1
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
2
|
Manrique P, Montero I, Fernandez-Gosende M, Martinez N, Cantabrana CH, Rios-Covian D. Past, present, and future of microbiome-based therapies. MICROBIOME RESEARCH REPORTS 2024; 3:23. [PMID: 38841413 PMCID: PMC11149097 DOI: 10.20517/mrr.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.
Collapse
|
3
|
Vybornykh DE, Ivanov SV, Gemdzhian EG, Esina LV, Gaponova TV. [Therapy of mental disorders in patients with hematological malignancies]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:127-136. [PMID: 38676687 DOI: 10.17116/jnevro2024124041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To assess the possibilities of therapy with minimal effective doses (MED) of psychotropic drugs for mental disorders (MD) that manifest during the treatment of hematological malignancies (HM). MATERIAL AND METHODS A prospective study was conducted at the National Medical Research Center for Hematology of the Russian Ministry of Health (Moscow), which included 204 (39.4%) men and 314 (60.6%) women (518 patients in total), aged 17 to 83 years (median 45 years), with various HM, in which the manifestation of MD occurred during the treatment of the underlying disease. To minimize the side-effects of psychotropic drugs and given the relatively mild level of MD, psychopharmacotherapy of patients was carried out mainly at MED. The severity of MD, manifested in patients, was assessed by the illness severity scale of the Clinical Global Impression (CGI) scale, and the effectiveness of the treatment was assessed by the improvement scale (CGI-I). RESULTS Mainly mild (188, 36%) and moderately pronounced (270, 52%) MD were noted in patients with HM during the treatment of the underlying disease. Severe psychopathological disorders (60, 12%) were observed much less often. Because of psychopharmacotherapy with MED, patients experienced a very significant (97, 19%) and significant improvement (354, 68%) of their mental state, less often the improvement was regarded as minimal (67, 13%). Therefore, almost all patients showed a stable relief of MD; in 87% (95% CI 84-90) of patients, this improvement was significant. CONCLUSION The tactics of treatment MD that manifest in patients with HM with MED of psychotropic drugs turned out to be therapeutically effective according to the results of the assessment on CGI scales.
Collapse
Affiliation(s)
- D E Vybornykh
- National Medical Research Center for Hematology, Moscow, Russia
| | - S V Ivanov
- Mental Health Research Center, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E G Gemdzhian
- National Medical Research Center for Hematology, Moscow, Russia
| | - L V Esina
- National Medical Research Center for Hematology, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - T V Gaponova
- National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
4
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
5
|
Ueda H, Narumi K, Furugen A, Saito Y, Kobayashi M. The rs35217482 (T755I) single-nucleotide polymorphism in aldehyde oxidase-1 attenuates prot ein dimer formation and reduces the rates of phthalazine metabolism. Drug Metab Dispos 2022; 50:DMD-AR-2022-000902. [PMID: 35842227 DOI: 10.1124/dmd.122.000902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Aldehyde oxidase 1 (AOX1) is a molybdenum-containing enzyme that catalyzes the oxidation of a range of aldehyde compounds and clinical drugs, including azathioprine and methotrexate. The purpose of this study was to elucidate the effects of single-nucleotide polymorphisms (SNPs) in the coding regions of the human AOX1 gene on protein dimer formation and metabolic activity. Six variants (Q314R [rs58185012], I598N [rs143935618], T755I [rs35217482], A1083G [rs139092129], N1135S [rs55754655], and H1297R [rs3731722]), with allele frequencies greater than 0.01 in 1 or more population, were obtained from the genome aggregation and 1000 Genomes project databases. Protein expression and dimer formation were evaluated using HEK293T cells expressing the wild-type (WT) or different SNP variants of AOX1. Kinetic analyses of phthalazine oxidation were performed using S9 fractions of HEK293T cells expressing WT or each the different mutant AOX1. Although we detected no significant differences among WT AOX1 and the different variants with respect to total protein expression, native PAGE analysis indicated that one of the SNP variants, T755I, found in East Asian populations, dimerizes less efficiently than the WT AOX1. Kinetic analysis, using phthalazine as a typical substrate, revealed that this mutation contributes to a reduction in the maximal rates of reaction without affecting enzyme affinity for phthalazine. Our observation thus indicates that the T755I variant has significantly negative effects on both the dimer formation and in vitro catalytic activity of AOX1. These findings may provide valuable insights into the mechanisms underlying the inter-individual differences in the therapeutic efficacy or toxicity of AOX1 substrate drugs. Significance Statement The T755l (rs35217482) SNP variant of the AOX1 protein, which is prominent in East Asian populations, suppresses protein dimer formation, resulting in a reduction in the reaction velocity of phthalazine oxidation to less than half of that of wild-type AOX1.
Collapse
Affiliation(s)
| | - Katsuya Narumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Furugen
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | | |
Collapse
|
6
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
7
|
Fukami T, Yokoi T, Nakajima M. Non-P450 Drug-Metabolizing Enzymes: Contribution to Drug Disposition, Toxicity, and Development. Annu Rev Pharmacol Toxicol 2021; 62:405-425. [PMID: 34499522 DOI: 10.1146/annurev-pharmtox-052220-105907] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most clinically used drugs are metabolized in the body via oxidation, reduction, or hydrolysis reactions, which are considered phase I reactions. Cytochrome P450 (P450) enzymes, which primarily catalyze oxidation reactions, contribute to the metabolism of over 50% of clinically used drugs. In the last few decades, the function and regulation of P450s have been extensively studied, whereas the characterization of non-P450 phase I enzymes is still incomplete. Recent studies suggest that approximately 30% of drug metabolism is carried out by non-P450 enzymes. This review summarizes current knowledge of non-P450 phase I enzymes, focusing on their roles in controlling drug efficacy and adverse reactions as an important aspect of drug development. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, and WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
8
|
Hirosawa K, Fukami T, Nagaoka M, Nakano M, Nakajima M. Methionine Sulfoxide Reductase A in Human and Mouse Tissues is Responsible for Sulindac Activation, Making a Larger Contribution than the Gut Microbiota. Drug Metab Dispos 2021; 50:725-733. [PMID: 35279645 DOI: 10.1124/dmd.122.000828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/01/2022] [Indexed: 02/13/2025] Open
Abstract
Sulindac is a nonsteroidal anti-inflammatory prodrug that is converted to its pharmacologically active metabolite, sulindac sulfide, via a reduction reaction. It is widely accepted that the gut microbiota is responsible for sulindac activation; however, sulindac-induced gastrointestinal injury, which is caused by irritation of the gastrointestinal tract by its active metabolite, is uncommon. Therefore, it is surmised that sulindac is converted to its active metabolite in tissues after absorption. In this study, we sought to identify the enzyme(s) responsible for sulindac activation in tissues and to compare its/their contribution to the gut microbiota. Sulindac is enzymatically reduced in human intestinal, liver, and renal cytosols. Since sulindac is known to be reduced by methionine sulfoxide reductase (Msr) in Escherichia coli, we investigated whether the human ortholog MSRA catalyzes the sulindac reduction reaction. We found that recombinant human MSRA shows sulindac reductase activity with a similar Michaelis constant value as tissue cytosols. In addition, it was revealed that cytosolic factor(s) efficiently enhanced MSRA activity. By using the relative expression factor, the contribution of MSRA to the sulindac reductase activities in each tissue cytosol was calculated to be almost 100%. In mice, depletion of the gut microbiota by administration of antibiotics resulted in a 31% decrease in the area under the curve ratio of sulindac sulfide to sulindac, indicating that the contribution of tissue MsrA to sulindac activation is expected to be 69% in the body. In conclusion, we demonstrated that MSRA expressed in tissues is involved in sulindac activation, making a larger contribution than the gut microbiota. SIGNIFICANCE STATEMENT: Methionine sulfoxide reductase A is responsible for the activation of sulindac, a nonsteroidal anti-inflammatory prodrug, to sulindac sulfide, an active form, in human tissues. Methionine sulfoxide reductase A expressed in tissues activates sulindac with a higher contribution than gut microbiota in body.
Collapse
Affiliation(s)
- Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (K.H., M.Nag., Ma.Nak., Mi.Nak.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., M.Nag., Mi.Nak.)
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (K.H., M.Nag., Ma.Nak., Mi.Nak.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., M.Nag., Mi.Nak.)
| | - Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (K.H., M.Nag., Ma.Nak., Mi.Nak.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., M.Nag., Mi.Nak.)
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (K.H., M.Nag., Ma.Nak., Mi.Nak.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., M.Nag., Mi.Nak.)
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (K.H., M.Nag., Ma.Nak., Mi.Nak.) and WPI Nano Life Science Institute, Kanazawa, Japan (T.F., M.Nag., Mi.Nak.)
| |
Collapse
|
9
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
10
|
Abbasi A, Joswig-Jones CA, Jones JP. Site-Directed Mutagenesis at the Molybdenum Pterin Cofactor Site of the Human Aldehyde Oxidase: Interrogating the Kinetic Differences Between Human and Cynomolgus Monkey. Drug Metab Dispos 2020; 48:1364-1371. [PMID: 33020066 PMCID: PMC7718725 DOI: 10.1124/dmd.120.000187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
11
|
Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis. Exp Gerontol 2020; 132:110831. [PMID: 31917996 DOI: 10.1016/j.exger.2020.110831] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is present in all living cells. NAD+ acts as an important cofactor and substrate for a multitude of biological processes including energy production, DNA repair, gene expression, calcium-dependent secondary messenger signalling and immunoregulatory roles. The de novo synthesis of NAD+ is primarily dependent on the kynurenine pathway (KP), although NAD+ can also be recycled from nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NAD+ levels have been reported to decline during ageing and age-related diseases. Recent studies have shown that raising intracellular NAD+ levels represents a promising therapeutic strategy for age-associated degenerative diseases in general and to extend lifespan in small animal models. A systematic review of the literature available on Medline, Embase and Pubmed was undertaken to evaluate the potential health and/or longevity benefits due to increasing NAD+ levels. A total of 1545 articles were identified and 147 articles (113 preclinical and 34 clinical) met criteria for inclusion. Most studies indicated that the NAD+ precursors NAM, NR, nicotinamide mononucleotide (NMN), and to a lesser extent NAD+ and NADH had a favourable outcome on several age-related disorders associated with the accumulation of chronic oxidative stress, inflammation and impaired mitochondrial function. While these compounds presented with a limited acute toxicity profile, evidence is still quite limited and long-term human clinical trials are still nascent in the current literature. Potential risks in raising NAD+ levels in various clinical disorders using NAD+ precursors include the accumulation of putative toxic metabolites, tumorigenesis and promotion of cellular senescence. Therefore, NAD+ metabolism represents a promising target and further studies are needed to recapitulate the preclinical benefits in human clinical trials.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
13
|
Chen S, Austin-Muttitt K, Zhang LH, Mullins JGL, Lau AJ. In Vitro and In Silico Analyses of the Inhibition of Human Aldehyde Oxidase by Bazedoxifene, Lasofoxifene, and Structural Analogues. J Pharmacol Exp Ther 2019; 371:75-86. [PMID: 31289113 DOI: 10.1124/jpet.119.259267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/05/2019] [Indexed: 03/08/2025] Open
Abstract
Tamoxifen, raloxifene, and nafoxidine are selective estrogen receptor modulators (SERMs) reported to inhibit the catalytic activity of human aldehyde oxidase 1 (AOX1). How these drugs interact with AOX1 and whether other SERMs inhibit this drug-metabolizing enzyme are not known. Therefore, a detailed in vitro and in silico study involving parent drugs and their analogs was conducted to investigate the effect of specific SERMs, particularly acolbifene, bazedoxifene, and lasofoxifene on AOX1 catalytic activity, as assessed by carbazeran 4-oxidation, an AOX1-selective catalytic marker. The rank order in the potency (based on IC50 values) of AOX1 inhibition by SERMs was raloxifene > bazedoxifene ∼ lasofoxifene > tamoxifen > acolbifene. Inhibition of liver cytosolic AOX1 by bazedoxifene, lasofoxifene, and tamoxifen was competitive, whereas that by raloxifene was noncompetitive. Loss of 1-azepanylethyl group increased the inhibitory potency of bazedoxifene, whereas the N-oxide group decreased it. The 7-hydroxy group and the substituted pyrrolidine ring attached to the tetrahydronaphthalene structure contributed to AOX1 inhibition by lasofoxifene. These results are supported by molecular-docking simulations in terms of predicted binding modes, encompassing binding orientation and efficiency, and analysis of key interactions, particularly hydrogen bonds. The extent of AOX1 inhibition by bazedoxifene was increased by estrone sulfate and estrone. In summary, SERMs differentially inhibited human AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contributed to AOX1 inhibition, whereas those of acolbifene rendered it considerably less susceptible to AOX1 inhibition. Overall, our novel biochemical findings and molecular-docking analyses provide new insights into the interaction between SERMs and AOX1. SIGNIFICANCE STATEMENT: Aldehyde oxidase (AOX1) is a molybdo-flavoprotein and has emerged as a drug-metabolizing enzyme of potential therapeutic importance because drugs have been identified as AOX1 substrates. Selective estrogen receptor modulators (SERM), which are drugs used to treat and prevent various conditions, differentially inhibit AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contribute to AOX1 inhibition, whereas those of acolbifene render it considerably less susceptible to AOX1 inhibition. Our novel biochemical findings, together with molecular- docking analyses, provide new insights into the differential inhibitory effect of SERMs on the catalytic activity of human AOX1, how SERMs bind to AOX1, and increase our understanding of the AOX1 pharmacophore in the inhibition of AOX1 by drugs and other chemicals.
Collapse
Affiliation(s)
- Shiyan Chen
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Karl Austin-Muttitt
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Linghua Harris Zhang
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Jonathan G L Mullins
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science (S.C., A.J.L.), and Department of Pharmacology, Yong Loo Lin School of Medicine (A.J.L.), National University of Singapore, Singapore; Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom (K.A.-M., J.G.L.M.); and NanoBioTec, Whippany, New Jersey (L.H.Z.)
| |
Collapse
|
14
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
15
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
16
|
Abstract
Over the years, numerous studies have supported the premise that individuals possessing the "slow acetylator" phenotype are more at risk from developing drug side-effects. Most prominent amongst these reports are those concerned with hepatotoxicity and peripheral neuropathy following treatment with isoniazid, lupus-like symptoms during procainamide therapy and experiencing hypersensitivity reactions to the various sulphonamide derivatives. Similarly, "slow acetylators" undergoing heavy exposure to arylamines and related carcinogens are more likely to develop bladder cancer. Contrariwise, there appears a slight risk of "rapid acetylators" developing pancreatic tumours.Other therapeutic agents for which polymorphic N-acetylation plays a minor role in their metabolism have been investigated but any impact of this metabolic difference on clinical efficacy or associated toxicity is still under question. In the search for clues as to the underlying aetiology, patient groups with many disease states have been examined for association with differences in N-acetylation and the majority have provided data that could be interpreted as equivocal. Studies have given contradictory, often opposing, results, calculated risk factors that are (perhaps) just significant but certainly not high, and patients within the cohorts who are always exceptions. Undoubtedly, other as yet unappreciated factors are at play.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
17
|
Abbasi A, Paragas EM, Joswig-Jones CA, Rodgers JT, Jones JP. Time Course of Aldehyde Oxidase and Why It Is Nonlinear. Drug Metab Dispos 2019; 47:473-483. [PMID: 30787100 PMCID: PMC6439458 DOI: 10.1124/dmd.118.085787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Many promising drug candidates metabolized by aldehyde oxidase (AOX) fail during clinical trial owing to underestimation of their clearance. AOX is species-specific, which makes traditional allometric studies a poor choice for estimating human clearance. Other studies have suggested using half-life calculated by measuring substrate depletion to measure clearance. In this study, we proposed using numerical fitting to enzymatic pathways other than Michaelis-Menten (MM) to avoid missing the initial high turnover rate of product formation. Here, product formation over a 240-minute time course of six AOX substrates-O6-benzylguanine, N-(2-dimethylamino)ethyl)acridine-4-carboxamide, zaleplon, phthalazine, BIBX1382 [N8-(3-Chloro-4-fluorophenyl)-N2-(1-methyl-4-piperidinyl)-pyrimido[5,4-d]pyrimidine-2,8-diamine dihydrochloride], and zoniporide-have been provided to illustrate enzyme deactivation over time to help better understand why MM kinetics sometimes leads to underestimation of rate constants. Based on the data provided in this article, the total velocity for substrates becomes slower than the initial velocity by 3.1-, 6.5-, 2.9-, 32.2-, 2.7-, and 0.2-fold, respectively, in human expressed purified enzyme, whereas the K m remains constant. Also, our studies on the role of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, show that ROS did not significantly alter the change in enzyme activity over time. Providing a new electron acceptor, 5-nitroquinoline, did, however, alter the change in rate over time for mumerous compounds. The data also illustrate the difficulties in using substrate disappearance to estimate intrinsic clearance.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Erickson M Paragas
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - John T Rodgers
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
18
|
Substrate selectivity of human aldehyde oxidase 1 in reduction of nitroaromatic drugs. Arch Biochem Biophys 2018; 659:85-92. [DOI: 10.1016/j.abb.2018.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022]
|
19
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Amano T, Fukami T, Ogiso T, Hirose D, Jones JP, Taniguchi T, Nakajima M. Identification of enzymes responsible for dantrolene metabolism in the human liver: A clue to uncover the cause of liver injury. Biochem Pharmacol 2018. [DOI: 10.1016/j.bcp.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Cruciani G, Milani N, Benedetti P, Lepri S, Cesarini L, Baroni M, Spyrakis F, Tortorella S, Mosconi E, Goracci L. From Experiments to a Fast Easy-to-Use Computational Methodology to Predict Human Aldehyde Oxidase Selectivity and Metabolic Reactions. J Med Chem 2017; 61:360-371. [DOI: 10.1021/acs.jmedchem.7b01552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Nicolò Milani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paolo Benedetti
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Susan Lepri
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Lucia Cesarini
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Massimo Baroni
- Molecular Discovery Ltd, Centennial
Park, Borehamwood, Hertfordshire, United Kingdom
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University of Turin, via P. Giuria
9, 10125 Turin, Italy
| | - Sara Tortorella
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
- Molecular Horizon srl, via Montelino
32, 06084 Bettona, Italy
| | - Edoardo Mosconi
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
- Computational
Laboratory for Hybrid/Organic Photovoltaics, National Research Council−Institute of Molecular Science and Technologies, Via Elce
di Sotto 8, I-06123 Perugia, Italy
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
22
|
Paragas EM, Humphreys SC, Min J, Joswig-Jones CA, Jones JP. The two faces of aldehyde oxidase: Oxidative and reductive transformations of 5-nitroquinoline. Biochem Pharmacol 2017; 145:210-217. [DOI: 10.1016/j.bcp.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
|