1
|
Gardette A, Marzaioli V, Bedouhene S, Hayem G, Hurtado-Nedelec M, He Y, Dang PMC, Dieudé P, Zhang ZY, Marie JC, El-Benna J. The protein tyrosine phosphatase Lyp/PTPN22 drives TNFα-induced priming of superoxide anions production by neutrophils and arthritis. Free Radic Biol Med 2025; 228:68-78. [PMID: 39724988 DOI: 10.1016/j.freeradbiomed.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors. Results show that Lyp-selective inhibitors (IC-11 and compound 8b), inhibited TNFα-induced priming of neutrophil superoxide anion production. TNFα induced an increase of Lyp protein expression in human neutrophils isolated from healthy donors. Key pathways involved in neutrophil priming were investigated. Lyp-selective inhibitors, inhibited TNFα-induced p47phox phosphorylation on Ser345, ERK1/2 phosphorylation and Pin1 activation. Interestingly, Lyp expression was increased in neutrophils isolated from synovial fluid of RA patients and Lyp inhibitors, I-C11 and compound 8b prevented superoxide anion production by endogenously primed neutrophils isolated from synovial fluid of RA. Moreover, IC-11 significantly prevented collagen antibody-induced arthritis in mice. These results show that Lyp expression is increased in inflammatory neutrophils, Lyp is involved in TNFα-induced excessive ROS production by neutrophils and its inhibition protected mice against arthritis. Inhibition of Lyp could be a therapeutic strategy in inflammatory arthritis.
Collapse
Affiliation(s)
- Anaïs Gardette
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France; Service de Rhumatologie, Hôpital Bichat, APHP, Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France; Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Samia Bedouhene
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Gilles Hayem
- Rheumatology Department, Paris-Saint Joseph Hospital Group, Paris, France
| | - Margarita Hurtado-Nedelec
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France; Service d'Hématologie et Immunologie, Hôpital Bichat, APHP, Paris, France
| | - Yantao He
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Philippe Dieudé
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France; Service de Rhumatologie, Hôpital Bichat, APHP, Paris, France
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jean-Claude Marie
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France.
| |
Collapse
|
2
|
Yao H, Hu L, Jiang N, Jiang N, Gao L, Jiang R, Liu X, Zheng W, Zhao G. Thymoquinone attenuates inflammation in C. Albicans keratitis by activating Nrf2/HO-1 signaling pathway and reducing fungal load. Cytokine 2023; 172:156375. [PMID: 37797357 DOI: 10.1016/j.cyto.2023.156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Hua Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Lin Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Runfa Jiang
- Department of Orthopedics, The People's Hospital of Jimo, Qingdao, Shandong Province, China.
| | - Xueqing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Wendan Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
4
|
Korinek M, Handoussa H, Tsai YH, Chen YY, Chen MH, Chiou ZW, Fang Y, Chang FR, Yen CH, Hsieh CF, Chen BH, El-Shazly M, Hwang TL. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front Pharmacol 2021; 12:674095. [PMID: 34707494 PMCID: PMC8545060 DOI: 10.3389/fphar.2021.674095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Neutrophilic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or psoriasis, exert a huge burden on the global health system due to the lack of safe and effective treatments. Volatile oils from terrestrial plants showed impressive therapeutic effects against disorders of the skin, digestive system, lungs, liver, metabolism, and nervous system. However, their effect on the immune system and neutrophil function is still elusive. Fennel, cumin, marjoram, lavender, caraway, and anise are the common nutraceuticals that are widely used in the Mediterranean diet. The volatile oils of these herbs were screened for various biological activities, including anti-inflammatory, anti-allergic, antimicrobial, and antiviral effects. Several oils showed anti-inflammatory and antimicrobial potential. Fennel (Foeniculum vulgare) and cumin (Cuminum cyminum) fruits' volatile oils significantly suppressed the activation of human neutrophils, including respiratory burst and the degranulation induced by formyl peptide receptor agonists fMLF/CB and MMK1 in the human neutrophils (IC50, 3.8–17.2 µg/ml). The cytotoxic effect and free-radical scavenging effects (ABTS, DPPH) of these oils did not account for the observed effects. Both fennel and cumin volatile oils significantly shortened calcium influx recovery time and inhibited phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK) expression. The gas chromatography–mass spectrometry analysis of these oils revealed the presence of estragole and cuminaldehyde as the major components of fennel and cumin volatile oils, respectively. Our findings suggested that cumin and fennel, common in the Mediterranean diet, hold the potential to be applied for the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Meng-Hua Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zan-Wei Chiou
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Fan Hsieh
- The Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
5
|
Liu X, Yu T, Hu Y, Zhang L, Zheng J, Wei X. The molecular mechanism of acute liver injury and inflammatory response induced by Concanavalin A. MOLECULAR BIOMEDICINE 2021; 2:24. [PMID: 35006454 PMCID: PMC8607380 DOI: 10.1186/s43556-021-00049-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury is a common but urgent clinical condition, and its underlying mechanism remains to be further elucidated. Concanavalin A (ConA)-induced liver injury was investigated in the study. Different from the caspase-dependent cell apoptosis in lipopolysaccharide/D-aminogalactose (LPS/D-GalN) induced liver injury, ConA-induced hepatocyte death was independent on caspase. Increased hepatocytic expressions of mixed lineage kinase domain like (MLKL) and receptor-interacting protein kinase 1 (RIPK1), and higher serum concentration of tumor necrosis factor-α (TNF-α) were noticed in mice with ConA-induced liver injury. Inhibition of RIPK1 protein or deletion of MLKL gene could significantly attenuate the acute liver injury and improve mice survival. Besides, the ConA treatment induced severe hepatic inflammation in wide type (WT) mice in comparison with Mlkl-/- mice, suggesting the RIPK1-MLKL-mediated hepatocellular necroptosis might participate in the process of liver injury. Moreover, mitochondrial damage associated molecular patterns (DAMPs) were subsequently released after the hepatocyte death, and further activated the p38 mitogen-activated protein kinase (MAPK) pathway, which could be reduced by deletion or inhibition of Toll-like receptor 9 (TLR9). Taken together, our research revealed that ConA-induced acute liver injury was closely related to TNF-α-mediated cell necroptosis, and inhibiting RIPK1 or deleting MLKL gene could alleviate liver injury in mice. The mitochondrial DNA released by dead hepatocytes further activated neutrophils through TLR9, thus resulting in the exacerbation of liver injury.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Ting Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Junnian Zheng
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 2021; 138:111492. [PMID: 33743334 DOI: 10.1016/j.biopha.2021.111492] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone (TQ, 2-methyl-5-isopropyl-1, 4-benzoquinone), a monoterpene molecule present in Nigella sativa L., has an anti-inflammatory, anti-oxidant, and anti-apoptotic properties in several disorders such as asthma, hypertension, diabetes, inflammation, bronchitis, headache, eczema, fever, dizziness and influenza. TQ exerts its anti-inflammatory and anti-oxidant effects via several molecular pathways, including the release of cytokines, and activation of cyclooxygenase-2 (COX2), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), nuclear factor kappa-light-chain-enhancer of activated B (NF-Κβ). In this review, recent reports on the anti-inflammatory efficacy of TQ in heart disorders, respiratory diseases, neuroinflammation, diabetes and arthritis are summarized. We suggest that further investigation is necessary to better characterize the efficacy of TQ as a therapeutic agent.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|
8
|
Anti-Inflammatory Effects of Campomanesia xanthocarpa Seed Extract Obtained from Supercritical CO 2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6670544. [PMID: 33727941 PMCID: PMC7935572 DOI: 10.1155/2021/6670544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022]
Abstract
Campomanesia xanthocarpa is a plant species traditionally used in the treatment of diabetes, fever, hypercholesterolemia, obesity, and urinary tract diseases. The anti-inflammatory effects of C. xanthocarpa leaves in mice were already known. Nevertheless, studies on the anti-inflammatory activity of its seeds are still lacking. The aim of this study was to investigate the anti-inflammatory activity and acute toxicity of C. xanthocarpa seed extract, obtained from supercritical CO2 extraction (SCCO2) at 40°C and 250 bar, in mice. GC/MS analysis revealed that β-caryophyllene is the major compound present in the C. xanthocarpa SCCO2 extract. The extract (60 mg/kg, p.o.) significantly reduced the nociceptive behavior in the second phase of the formalin test and prevented the paw oedema induced by carrageenan up to 6 h after carrageenan injection. The extract (0.1–1 μg/mL) inhibited neutrophils migration induced by LPS from E. coli in vitro. This antichemostatic effect was comparable to the effect of indomethacin. Acute administration (2000 mg/kg, p.o.) of C. xanthocarpa SCCO2 extract caused no mice mortality, demonstrating that the extract is devoid of acute toxicity. These data suggest that C. xanthocarpa seeds present anti-inflammatory activity and represent a source of anti-inflammatory compounds.
Collapse
|
9
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
10
|
Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10:10987. [PMID: 32620860 PMCID: PMC7335198 DOI: 10.1038/s41598-020-67748-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The biggest challenge in colorectal cancer therapy is to avoid intestinal drug absorption before reaching the colon, while focusing on tumor specific delivery with high local concentration and minimal toxicity. In our work, thymoquinone (TQ)-loaded polymeric nanocapsules were prepared using the nanoprecipitation technique using Eudragit S100 as polymeric shell. Conjugation of anisamide as a targeting ligand for sigma receptors overexpressed by colon cancer cells to Eudragit S100 was carried out via carbodiimide coupling reaction, and was confirmed by thin layer chromatography and 1H-NMR. TQ nanocapsules were characterized for particle size, surface morphology, zeta potential, entrapment efficiency % (EE%), in vitro drug release and physical stability. A cytotoxicity study on three colon cancer cell lines (HT-29, HCT-116, Caco-2) was performed. Results revealed that the polymeric nanocapsules were successfully prepared, and the in vitro characterization showed a suitable size, zeta potential, EE% and physical stability. TQ exhibited a delayed release pattern from the nanocapsules in vitro. Anisamide-targeted TQ nanocapsules showed higher cytotoxicity against HT-29 cells overexpressing sigma receptors compared to their non-targeted counterparts and free TQ after incubation for 48 h, hence delineating anisamide as a promising ligand for active colon cancer targeting.
Collapse
|
11
|
Bedouhène S, Dang PMC, Hurtado-Nedelec M, El-Benna J. Neutrophil Degranulation of Azurophil and Specific Granules. Methods Mol Biol 2020; 2087:215-222. [PMID: 31728994 DOI: 10.1007/978-1-0716-0154-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils play a pivotal role in innate immunity and in the inflammatory reactions. Upon activation, neutrophils release several toxic molecules directed against microbial pathogens into the phagosome. These molecules include reactive oxygen species (ROS), myeloperoxidase, glucosidases, proteases, and antibacterial peptides. In resting cells these proteins and the enzyme responsible for ROS production (NOX2) are stored inside or at the membranes of different granules called azurophil or primary, specific or secondary, gelatinase or tertiary, and the secretory vesicles. Each granule has a specific density, content, and markers. Myeloperoxidase (MPO) is the azurophil granule marker, and the neutrophil-gelatinase-associated lipocalin (NGAL) is the specific granule marker. After cell activation by different stimuli, granule contents are released into the phagosome or in the extracellular space through a process called degranulation. Also during this process, membrane granules fuse with the phagosome and plasma membrane allowing expression of new markers at the cell surface. The degranulation can be assessed by measuring either the release of different proteins by neutrophils or the expression of granule markers at the plasma membrane. In this chapter, we describe the techniques used to measure degranulation of azurophil and specific neutrophil granules using different approaches such as measurement of MPO enzymatic activity and detection of MPO and NGAL proteins by SDS-PAGE and Western blot.
Collapse
Affiliation(s)
- Samia Bedouhène
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Laboratoire de Biochimie Analytique et de Biotechnologie, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri de Tizi-Ouzou, Tizi Ouzou, Algeria
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
| |
Collapse
|
12
|
Eugenol prevents fMLF-induced superoxide anion production in human neutrophils by inhibiting ERK1/2 signaling pathway and p47phox phosphorylation. Sci Rep 2019; 9:18540. [PMID: 31811262 PMCID: PMC6898361 DOI: 10.1038/s41598-019-55043-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Eugenol is a polyphenol extracted from Syzygium aromaticum essential oil. It is known to have anti-inflammatory and chemoprotective properties as well as a potent anti-oxidant activity due the presence of its phenolic group. In this study, we examined the effects of eugenol on neutrophil superoxide production, a key process involved in innate immunity and inflammation. Superoxide anion generationin human neutrophils was measured by cytochrome c reduction assay. Western blotting was used to analyze the phosphorylation of, p47phox, MAPKinases (p38 and ERK1/2), MEK1/2 and Raf, key proteins involved in the activation of NADPH oxidase. Pretreatment of neutrophils by increasing concentrations (2.5 µg/mL–20 µg/mL) of eugenol for 30 min, inhibited significantly (p < 0.001) superoxide anion generation induced by the chemotactic peptide formyl-Met-Leu-Phe (fMLF) with an IC50 of 5 µg/mL. Phorbolmyristate acetate (PMA)-stimulated O2− production was affected only at the highest eugenol concentration (20 µg/mL). Results showed that eugenol decreased the phosphorylation of p47phox onSer-345 and Ser-328, the translocation of p47phox to the membranesand the phosphorylation of Raf, MEK1/2 and ERK1/2 proteins. Taken together, our results suggest that eugenol inhibits the generation of superoxide anion by neutrophils via the inhibition of Raf/MEK/ERK1/2/p47phox-phosphorylation pathway.
Collapse
|
13
|
Maciel AJ, Lacerda CP, Danielli LJ, Bordignon SAL, Fuentefria AM, Apel MA. Antichemotactic and Antifungal Action of the Essential Oils from Cryptocarya aschersoniana, Schinus terebinthifolia, and Cinnamomum amoenum. Chem Biodivers 2019; 16:e1900204. [PMID: 31298500 DOI: 10.1002/cbdv.201900204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/20/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this work was to determine the chemical composition and evaluate the antichemotactic, antioxidant, and antifungal activities of the essential oil obtained from the species Cryptocarya aschersoniana Mez, Cinnamomum amoenum (Ness & Mart.) Kosterm., and Schinus terebinthifolia Raddi, as well as the combination of C. aschersoniana essential oil and terbinafine against isolates of dermatophytes. Allo-aromadendrene, bicyclogermacrene, and germacrene B were identified as major compounds in essential oils. The essential oil of C. aschersoniana shown 100 % inhibitory effect on leukocyte migration at the concentration of 10 μg/mL while S. terebinthifolia oil presented 80.1 % inhibitory effect at the same concentration. Only S. terebinthifolia oil possessed free-radical-scavenging activity which indicates its antioxidant capacity. The essential oils were also tested against fungal isolates of dermatophyte species (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum), resulting in MIC ranging from 125 μg/mL to over 500 μg/mL. C. aschersoniana oil combined with terbinafine resulted in an additive interaction effect. In this case, the essential oil may act as a complement to conventional therapy for the topical treatment of superficial fungal infections, mainly because it is associated with an anti-inflammatory effect.
Collapse
Affiliation(s)
- Ana J Maciel
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, Brazil
| | - Caroline P Lacerda
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, Brazil
| | - Letícia J Danielli
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, Brazil
| | - Sérgio A L Bordignon
- Environmental Impact Assessment Graduate Program, La Salle University, Victor Barreto, 2288, 92010-000, Canoas, Brazil
| | - Alexandre M Fuentefria
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, Brazil
| | - Miriam A Apel
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000, Porto Alegre, Brazil
| |
Collapse
|
14
|
Danielli LJ, Pippi B, Duarte JA, Maciel AJ, Lopes W, Machado MM, Oliveira LFS, Vainstein MH, Teixeira ML, Bordignon SAL, Fuentefria AM, Apel MA. Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. ACTA ACUST UNITED AC 2018; 70:1216-1227. [PMID: 29956331 DOI: 10.1111/jphp.12949] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the antifungal, antichemotactic and antioxidant activities of Schinus lentiscifolius essential oil, as well as its combined effect with terbinafine and ciclopirox, against dermatophytes. METHODS Essential oil was analysed by GC-MS. The antifungal activity and the mechanism of action were determined by broth microdilution, sorbitol and ergosterol assays, as well as scanning electron microscopy. The checkerboard method was used for evaluating the interactions with commercial antifungal agents. The antioxidant and antichemotactic activities were measured using the DPPH and the modified Boyden chamber methods, respectively. KEY FINDINGS Chemical analysis revealed the presence of 33 compounds, the primary ones being γ-eudesmol (12.8%) and elemol (10.5%). The oil exhibited 97.4% of antichemotactic activity and 37.9% of antioxidant activity. Antifungal screening showed effect against dermatophytes with minimum inhibitory concentration values of 125 and 250 μg/ml. Regarding the mechanisms of action, the assays showed that the oil can act on the fungal cell wall and membrane. Synergistic interactions were observed using the combination with antifungals, primarily terbinafine. CONCLUSIONS Schinus lentiscifolius essential oil acted as a chemosensitizer of the fungal cell to the drug, resulting in an improvement in the antifungal effect. Therefore, this combination can be considered as an alternative for the topical treatment of dermatophytosis.
Collapse
Affiliation(s)
- Letícia J Danielli
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Pippi
- Agricultural and Environmental Microbiology Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonathaline A Duarte
- Pharmaceutical Sciences Graduate Program, Federal University of Pampa, Uruguaiana, Brazil
| | - Ana J Maciel
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - William Lopes
- Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michel M Machado
- Pharmaceutical Sciences Graduate Program, Federal University of Pampa, Uruguaiana, Brazil
| | - Luis Flávio S Oliveira
- Pharmaceutical Sciences Graduate Program, Federal University of Pampa, Uruguaiana, Brazil
| | - Marilene H Vainstein
- Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mário L Teixeira
- Laboratory of Biochemistry and Toxicology, Institute Federal of Santa Catarina, Concórdia, Brazil
| | - Sérgio A L Bordignon
- Environmental Impact Assessment Graduate Program, La Salle University Center, Canoas, Brazil
| | - Alexandre M Fuentefria
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Agricultural and Environmental Microbiology Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Miriam A Apel
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Cascella M, Bimonte S, Barbieri A, Del Vecchio V, Muzio MR, Vitale A, Benincasa G, Ferriello AB, Azzariti A, Arra C, Cuomo A. Dissecting the Potential Roles of Nigella sativa and Its Constituent Thymoquinone on the Prevention and on the Progression of Alzheimer's Disease. Front Aging Neurosci 2018; 10:16. [PMID: 29479315 PMCID: PMC5811465 DOI: 10.3389/fnagi.2018.00016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Several nutraceuticals have been investigated for preventing or retarding the progression of different neurodegenerative diseases, including Alzheimer's disease (AD). Because Nigella sativa (NS) and its isolated compound thymoquinone (TQ) have significant anti-oxidant and anti-inflammatory proprieties, they could represent effective neuroprotective agents. The purpose of this manuscript is to analyze and to recapitulate the results of in vitro and in vivo studies on the potential role of NS/TQ in AD's prevention and treatment. The level of evidence for each included animal study has been assessed by using a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) 10-item checklist. We used MEDLINE and EMBASE databases to screen relevant articles published up to July 2017. A manual search was also performed. The database search yielded 38 studies, of which 18 were included in this manuscript. Results from these approaches suggest that NS or TQ could represent an effective strategy against AD due to the balancing of oxidative processes and the binding to specific intracellular targets. The overall effects mainly regard the prevention of hippocampal pyramidal cell loss and the increased cognitive functions.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Vitale Del Vecchio
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, Naples, Italy
| | | | | | | | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
16
|
Edris AE, Wawrzyniak P, Kalemba D. Subcritical CO2 extraction of a volatile oil-rich fraction from the seeds of Nigella sativa for potential pharmaceutical and nutraceutical applications. JOURNAL OF ESSENTIAL OIL RESEARCH 2017. [DOI: 10.1080/10412905.2017.1391721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amr E. Edris
- Aroma & Flavor Chemistry Department, National Research Centre, Cairo, Egypt
| | - Paweł Wawrzyniak
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Danuta Kalemba
- Institute of General Food Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
17
|
Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, Talla SP, Ojha SK. Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin. Front Pharmacol 2017; 8:656. [PMID: 28983249 PMCID: PMC5613109 DOI: 10.3389/fphar.2017.00656] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae. A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required to encourage the clinical development of thymoquinone.
Collapse
Affiliation(s)
- Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
- SVKM Institute of PharmacyDhule, India
| | - Chaitali P. Prajapati
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Prashant R. Gore
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sandhya P. Talla
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
18
|
Cascella M, Palma G, Barbieri A, Bimonte S, Amruthraj NJ, Muzio MR, Del Vecchio V, Rea D, Falco M, Luciano A, Arra C, Cuomo A. Role of Nigella sativa and Its Constituent Thymoquinone on Chemotherapy-Induced Nephrotoxicity: Evidences from Experimental Animal Studies. Nutrients 2017; 9:625. [PMID: 28629150 PMCID: PMC5490604 DOI: 10.3390/nu9060625] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Most chemotherapeutic drugs are known to cause nephrotoxicity. Therefore, new strategies have been considered to prevent chemotherapy-induced nephrotoxicity. It is of note that Nigella sativa (NS), or its isolated compound Thymoquinone (TQ), has a potential role in combating chemotherapy-induced nephrotoxicity. AIM To analyze and report the outcome of experimental animal studies on the protective effects of NS/TQ on chemotherapy-associated kidney complications. DESIGN Standard systematic review and narrative synthesis. DATA SOURCES MEDLINE, EMBASE databases were searched for relevant articles published up to March 2017. Additionally, a manual search was performed. Criteria for a study's inclusion were: conducted in animals, systematic reviews and meta-analysis, containing data on nephroprotective effects of NS/TQ compared to a placebo or other substance. All strains and genders were included. RESULTS The database search yielded 71 studies, of which 12 (cisplatin-induced nephrotoxicity 8; methotrexate-induced nephrotoxicity 1; doxorubicin-induced nephrotoxicity 2; ifosfamide-induced nephrotoxicity 1) were included in this review. CONCLUSIONS Experimental animal studies showed the protective effect of NS, or TQ, on chemotherapy-induced nephrotoxicity. These effects are caused by decreasing lipid peroxidation and increasing activity of antioxidant enzymes in renal tissue of chemotherapy-treated animals.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Via Mariano Semmola, 80131 Naples, Italy.
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Via Mariano Semmola, 80131 Naples, Italy.
| | - Nagoth Joseph Amruthraj
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
- Clinical, Experimental and Medical Sciences, Chair of Nephrology, Department of Cardio-Vascular Medicine, University of Study of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Maria Rosaria Muzio
- Division of Infantile Neuropsychiatry, UOMI-Maternal and Infant Health, Asl NA 3 SUD, Torre del Greco, Via Marconi, 80059 Naples, Italy.
| | - Vitale Del Vecchio
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Domenica Rea
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Michela Falco
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", 80131 Naples, Italy.
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Via Mariano Semmola, 80131 Naples, Italy.
| |
Collapse
|
19
|
Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 2017; 435:149-162. [PMID: 28551846 PMCID: PMC5632349 DOI: 10.1007/s11010-017-3064-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5' AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2',7'-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40phox, gp91phox, AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD+/NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40phox and gp91phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD+. Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD+/SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Abdelmeneim El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Izabela Lepiarz
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Folashade Ogunrinade
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.
| |
Collapse
|
20
|
A3R Phage and Staphylococcus aureus Lysate Do Not Induce Neutrophil Degranulation. Viruses 2017; 9:v9020036. [PMID: 28230780 PMCID: PMC5332955 DOI: 10.3390/v9020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the effects of A3R phage and Staphylococcus aureus lysate obtained after phage infection on neutrophil degranulation. The exocytosis of primary and secondary granules from neutrophils was investigated in vitro in whole blood specimens by flow cytometry based on the expression of specific markers of exocytosis (CD63 for primary granules and CD66b for secondary granules). We found that both A3R and S. aureus lysate had no significant effect on the exocytosis of primary and secondary granules. These data suggest that neither A3R virions nor any products of phage-induced lysis of S. aureus are likely to induce neutrophil degranulation in patients who are treated with phage preparations. Since neutrophil granules contain some potentially toxic proteins, our results provide an important argument for the safety of phage therapy. Moreover, these data indicate that the induction of neutrophil degranulation is not likely to contribute to antibacterial effects of phages.
Collapse
|
21
|
Pei X, Li X, Chen H, Han Y, Fan Y. Thymoquinone Inhibits Angiotensin II-Induced Proliferation and Migration of Vascular Smooth Muscle Cells Through the AMPK/PPARγ/PGC-1α Pathway. DNA Cell Biol 2016; 35:426-33. [PMID: 27064837 DOI: 10.1089/dna.2016.3262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play crucial roles in the pathogenesis of diabetes and its complications. Thymoquinone (TQ) is the primary bioactive component of Nigella sativa L. seed oil, which exhibits antihyperglycemic effect in diabetic rats, but its role in VSMC proliferation and migration has not been investigated. The results of MTT assay and flow cytometry assay indicated that TQ dose-dependently inhibited angiotensin II (Ang II)-induced VSMCs' cell cycle progression, as well as cyclin D1 expression, whereas p21 expression was altered conversely. TQ dose-dependently suppressed Ang II-induced VSMC migration accompanied by reduced MMP-9 expression. In addition, we observed the elevated reactive oxygen species (ROS) generation and NADPH oxidase activity and reduced superoxide dismutase activity in Ang II-treated VSMCs, which were dose-dependently reversed by TQ. Western blot analysis indicated that TQ dose-dependently restored Ang II-inhibited expression of p-AMPK, PPARγ, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) proteins. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C and PGC-1α siRNA transfection abrogated the activation of TQ on Ang II-inhibited AMPK/PPARγ/PGC-1α signaling, but abolished the inhibitory effects of TQ on Ang II-induced VSMC proliferation and migration, as well as ROS generation. Taken together, these results demonstrated that TQ inhibited Ang II-induced VSMC proliferation and migration through the AMPK/PPARγ/PGC-1α pathway.
Collapse
Affiliation(s)
- Xing Pei
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Xiaoli Li
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Heming Chen
- 2 Department of Endocrinology, Ankang City Central Hospital , Ankang, People's Republic of China
| | - Yong Han
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| | - Yigang Fan
- 1 Department of Internal Medicine, Hong-Hui Hospital, Xi'an Jiaotong University , College of Medicine, Xi'an, People's Republic of China
| |
Collapse
|