapse
|
8
|
de Jesus RA, de Assis GC, Oliveira RJD, Costa JAS, da Silva CMP, Iqbal HM, Ferreira LFR. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101071. [DOI: 10.1016/j.nanoso.2023.101071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
9
|
Alvandi M, Shaghaghi Z, Farzipour S, Marzhoseyni Z. Radioprotective Potency of Nanoceria. Curr Radiopharm 2024; 17:138-147. [PMID: 37990425 DOI: 10.2174/0118744710267281231104170435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023]
Abstract
Cancer presents a significant medical challenge that requires effective management. Current cancer treatment options, such as chemotherapy, targeted therapy, radiotherapy, and immunotherapy, have limitations in terms of their efficacy and the potential harm they can cause to normal tissues. In response, researchers have been focusing on developing adjuvants that can enhance tumor responses while minimizing damage to healthy tissues. Among the promising options, nanoceria (NC), a type of nanoparticle composed of cerium oxide, has garnered attention for its potential to improve various cancer treatment regimens. Nanoceria has demonstrated its ability to exhibit toxicity towards cancer cells, inhibit invasion, and sensitize cancer cells to both radiation therapy and chemotherapy. The remarkable aspect is that nanoceria show minimal toxicity to normal tissues while protecting against various forms of reactive oxygen species generation. Its capability to enhance the sensitivity of cancer cells to chemotherapy and radiotherapy has also been observed. This paper thoroughly reviews the current literature on nanoceria's applications within different cancer treatment modalities, with a specific focus on radiotherapy. The emphasis is on nanoceria's unique role in enhancing tumor radiosensitization and safeguarding normal tissues from radiation damage.
Collapse
Affiliation(s)
- Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Science, Mazandaran University of Medical Science, Sari, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Daniele V, Volpe AR, Cesare P, Taglieri G. MgO Nanoparticles Obtained from an Innovative and Sustainable Route and Their Applications in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2975. [PMID: 37999329 PMCID: PMC10675311 DOI: 10.3390/nano13222975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
This paper aimed to evaluate the biological damages towards diseased cells caused by the use of MgO nanoparticles (NPs). The NPs are produced by a calcination process of a precursor, which is an aqueous suspension of nanostructured Mg(OH)2, in turn synthesized following our original, time-energy saving and scalable method able to guarantee short times, high yield of production (up to almost 10 kg/week of NPs), low environmental impact and low energy demand. The MgO NPs, in the form of dry powders, are organized as a network of intercrystallite channels, in turn constituted by monodispersed and roughly spherical NPs < 10 nm, preserving the original pseudo hexagonal-platelet morphology of the precursor. The produced MgO powders are diluted in a PBS solution to obtain different MgO suspension concentrations that are subsequently put in contact, for 3 days, with melanoma and healthy cells. The viable count, made at 24, 48 and 72 h from the beginning of the test, reveals a good cytotoxic activity of the NPs, already at low MgO concentrations. This is particularly marked after 72 h, showing a clear reduction in cellular proliferation in a MgO-concentration-dependent manner. Finally, the results obtained on human skin fibroblasts revealed that the use MgO NPs did not alter at all both the vitality and proliferation of healthy cells.
Collapse
Affiliation(s)
- Valeria Daniele
- Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L’Aquila, Italy
| | - Anna Rita Volpe
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Edificio Renato Ricamo, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.R.V.); (P.C.)
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Edificio Renato Ricamo, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.R.V.); (P.C.)
| | - Giuliana Taglieri
- Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L’Aquila, Italy
| |
Collapse
|
11
|
Sandoval C, Reyes C, Rosas P, Godoy K, Souza-Mello V, Farías J. Effectiveness of Cerium Oxide Nanoparticles in Non-Alcoholic Fatty Liver Disease Evolution Using In Vivo and In Vitro Studies: A Systematic Review. Int J Mol Sci 2023; 24:15728. [PMID: 37958712 PMCID: PMC10648767 DOI: 10.3390/ijms242115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver abnormalities, from benign steatosis to nonalcoholic steatohepatitis (NASH). Because of their antioxidant capabilities, CeNPs have sparked a lot of interest in biological applications. This review evaluated the effectiveness of CeNPs in NAFLD evolution through in vivo and in vitro studies. Databases such as MEDLINE, EMBASE, Scopus, and Web of Science were looked for studies published between 2012 and June 2023. Quality was evaluated using PRISMA guidelines. We looked at a total of nine primary studies in English carried out using healthy participants or HepG2 or LX2 cells. Quantitative data such as blood chemical markers, lipid peroxidation, and oxidative status were obtained from the studies. Our findings indicate that NPs are a possible option to make medications safer and more effective. In fact, CeNPs have been demonstrated to decrease total saturated fatty acids and foam cell production (steatosis), reactive oxygen species production and TNF-α (necrosis), and vacuolization in hepatic tissue when used to treat NAFLD. Thus, CeNP treatment may be considered promising for liver illnesses. However, limitations such as the variation in durations between studies and the utilization of diverse models to elucidate the etiology of NAFLD must be considered. Future studies must include standardized NAFLD models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Reyes
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Pamela Rosas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
12
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
13
|
Umezawa M, Itano R, Sakaguchi N, Kawasaki T. Infrared spectroscopy analysis determining secondary structure change in albumin by cerium oxide nanoparticles. FRONTIERS IN TOXICOLOGY 2023; 5:1237819. [PMID: 37818288 PMCID: PMC10561088 DOI: 10.3389/ftox.2023.1237819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Cerium oxide (CeO2) nanoparticles are expected to have applications in the biomedical field because of their antioxidative properties. Inorganic nanoparticles interact with proteins at the nanoparticle surface and change their conformation when administered; however, the principle underlying this interaction is still unclear. This study aimed to investigate the secondary structural changes occurring in bovine serum albumin (BSA) mixed with CeO2 nanoparticles having different surface modifications using Fourier transform infrared spectroscopy. CeO2 nanoparticles (diameter: 240 nm) were synthesized from an aqueous cerium (III) nitrate solution using a homogeneous precipitation method. The surfaces of the nanoparticles were modified by the catechol compounds dopamine and 3,4-dihydroxyhydrocinnamic acid (DHCA). In the presence of these CeO2 nanoparticles (0.11-0.43 mg/mL), β-sheet formation of BSA (30 mg/mL) was promoted especially on the amine-modified (positively charged) nanoparticles. The local concentration of BSA on the surface of the positively charged nanoparticles may have resulted in structural changes due to electrostatic and other interactions with BSA. Further investigations of the interaction mechanism between nanoparticles and proteins are expected to lead to the safe biomedical applications of inorganic nanoparticles.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Ryodai Itano
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoya Sakaguchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, Tsukuba, Japan
| |
Collapse
|
14
|
Pang J, Meng L, Huang H, Ma J, He L, Huang P. Decorated gold nanoparticles on hydroxymethylated lignin modified magnetic composite: Introducing a novel therapeutic drug for the treatment of renal anemia. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
15
|
Mahaye N, Musee N. Evaluation of Apical and Molecular Effects of Algae Pseudokirchneriella subcapitata to Cerium Oxide Nanoparticles. TOXICS 2023; 11:283. [PMID: 36977048 PMCID: PMC10058573 DOI: 10.3390/toxics11030283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Cerium oxide engineered nanoparticles (nCeO2) are widely used in various applications and are, also, increasingly being detected in different environmental matrixes. However, their impacts on the aquatic environment remain poorly quantified. Hence, there is a need to investigate their effects on non-target aquatic organisms. Here, we evaluated the cytotoxic and genotoxic effects of <25 nm uncoated-nCeO2 on algae Pseudokirchneriella subcapitata. Apical (growth and chlorophyll a (Chl a) content) and genotoxic effects were investigated at 62.5-1000 µg/L after 72 and 168 h. Results demonstrated that nCeO2 induced significant growth inhibition after 72 h and promotion post 96-168 h. Conversely, nCeO2 induced enhanced Chl a content post 72 h, but no significant changes were observed between nCeO2-exposed and control samples after 168 h. Hence, the results indicate P. subcapitata photosynthetic system recovery ability to nCeO2 effects under chronic-exposure conditions. RAPD-PCR profiles showed the appearance and/or disappearance of normal bands relative to controls; indicative of DNA damage and/or DNA mutation. Unlike cell recovery observed post 96 h, DNA damage persisted over 168 h. Thus, sub-lethal nCeO2-induced toxicological effects may pose a more serious threat to algae than at present anticipated.
Collapse
|
16
|
Zhao Z, Fang L, Lv D, Chen L, Zhang B, Wu D. Design and synthesis of Ag NPs/chitosan-starch nano-biocomposite as a modern anti-human malignant melanoma drug. Int J Biol Macromol 2023; 236:123823. [PMID: 36842739 DOI: 10.1016/j.ijbiomac.2023.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
In recent years, the unprecedented increase in various cancers such as melanoma has caused researchers to focus more on the formulation of newer drugs with less side effects. In this study, we herein indicate the biogenic nanoarchitechtonics of Ag NPs template over chitosan/starch mixed hydrogel having notable reducing potential and anti-malignant melanoma effects. The two biopolymers also could stabilize as-synthesized Ag NPs. Physicochemical features of the material were further characterized over a range of advanced methods like X-ray diffraction (XRD), elemental mapping, dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier transformed infrared spectroscopy (FT-IR). TEM analysis showed the spherical-shaped nanocomposite with the mean diameter in the range of 5-15 nm. Thereafter, the nanocomposite was exploited in the anti-malignant melanoma and cytotoxicity effects studies against various human malignant melanoma cell lines (HT144, RPMI7951, SKMEL2, UACC3074, WM266-4 and MUM2C) in situ. The bio-composite corresponding IC50 values were 193, 102, 227, 250, 301, and 203 μg/mL against MUM2C, WM266-4, UACC3074, SKMEL2, RPMI7951, and HT144 cell lines, respectively. A significantly high IC50 value offered an excellent antioxidant capacity of bio-composite. According to the above results, Ag NPs/CS-Starch nanomaterial can be utilized as an efficient drug to treat malignant melanoma in humans after doing clinical trial studies.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China; Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China.
| | - Linsen Fang
- Department of Burns and Wound Repair Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Anhui 241004, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| | - Dejin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Anhui 237005, China
| |
Collapse
|
17
|
Saidi AKAA, Ghazanfari A, Liu S, Tegafaw T, Ahmad MY, Zhao D, Liu Y, Yang SH, Hwang DW, Yang JU, Park JA, Jung JC, Nam SW, Chang Y, Lee GH. Facile Synthesis and X-ray Attenuation Properties of Ultrasmall Platinum Nanoparticles Grafted with Three Types of Hydrophilic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:806. [PMID: 36903686 PMCID: PMC10004834 DOI: 10.3390/nano13050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Ultrasmall platinum nanoparticles (Pt-NPs) grafted with three types of hydrophilic and biocompatible polymers, i.e., poly(acrylic acid), poly(acrylic acid-co-maleic acid), and poly(methyl vinyl ether-alt-maleic acid) were synthesized using a one-pot polyol method. Their physicochemical and X-ray attenuation properties were characterized. All polymer-coated Pt-NPs had an average particle diameter (davg) of 2.0 nm. Polymers grafted onto Pt-NP surfaces exhibited excellent colloidal stability (i.e., no precipitation after synthesis for >1.5 years) and low cellular toxicity. The X-ray attenuation power of the polymer-coated Pt-NPs in aqueous media was stronger than that of the commercial iodine contrast agent Ultravist at the same atomic concentration and considerably stronger at the same number density, confirming their potential as computed tomography contrast agents.
Collapse
Affiliation(s)
- Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Adibehalsadat Ghazanfari
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - So Hyeon Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Dong Wook Hwang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Ji-ung Yang
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Jae Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| |
Collapse
|
18
|
Li Y, Zeng Q, Deng H, Xiang T, Qi W, Wu D. Ameliorating effect of gold nanoparticles decorated on biodegradable apple pectin modified magnetic nanoparticles on epididymo-orchitis inducing alterations in sperm quality and spermatogenic cells apoptosis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Green immobilized Ag NPs over magnetic Fe3O4 NPs using Pomegranate juice induces apoptosis via P53 and signal transducer and activator of transcription 3 signaling pathways in human gastric cancer cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Nettle-root Extract mediated green synthesis of silver nanoparticles: Characterization and evaluation of its gastric carcinoma properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Wang W, Ma P, Zhao Q, Goorani S. Beneficial properties of the biosynthesized silver/chitosan nanoparticles mediated by Mentha piperita in rats with heart failure following myocardial infarction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Meng L, Li S, Wanyan C. Design and evaluation of a novel nano copper/chitosan–starch bio-composite on antimicrobial property and wound-healing efficacy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Pectin mediated green synthesis of Fe3O4/Pectin nanoparticles under ultrasound condition as an anti-human colorectal carcinoma bionanocomposite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
24
|
Hadadian Y, Masoomi H, Dinari A, Ryu C, Hwang S, Kim S, Cho BK, Lee JY, Yoon J. From Low to High Saturation Magnetization in Magnetite Nanoparticles: The Crucial Role of the Molar Ratios Between the Chemicals. ACS OMEGA 2022; 7:15996-16012. [PMID: 35571799 PMCID: PMC9097206 DOI: 10.1021/acsomega.2c01136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a comprehensive characterization of iron oxide nanoparticles synthesized by using a simple one-pot thermal decomposition route is presented. In order to obtain monodisperse magnetite nanoparticles with high saturation magnetization, close to the bulk material, the molar ratios between the starting materials (solvents, reducing agents, and surfactants) were varied. Two out of nine conditions investigated in this study resulted in monodisperse iron oxide nanoparticles with high saturation magnetization (90 and 93% of bulk magnetite). The X-ray diffraction analyses along with the inspection of the lattice structure through transmission electron micrographs revealed that the main cause of the reduced magnetization in the other seven samples is likely due to the presence of distortion and microstrain in the particles. Although the thermogravimetric analysis, Raman and Fourier transform infrared spectroscopies confirmed the presence of covalently bonded oleic acid on the surface of all the samples, the particles with higher polydispersity and the lowest surface coating molecules showed the lowest saturation magnetization. Based on the observed results, it could be speculated that the changes in the kinetics of the reactions, induced by varying the molar ratio of the starting chemicals, can lead to the production of the particles with higher polydispersity and/or lattice deformation in their crystal structures. Finally, it was concluded that the experimental conditions for obtaining high-quality iron oxide nanoparticles, particularly the molar ratios and the heating profile, should not be chosen independently; for any specific molar ratio, there may exist a specific heating profile or vice versa. Because this synthetic consideration has rarely been reported in the literature, our results can give insights into the design of iron oxide nanoparticles with high saturation magnetization for different applications.
Collapse
Affiliation(s)
- Yaser Hadadian
- Research
Center for Nanorobotics in Brain, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
- School
of Integrated Technology, Gwangju Institute
of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hajar Masoomi
- Research
Center for Nanorobotics in Brain, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
- School
of Integrated Technology, Gwangju Institute
of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ali Dinari
- Research
Center for Nanorobotics in Brain, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
- School
of Integrated Technology, Gwangju Institute
of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chiseon Ryu
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic
of Korea
| | - Seong Hwang
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic
of Korea
| | - Seokjae Kim
- Korea
Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea
| | - Beong ki Cho
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic
of Korea
| | - Jae Young Lee
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic
of Korea
| | - Jungwon Yoon
- Research
Center for Nanorobotics in Brain, Gwangju
Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
25
|
In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:593-606. [PMID: 35201389 PMCID: PMC8989852 DOI: 10.1007/s00210-022-02219-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Abstract Herein, we assess the dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide. The antioxidant properties of these nanoparticles were investigated in three groups of Sprague–Dawley rats (10 per group) exposed to environmental stress daily for 1 week and one control group. Groups 2 and 3 were intravenously injected twice a week with YNPs at 0.3 and 0.5 mg at 2nd and 5th day of environmental stress exposure respectively. Different samples of blood and serum were collected from all experimental groups at end of the experiment to measure oxidative biomarkers such as total antioxidant capacity (TAC), hydroxyl radical antioxidant capacity (HORAC), oxygen radical antioxidant capacity (ORAC), malondialdehyde (MDA), and oxidants concentration as hydrogen peroxide (H2O2). The liver, brain, and spleen tissues were collected for fluorescence imaging and histopathological examination in addition to brain tissue examination by transmission electron microscope (TEM). Inductively coupled plasma-mass spectrometry (ICP-MS) was used to estimate YNPs translocation and concentration in tissues which is consecutively dependent on the dose of administration. Depending on all results, poly EGMP YNPs (poly EGMP yttrium oxide nanoparticles) can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Also, the neuroprotective effect of YNPs opening the door to a new therapeutic approach for modulating oxidative stress–related neural disorders. Highlights • The dose-dependent antioxidant efficacy of ultrafine spherical functionalized core–shell yttrium oxide nanoparticles (YNPs) with a mean size of 7–8 nm and modified with poly EGMP (ethylene glycol methacrylate phosphate) and N-Fluorescein Acrylamide was assessed. • The dose of administration directly affecting the brain, liver, and spleen tissues distribution, retention, and uptake of YNPs and direct correlation between the absorbed amount and higher dose administered. • YNPs can act as a potent direct antioxidant in a dose-dependent manner with good permeability through blood–brain barrier (BBB). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00210-022-02219-1.
Collapse
|
26
|
Ji N, Dong C, Jiang J. Evaluation of antioxidant, cytotoxicity, and anti-ovarian cancer properties of the Fe3O4@CS-Starch/Cu bio-nanocomposite. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Weak Ferromagnetism in a One-Orbital Double-Exchange Model with Ising Spins for Cerium Oxides. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerium oxides (ceria) are materials that exhibit weak, room-temperature ferromagnetism without d-electrons. The latter are usually responsible for magnetism in a variety of other oxide compounds, but the underlying mechanism for such a magnetic response in ceria without the d-electrons (d0-magnetism) is still under debate. A possible explanation is Zener double-exchange, where itinerant electrons polarize the localized spins via Hund-coupling as they hop from site to site. Here, we report magnetization and spin-spin correlation results using various values of the Hund-coupling in a one-orbital double-exchange model with Ising spins. In the real material with formula CeO2−x, the oxygen-deficient sites are denoted by x. These sites are related to the density of tetravalent cerium spins (the Ising spin background in our model), which we denoted as and set at N=0.50 in our simulations. Our results at this value of localized spin concentration show ferromagnetic tendencies at low carrier densities (n=0.25). However, ferromagnetism is lost at intermediate carrier concentrations (n=0.50) due to charge localization at high temperatures, as evident from density of states calculations and Monte Carlo snapshots. To our knowledge, our study based on a realistic Zener-type double exchange mechanism is a first in the study of magnetism in cerium oxides. Our results are also consistent with previous studies using similar Hamiltonians in the context of diluted magnetic semiconductors, where Heisenberg spins were used.
Collapse
|
28
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
29
|
Evaluation of the Anticancer Activity of Phytomolecules Conjugated Gold Nanoparticles Synthesized by Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin). MATERIALS 2021; 14:ma14123368. [PMID: 34206999 PMCID: PMC8234714 DOI: 10.3390/ma14123368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
The conventional physical and chemical synthetic methods for the preparation of metal nanoparticles have disadvantages as they use expensive equipment and hazardous chemicals which limit their applications for biomedical purposes, and are not environment friendly. However, for the synthesis of biocompatible nanomaterials, plant-based techniques are eco-friendly and easy to handle. Herein a simple, single-step biosynthesis of gold nanoparticles using aqueous extracts of Nigella sativa (NSE) and Zingiber officinale (GE) as a reducing and capping agent has been demonstrated. The formation of gold nanoparticles (Au NPs) was confirmed by X-ray diffraction, UV-Vis, and EDS spectroscopies. Spectroscopic and chromatographic analysis of GE and NSE revealed the presence of bioactive phytochemical constituents, such as gingerol, thymoquinone, etc., which successfully conjugated the surface of resulting Au NPs. TEM analysis indicated the formation of smaller-sized, less-aggregated, spherical-shaped Au NPs both in the case of GE (~9 nm) and NSE (~11 nm). To study the effect of the concentration of the extracts on the quality of resulting NPs and their anticancer properties, three different samples of Au NPs were prepared from each extract by varying the concentration of extracts while keeping the amount of precursor constant. In both cases, high-quality, spherical-shaped NPs were obtained, only at a high concentration of the extract, whereas at lower concentrations, larger-sized, irregular-shaped NPs were formed. Furthermore, the as-prepared Au NPs were evaluated for the anticancer properties against two different cell lines including MDA-MB-231 (breast cancer) and HCT 116 (colorectal cancer) cell lines. GE-conjugated Au NPs obtained by using a high concentration of the extract demonstrated superior anticancer properties when compared to NSE-conjugated counterparts.
Collapse
|
30
|
Andraos C, Gulumian M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1680. [PMID: 33111484 PMCID: PMC7988657 DOI: 10.1002/wnan.1680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Cancer nanomedicine has evolved in recent years and is only expected to increase due to the ease with which nanomaterials (NMs) may be manipulated to the advantage of the cancer patient. The success of nanomedicine is dependent on the cell death mechanism, which in turn is dependent on the organelle initially targeted. The success of cancer nanomedicine is also dependent on other cellular mechanisms such as the induction of autophagy dysfunction, manipulation of the tumor microenvironment (TME) and secretome or induction of host immune responses. Current cancer phototherapies for example, photothermal- or photodynamic therapies as well as radio enhancement also form a major part of cancer nanomedicine. In general, cancer nanomedicine may be grouped into those NMs exhibiting inherent anti-cancer properties that is, self-therapeutic NMs (Group 1), NMs leading to localization of phototherapies or radio-enhancement (Group 2), and NMs as nanocarriers in the absence or presence of external radiation (Group 3). The recent advances of these three groups, together with their advantages and disadvantages as well as their cellular mechanisms and ultimate outcomes are summarized in this review. By exploiting these different intracellular mechanisms involved in initiating cell death pathways, it is possible to synthesize NMs that may have the desirable characteristics to maximize their efficacy in cancer therapy. Therefore, a summary of these important physicochemical characteristics is also presented that need to be considered for optimal cancer cell targeting and initiation of mechanisms that will lead to cancerous cell death. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
| | - Mary Gulumian
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
- Haematology and Molecular Medicine DepartmentUniversity of the WitwatersrandJohannesburgSouth Africa
- Water Research Group, Unit for Environmental Sciences and ManagementNorth West UniversityPotchefstroomSouth Africa
| |
Collapse
|
31
|
The potential ameliorative impacts of cerium oxide nanoparticles against fipronil-induced hepatic steatosis. Sci Rep 2021; 11:1310. [PMID: 33446707 PMCID: PMC7809457 DOI: 10.1038/s41598-020-79479-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Fipronil (FIP) is a phenylpyrazole insecticide that is commonly used in agricultural and veterinary fields for controlling a wide range of insects, but it is a strong environmentally toxic substance. Exposure to FIP has been reported to increase the hepatic fat accumulation through altered lipid metabolism, which ultimately can contribute to nonalcoholic fatty liver disease (NAFLD) development. The present study aimed to examine the function of cerium oxide nanoparticles (CeNPs) in protecting against hepatotoxicity and lipogenesis induced by FIP. Twenty-eight male albino rats were classified into four groups: FIP (5 mg/kg/day per os), CTR, CeNPs (35 mg/kg/day p.o.), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg/day p.o.) for 28 consecutive days. Serum lipid profiles, hepatic antioxidant parameters and pathology, and mRNA expression of adipocytokines were assessed. The results revealed that FIP increased cholesterol, height-density lipoprotein, triacylglyceride, low-density lipoprotein (LDL-c), and very-low-density lipoprotein (VLDL-c) concentrations. It also increased nitric oxide (NO) and malondialdehyde (MDA) hepatic levels and reduced glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzyme activities. Additionally, FIP up-regulated the fatty acid-binding protein (FABP), acetyl Co-A carboxylase (ACC1), and peroxisome proliferator-activated receptor-alpha (PPAR-α). Immunohistochemically, a strong proliferation of cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba-1), cyclooxygenase-2 (COX-2) reactions in the endothelial cells of the hepatic sinusoids, and increased expression of caspase3 were observed following FIP intoxication. FIP also caused histological changes in hepatic tissue. The CeNPs counteracted the hepatotoxic effect of FIP exposure. So, this study recorded an ameliorative effect of CeNPs against FIP-induced hepatotoxicity.
Collapse
|
32
|
Dai Z, Cao J, Guo Z, Zheng K, Song XZ, Wen W, Xu X, Qi X, Ohara S, Tan Z. Soft X-ray-Enhanced Reactive Oxygen Species Generation in Mesoporous Titanium Peroxide and the Application in Tumor Synergistic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7408-7417. [DOI: 10.1021/acsabm.0c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zideng Dai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Junkai Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Zhaoming Guo
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Kun Zheng
- School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Wen Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Xinyu Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Xiuyu Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Satoshi Ohara
- Joining and Welding Research Institute, Osaka University, Osaka 5670047, Japan
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| |
Collapse
|
33
|
H M, S H, N QI, R M, A M, R S, L S S, K B, P B, H D, P N N, M M, Y N. Surface refined Au Quercetin nanoconjugate stimulates dermal cell migration: possible implication in wound healing. RSC Adv 2020; 10:37683-37694. [PMID: 35515178 PMCID: PMC9057138 DOI: 10.1039/d0ra06690g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/16/2020] [Indexed: 01/13/2023] Open
Abstract
Refining nutraceutical conjugated metal nanoparticles (NPs) and understanding their interactions with the cellular micro-environment is necessary for their application in nanomedicine. In the present experiment, we studied the effect of quercetin functionalized gold nanoparticles (AuQurNP) on skin fibroblast and keratinocyte cell migration. Spherical shaped AuQurNPs of 47 nm in size were formed due to the interaction of hydroxyl and carbonyl groups of quercetin with Au atoms as revealed by incremental algorithm-based analysis. AuQurNP containing up to 5 μg l−1 of Au with quercetin (5.2 ± 1.6 ng ml−1) was least toxic to fibroblasts. AuQurNP effectively reduced the generation of intracellular ROS (up to 63%) through free-radical scavenging activity. AuQurNP also enhanced the rate of migration of fibroblasts (24 h) and keratinocytes (20 h) in artificially created wounds. The rate of migration of the cells towards the wound edge was in the order of AuQurNP > control > quercetin > AuNP. AuQurNP also significantly increased the expression of TGFβ1 protein, thereby inducing the downstream SMAD complex (SMAD 2–4). Downregulation of the inhibitory protein SMAD 7 by AuQurNP helped in the nuclear translocation of SMADs 3 and 4. Collectively, the present in vitro study demonstrates the action of AuQurNP on the SMAD family and the interconnected molecular mechanism leading to the cell migration process. AuQuercetin nano conjugates enhances cell migration via TGFβ1.![]()
Collapse
Affiliation(s)
- Madhyastha H
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| | - Halder S
- School of Biosciences and Technology, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Queen Intan N
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| | - Madhyastha R
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| | - Mohanapriya A
- School of Biosciences and Technology, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Sudhakaran R
- School of Biosciences and Technology, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Sajitha L S
- School of Biosciences and Technology, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Banerjee K
- School of Biosciences and Technology, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Bethasiwi P
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| | - Daima H
- Amity Center for Nanobiotechnology and Nanomedicine, Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 Rajasthan India
| | - Navya P N
- Department of Biotechnology, Bannari Amman Institute of Technology Sathyamangalam Erode 638401 Tamilnadu India
| | - Maruyama M
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| | - Nakajima Y
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki Miyazaki 889 1692 Japan
| |
Collapse
|
34
|
Chetty R, Singh M. In-vitro interaction of cerium oxide nanoparticles with hemoglobin, insulin, and dsDNA at 310.15 K: Physicochemical, spectroscopic and in-silico study. Int J Biol Macromol 2020; 156:1022-1044. [PMID: 32171830 DOI: 10.1016/j.ijbiomac.2020.03.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023]
Abstract
Lanthanide nanoparticles and nanorods especially their biocompatible oxide forms like cerium oxide nanoparticles (CNPs) with therapeutic applications are used to cure neurological oxidative stresses. Thus it tempts to study their biocompatible aspects by interactions with several biologically significant molecules. In-Vitro interactions of 15-240 μM CNPs with water, Phosphate buffered saline (PBS), DMEM media, Insulin (Ins) hemoglobin (Hb) and ds-DNA at 37 °C were studied. Their physicochemical properties study by Borosil Mansingh Survismeter (BMS) showed the first order interaction with the protein-protein structure breaking behaviour of CNPs with Hb, Ins, and DNA. Zeta potential measurements of CNPs in different biological medium show a net increase in negative charge magnitude with good colloidal stability. Kb = 4 × 106 mM-1 of CNPs-DNA infer noncovalent interactions. Circular dichroism and FTIR revealed a loss of secondary conformation with increasing CNPs concentration. In-silico molecular docking depicts CNP interaction via conventional hydrogen bonding, carbon hydrogen bonding and electrostatic interactions at the minor groove of DNA. The study reports in-dept unfolding functional mechanism investigated by physicochemical, spectroscopic, and In-Silico approaches of protein on interactions with CNPs for safer-by-design use in medicine and pharmaceutics. Fundamentally the CeO2 in ~62% and Ce2O3 in ~38% with Ce4+ and Ce3+ oxidation potentials develop a unique case of electronic configurations with 4f05d06s0 and 4f15d06s0 electrons respectively which these studies a novel one.
Collapse
Affiliation(s)
- Rajlakshmi Chetty
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Man Singh
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
35
|
Sano M, Izumiya M, Haniu H, Ueda K, Konishi K, Ishida H, Kuroda C, Uemura T, Aoki K, Matsuda Y, Saito N. Cellular Responses of Human Lymphatic Endothelial Cells to Carbon Nanomaterials. NANOMATERIALS 2020; 10:nano10071374. [PMID: 32674394 PMCID: PMC7407296 DOI: 10.3390/nano10071374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022]
Abstract
One of the greatest challenges to overcome in the pursuit of the medical application of carbon nanomaterials (CNMs) is safety. Particularly, when considering the use of CNMs in drug delivery systems (DDSs), evaluation of safety at the accumulation site is an essential step. In this study, we evaluated the toxicity of carbon nanohorns (CNHs), which are potential DDSs, using human lymph node endothelial cells that have been reported to accumulate CNMs, as a comparison to fibrous, multi-walled carbon nanotubes (MWCNTs) and particulate carbon black (CB). The effect of different surface characteristics was also evaluated using two types of CNHs (untreated and oxidized). In the fibrous MWCNT, cell growth suppression, as well as expression of inflammatory cytokine genes was observed, as in previous reports. In contrast, no significant toxicity was observed for particulate CB and CNHs, which was different from the report of CB cytotoxicity in vascular endothelial cells. These results show that (1) lymph endothelial cells need to be tested separately from other endothelial cells for safety evaluation of nanomaterials, and (2) the potential of CNHs as DDSs.
Collapse
Affiliation(s)
- Mahoko Sano
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 390-8621, Japan
- Correspondence: ; Tel.: +81-263-37-3555
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Kosuke Konishi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 390-8621, Japan
| | - Chika Kuroda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
- Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano 390-8621, Japan
| | - Kaoru Aoki
- Physical and Occupational Therapy Division, Graduate School of Medicine, Shinshu University, Nagano 390-8621, Japan;
| | - Yoshikazu Matsuda
- Division of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Saitama 362-0806, Japan;
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; (M.S.); (M.I.); (K.U.); (K.K.); (H.I.); (C.K.); (T.U.); (N.S.)
| |
Collapse
|
36
|
Bhattacharya P, Chatterjee K, Swarnakar S, Banerjee S. Green Synthesis of Zinc Oxide Nanoparticles via Algal Route and its Action on Cancerous Cells and Pathogenic Microbes. ACTA ACUST UNITED AC 2020. [DOI: 10.21467/anr.3.1.15-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of metal oxide nanoparticles for treatment of melanoma cells and microbes is being investigated. Zinc oxide nanoparticles (ZnO NPs) deserve special mention where particles cause destruction of melanoma cells with minimal damage to healthy cells. In the present study, pure phase ZnO NPs with particle size of 3.1 nm were synthesized by green route using algal extract. Skin melanoma (B16F10) cells were treated with synthesized ZnO NP and compared with commercial ZnO NPs and analysed for ED50 for cellular viability using 3% (w/v) of the doses. Sensitivity of B16F10 cells towards green synthesized ZnO NP was found to be more than commercial ZnO NPs. Results showed greater reduction in viability of cells exposed to green synthesized ZnO NPs and with increasing dose of the ZnO NPs, percentage viability of cells gradually reduced. 50% decrease in cellular viability (ED50) was obtained for green synthesized ZnO NP at 3% dose while commercial ZnO exhibited ED50 at 6% of doses. The ZnO NP also showed antimicrobial activity against Pseudomonas sp. and Staphylococcus sp. Zone of inhibition (ZOI) exhibited by Pseudomonas aeruginosa and Staphylococcus aureus for disc diffusion and well diffusion assay was around 10-22 mm and 9-12mm respectively.
Collapse
Affiliation(s)
| | | | | | - Sathi Banerjee
- Metallurgical and Materials Engineering Department, Jadavpur University
| |
Collapse
|
37
|
Nedder M, Boland S, Devineau S, Zerrad-Saadi A, Rogozarski J, Lai-Kuen R, Baya I, Guibourdenche J, Vibert F, Chissey A, Gil S, Coumoul X, Fournier T, Ferecatu I. Uptake of Cerium Dioxide Nanoparticles and Impact on Viability, Differentiation and Functions of Primary Trophoblast Cells from Human Placenta. NANOMATERIALS 2020; 10:nano10071309. [PMID: 32635405 PMCID: PMC7407216 DOI: 10.3390/nano10071309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The human placenta is at the interface between maternal and fetal circulations, and is crucial for fetal development. The nanoparticles of cerium dioxide (CeO2 NPs) from air pollution are an unevaluated risk during pregnancy. Assessing the consequences of placenta exposure to CeO2 NPs could contribute to a better understanding of NPs’ effect on the development and functions of the placenta and pregnancy outcome. We used primary villous cytotrophoblasts purified from term human placenta, with a wide range of CeO2 NPs concentrations (0.1–101 μg/cm2) and exposure time (24–72 h), to assess trophoblast uptake, toxicity and impact on trophoblast differentiation and endocrine function. We have shown the capacity of both cytotrophoblasts and syncytiotrophoblasts to internalize CeO2 NPs. CeO2 NPs affected trophoblast metabolic activity in a dose and time dependency, induced caspase activation and a LDH release in the absence of oxidative stress. CeO2 NPs decreased the fusion capacity of cytotrophoblasts to form a syncytiotrophoblast and disturbed secretion of the pregnancy hormones hCG, hPL, PlGF, P4 and E2, in accordance with NPs concentration. This is the first study on the impact of CeO2 NPs using human primary trophoblasts that decrypts their toxicity and impact on placental formation and functions.
Collapse
Affiliation(s)
- Margaux Nedder
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sonja Boland
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Stéphanie Devineau
- BFA, Université de Paris, UMR 8251, CNRS, F-75013 Paris, France; (S.B.); (S.D.)
| | - Amal Zerrad-Saadi
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - René Lai-Kuen
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMS 025—CNRS UMS 3612, F-75006 Paris, France;
| | - Ibtissem Baya
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Jean Guibourdenche
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Assistance Publique—Hôpitaux de Paris, Hôpital Cochin, Service d’hormonologie, F-75014 Paris, France
| | - Francoise Vibert
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Audrey Chissey
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Sophie Gil
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Xavier Coumoul
- Université de Paris, INSERM UMR-S 1124, F-75006 Paris, France;
| | - Thierry Fournier
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
| | - Ioana Ferecatu
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, F-75006 Paris, France; (M.N.); (A.Z.-S.); (J.R.); (I.B.); (J.G.); (F.V.); (A.C.); (S.G.); (T.F.)
- Correspondence: ; Tel.: +33-1-53-73-96-05; Fax: +33-1-44-07-39-92
| |
Collapse
|
38
|
Anesi A, Malavasi G, Chiarini L, Salvatori R, Lusvardi G. Cell Proliferation to Evaluate Preliminarily the Presence of Enduring Self-Regenerative Antioxidant Activity in Cerium Doped Bioactive Glasses. MATERIALS 2020; 13:ma13102297. [PMID: 32429291 PMCID: PMC7288167 DOI: 10.3390/ma13102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
(1) Background: a cell evaluation focused to verify the self-regenerative antioxidant activity is performed on cerium doped bioactive glasses. (2) Methods: the glasses based on 45S5 Bioglass®, are doped with 1.2 mol%, 3.6 mol% and 5.3 mol% of CeO2 and possess a polyhedral shape (~500 µm2). Glasses with this composition inhibit oxidative stress by mimicking catalase enzyme (CAT) and superoxide dismutase (SOD) activities; moreover, our previous cytocompatibility tests (neutral red (NR), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Bromo-2-deoxyUridine (BrdU)) reveal that the presence of cerium promotes the absorption and vitality of the cells. The same cytocompatibility tests were performed and repeated, in two different periods (named first and second use), separated from each other by four months. (3) Results: in the first and second use, NR tests indicate that the presence of cerium promotes once again cell uptake and viability, especially after 72 h. A decrease in cell proliferation it is observed after MTT and BrdU tests only in the second use. These findings are supported by statistically significant results (4) Conclusions: these glasses show enhanced proliferation, both in the short and in the long term, and for the first time such large dimensions are studied for this kind of study. A future prospective is the implantation of these bioactive glasses as bone substitute in animal models.
Collapse
Affiliation(s)
- Alexandre Anesi
- SMECHIMAI, Università di Modena e Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy; (A.A.); (L.C.); (R.S.)
| | - Gianluca Malavasi
- DSCG, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
| | - Luigi Chiarini
- SMECHIMAI, Università di Modena e Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy; (A.A.); (L.C.); (R.S.)
| | - Roberta Salvatori
- SMECHIMAI, Università di Modena e Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy; (A.A.); (L.C.); (R.S.)
| | - Gigliola Lusvardi
- DSCG, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
- Correspondence: ; Tel.: +39-059-205-8549
| |
Collapse
|
39
|
Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for Angiogenesis in Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:203-216. [PMID: 31964266 DOI: 10.1089/ten.teb.2019.0337] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Damage to skin tissue, which causes the disorder of the patient's body homeostasis, threatens the patient's life and increases the personal and social treatment burden. Angiogenesis, a key step in the wound healing process, provides sufficient oxygen and nutrients to the wound area. However, traditional clinical interventions are not enough to stabilize the formation of the vascular system to support wound healing. Due to the unique properties and multiple functions of nanomaterials, it has made a major breakthrough in the application of medicine. Nanomaterials provide a more effective treatment to hasten the angiogenesis and wound healing, by stimulating fundamental factors in the vascular regeneration phase. In the present review article, the basic stages and molecular mechanisms of angiogenesis are analyzed, and the types, applications, and prospects of nanomaterials used in angiogenesis are detailed. Impact statement Wound healing (especially chronic wounds) is currently a clinically important issue. The long-term nonhealing of chronic wounds often plagues patients, medical systems, and causes huge losses to the social economy. There is currently no effective method of treating chronic wounds in the clinic. Angiogenesis is an important step in wound healing. Nanomaterials had properties that are not found in conventional materials, and they have been extensively studied in angiogenesis. This review article provides readers with the molecular mechanisms of angiogenesis and the types and applications of angiogenic nanomaterials, hoping to bring inspiration to overcome chronic wounds.
Collapse
Affiliation(s)
- Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jingan Li
- Henan Key Laboratory of Advanced Magnesium Alloy, Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Howard D, Sebastian S, Le QVC, Thierry B, Kempson I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int J Mol Sci 2020; 21:E579. [PMID: 31963205 PMCID: PMC7013516 DOI: 10.3390/ijms21020579] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/19/2023] Open
Abstract
Metal nanoparticles are of increasing interest with respect to radiosensitization. The physical mechanisms of dose enhancement from X-rays interacting with nanoparticles has been well described theoretically, however have been insufficient in adequately explaining radiobiological response. Further confounding experimental observations is examples of radioprotection. Consequently, other mechanisms have gained increasing attention, especially via enhanced production of reactive oxygen species (ROS) leading to chemical-based mechanisms. Despite the large number of variables differing between published studies, a consensus identifies ROS-related mechanisms as being of significant importance. Understanding the structure-function relationship in enhancing ROS generation will guide optimization of metal nanoparticle radiosensitisers with respect to maximizing oxidative damage to cancer cells. This review highlights the physico-chemical mechanisms involved in enhancing ROS, commonly used assays and experimental considerations, variables involved in enhancing ROS generation and damage to cells and identifies current gaps in the literature that deserve attention. ROS generation and the radiobiological effects are shown to be highly complex with respect to nanoparticle physico-chemical properties and their fate within cells. There are a number of potential biological targets impacted by enhancing, or scavenging, ROS which add significant complexity to directly linking specific nanoparticle properties to a macroscale radiobiological result.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia; (D.H.); (B.T.)
| |
Collapse
|
41
|
Chetty R, Pandya SR, Singh M. Physicochemical interaction of cerium oxide nanoparticles with simulated biofluids, hemoglobin, insulin, and ds-DNA at 310.15 K. NEW J CHEM 2020. [DOI: 10.1039/c9nj04155a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interaction study in cerium oxide nanoparticles with biofluids and biomolecules via physicochemical, spectroscopic and in silico analytical approaches, showing conformational change.
Collapse
Affiliation(s)
- Rajlakshmi Chetty
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar 382030
- India
| | | | - Man Singh
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar 382030
- India
| |
Collapse
|
42
|
Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, Adami G, Turco G, Filon FL. Cerium Oxide Nanoparticles Absorption through Intact and Damaged Human Skin. Molecules 2019; 24:E3759. [PMID: 31635398 PMCID: PMC6832931 DOI: 10.3390/molecules24203759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
Cerium oxide (CeO2) nanoparticles (NPs) are used in polishing products and absorbents, as promoters in wound healing, and as organopesticide decontaminants. While systemic bioaccumulation and organ toxicity has been described after inhalation, data on CeO2 NPs' transdermal permeation are lacking. Our study was an in vitro investigation of the permeation of 17-nm CeO2 NPs dispersed in synthetic sweat (1 g L-1) using excised human skin on Franz cells. Experiments were performed using intact and needle-abraded skin, separately. The average amount of Ce into intact and damaged skin samples was 3.64 ± 0.15 and 7.07 ± 0.78 µg cm-2, respectively (mean ± SD, p = 0.04). Ce concentration in the receiving solution was 2.0 ± 0.4 and 3.3 ± 0.7 ng cm-2 after 24 h (p = 0.008). The Ce content was higher in dermal layers of damaged skin compared to intact skin (2.93 ± 0.71 µg cm-2 and 0.39 ± 0.16 µg cm-2, respectively; p = 0.004). Our data showed a very low dermal absorption and transdermal permeation of cerium, providing a first indication of Ce skin uptake due to contact with CeO2.
Collapse
Affiliation(s)
- Marcella Mauro
- Clinical Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Via della Pietà 19, 34100 Trieste, Italy.
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy.
| | - Matteo Monai
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy.
| | - Tiziano Montini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy.
- ICCOM-CNR Trieste research unit and INSTM Trieste research unit, Via Giorgeri 1, 34127 Trieste, Italy.
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy.
- ICCOM-CNR Trieste research unit and INSTM Trieste research unit, Via Giorgeri 1, 34127 Trieste, Italy.
| | - Massimo Bovenzi
- Clinical Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Via della Pietà 19, 34100 Trieste, Italy.
| | - Gianpiero Adami
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, 34127 Trieste, Italy.
| | - Gianluca Turco
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, Trieste, 34125, Italy.
| | - Francesca Larese Filon
- Clinical Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Via della Pietà 19, 34100 Trieste, Italy.
| |
Collapse
|
43
|
Ribera J, Rodríguez-Vita J, Cordoba B, Portolés I, Casals G, Casals E, Jiménez W, Puntes V, Morales-Ruiz M. Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One 2019; 14:e0218716. [PMID: 31233564 PMCID: PMC6590813 DOI: 10.1371/journal.pone.0218716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS The occurrence of endothelial alterations in the liver and in the splanchnic vasculature of cirrhotic patients and experimental models of liver diseases has been demonstrated. However, the pathological role of the portal vein endothelium in this clinical context is scarcely studied and, therefore, deserves attention. In this context, we aimed to investigate whether pathological endothelial activation occurs in the portal vein of cirrhotic rats. METHODS Cirrhosis was induced in wistar rats by CCl4 inhalation. We generated immortalized endothelial cells from the portal vein of control (CT-iPVEC) and cirrhotic rats (CH-iPVEC) by retroviral transduction of the SV40 T antigen. We assessed differential gene expression and intracellular reactive oxygen species (ROS) levels in iPVECs and in portal veins of control and cirrhotic rats. Finally, we assessed the therapeutic effectiveness of cerium oxide nanoparticles (CeO2NP) on reversing PVEC activation and macrophage polarization. RESULTS CH-iPVECs overexpressed collagen-I, endothelin-1, TIMP-1, TIMP-2, IL-6 and PlGF genes. These results were consistent with the differential expression showed by whole portal veins from cirrhotic rats. In addition, CH-iPVECs showed a significant increase in intracellular ROS and the capacity of potentiating M1 polarization in macrophages. The treatment of CH-iPVECs with CeO2NPs blocked intracellular ROS formation and IL-6 and TIMP-2 gene overexpression. In agreement with the in vitro results, the chronic treatment of cirrhotic rats with CeO2NPs also resulted in the blockade of both ROS formation and IL-6 gene overexpression in whole portal veins. CONCLUSIONS Endothelial cells from portal vein of cirrhotic rats depicted an abnormal phenotype characterized by a differential gene expression and the induction of M1 polarization in macrophages. We identified the excess of intracellular reactive oxygen species (ROS) as a major contributor to this altered phenotype. In addition, we demonstrated the utility of the nanomaterial cerium oxide as an effective antioxidant capable of reverse some of these pathological features associated with the portal vein in the cirrhosis condition.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Juan Rodríguez-Vita
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- German Cancer Research Center, Heidelberg, Germany
| | - Bernat Cordoba
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Eudald Casals
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanotechnology (ICN), Bellaterra, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
44
|
Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line. The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.
Collapse
|
45
|
Cerium Oxide Nanoparticles Regulate Insulin Sensitivity and Oxidative Markers in 3T3-L1 Adipocytes and C2C12 Myotubes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2695289. [PMID: 30863477 PMCID: PMC6378795 DOI: 10.1155/2019/2695289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 12/12/2018] [Indexed: 12/28/2022]
Abstract
Insulin resistance is associated with oxidative stress, mitochondrial dysfunction, and a chronic low-grade inflammatory status. In this sense, cerium oxide nanoparticles (CeO2 NPs) are promising nanomaterials with antioxidant and anti-inflammatory properties. Thus, we aimed to evaluate the effect of CeO2 NPs in mouse 3T3-L1 adipocytes, RAW 264.7 macrophages, and C2C12 myotubes under control or proinflammatory conditions. Macrophages were treated with LPS, and both adipocytes and myotubes with conditioned medium (25% LPS-activated macrophages medium) to promote inflammation. CeO2 NPs showed a mean size of ≤25.3 nm (96.7%) and a zeta potential of 30.57 ± 0.58 mV, suitable for cell internalization. CeO2 NPs reduced extracellular reactive oxygen species (ROS) in adipocytes with inflammation while increased in myotubes with control medium. The CeO2 NPs increased mitochondrial content was observed in adipocytes under proinflammatory conditions. Furthermore, the expression of Adipoq and Il10 increased in adipocytes treated with CeO2 NPs. In myotubes, both Il1b and Adipoq were downregulated while Irs1 was upregulated. Overall, our results suggest that CeO2 NPs could potentially have an insulin-sensitizing effect specifically on adipose tissue and skeletal muscle. However, further research is needed to confirm these findings.
Collapse
|
46
|
Caputo F, Giovanetti A, Corsi F, Maresca V, Briganti S, Licoccia S, Traversa E, Ghibelli L. Cerium Oxide Nanoparticles Re-establish Cell Integrity Checkpoints and Apoptosis Competence in Irradiated HaCat Cells via Novel Redox-Independent Activity. Front Pharmacol 2018; 9:1183. [PMID: 30459604 PMCID: PMC6232693 DOI: 10.3389/fphar.2018.01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) are potent radical scavengers protecting cells from oxidative insults, including ionizing radiation. Here we show that CNPs prevent X-ray-induced oxidative imbalance reducing DNA breaks on HaCat keratinocytes, nearly abating mutagenesis. At the same time, and in spite of the reduced damage, CNPs strengthen radiation-induced cell cycle arrest and apoptosis outcome, dropping colony formation; notably, CNPs do not possess any intrinsic toxicity toward non-irradiated HaCat, indicating that they act on damaged cells. Thus CNPs, while exerting their antioxidant action, also reinforce the stringency of damage-induced cell integrity checkpoints, promoting elimination of the “tolerant” cells, being in fact radio-sensitizers. These two contrasting pathways are mediated by different activities of CNPs: indeed Sm-doped CNPs, which lack the Ce3+/Ce4+ redox switch and the correlated antioxidant action, fail to decrease radiation-induced superoxide formation, as expected, but surprisingly maintain the radio-sensitizing ability and the dramatic decrease of mutagenesis. The latter is thus attributable to elimination of damaged cells rather than decreased oxidative damage. This highlights a novel redox-independent activity of CNPs, allowing selectively eliminating heavily damaged cells through non-toxic mechanisms, rather reactivating endogenous anticancer pathways in transformed cells.
Collapse
Affiliation(s)
- Fanny Caputo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Lina Ghibelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
47
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
48
|
Wang Z, Gao X, Zhao Y. Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation. J Phys Chem A 2018; 122:8183-8190. [DOI: 10.1021/acs.jpca.8b06340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenzhen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Corsi F, Caputo F, Traversa E, Ghibelli L. Not Only Redox: The Multifaceted Activity of Cerium Oxide Nanoparticles in Cancer Prevention and Therapy. Front Oncol 2018; 8:309. [PMID: 30155442 PMCID: PMC6103310 DOI: 10.3389/fonc.2018.00309] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Much information is accumulating on the effect of cerium oxide nanoparticles (CNPs) as cell-protective agents, reducing oxidative stress through their unique ability of scavenging noxious reactive oxygen species via an energy-free, auto-regenerative redox cycle, where superoxides and peroxides are sequentially reduced exploiting the double valence (Ce3+/Ce4+) on nanoparticle surface. In vitro and in vivo studies consistently report that CNPs are responsible for attenuating and preventing almost any oxidative damage and pathology. Particularly, CNPs were found to exert strong anticancer activities, helping correcting the aberrant homeostasis of cancer microenvironment, normalizing stroma-epithelial communication, contrasting angiogenesis, and strengthening the immune response, leading to reduction of tumor mass in vivo. Since these homeostatic alterations are of an oxidative nature, their relief is generally attributed to CNPs redox activity. Other studies however reported that CNPs exert selective cytotoxic activity against cancer cells and sensitize cancer cells to chemotherapy- and radiotherapy-induced apoptosis: such effects are hardly the result of antioxidant activity, suggesting that CNPs exert such important anticancer effects through additional, non-redox mechanisms. Indeed, using Sm-doped CNPs devoid of redox activity, we could recently demonstrate that the radio-sensitizing effect of CNPs on human keratinocytes is independent from the redox switch. Mechanisms involving particle dissolution with release of toxic Ce4+ atoms, or differential inhibition of the catalase vs. SOD-mimetic activity with accumulation of H2O2 have been proposed, explaining such intriguing findings only partially. Much effort is urgently required to address the unconventional mechanisms of the non-redox bioactivity of CNPs, which may provide unexpected medicinal tools against cancer.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Fanny Caputo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Traversa
- School of Materials and Energy, University of Electronic Science and Technology of China, Sichuan, China
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
50
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|