1
|
Laiman V, Peng SW, Choridah L, Heriyanto DS, Yuliani FS, Lee KY, Lai CH, Chang JH, Lee YL, Ho SC, Wu SM, Han CL, Lin CW, Chung KF, Chuang HC. ITIH4 attenuates acute lung injury by Fe-containing particulate matter in mice via Hippo pathway in type II alveolar epithelial cells. Respir Res 2025; 26:201. [PMID: 40437524 PMCID: PMC12121068 DOI: 10.1186/s12931-025-03256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Metals in particulate matter (PM), like iron (Fe), were associated with lung injury. Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) was suggested to inhibit lung inflammation. However, the effect of metals in PM, particularly Fe, on lung inflammation involving ITIH4 remained unclear. METHODS We investigated the effects of recombinant ITIH4 (rITIH4) against acute lung injury in C57BL/6JNarl and B6.Sftpc-CreERT2;Ai14(RCL-tdT)-D mice exposed to Fe-containing PM. Mice were exposed to diesel exhaust particles (DEP) or soluble iron (FeCl₃) via intratracheal instillation, while rITIH4 treatment was administered intranasally after exposure. Lung function, Fe levels (both bulk and single-cell by inductively-coupled plasma mass spectrometry (ICP-MS) and single-cell ICP-MS, respectively), inflammatory cell infiltration, and Hippo pathway regulation in type II alveolar epithelial cells (AECII) were assessed. RESULTS We observed correlation between lung function changes and Fe levels, both in bulk and single-cell Fe in peripheral blood mononuclear cells. Single-cell RNA sequencing of the control group identified AECII-related cells characterized by high Sftpc, Sftpa1, Mzb1, B3 gnt5, Cacna1e, and Agbl1 expression. rITIH4 treatment in DEP-exposed mice restored Hippo pathway Cdh1, Itih4, Pdpn, Wwtr1, and Yap1 in AECII. rITIH4 reversed DEP- and Fe-induced increases in neutrophil infiltration, neutrophil-to-lymphocyte ratio, and monocyte depletion in bronchoalveolar lavage fluid (BALF). rITIH4 reduced BALF CXCL1/KC levels by DEP and serum 8-isoprostane levels by Fe. rITIH4 also reduced DEP-induced lung damage, increased ⍺-catenin and p-YAP in Fe-exposed mice, and pTAZ/TAZ ratio in both DEP- and Fe-exposed mice. rITIH4 increased pYAP/YAP ratio in DEP-exposed mice while decreasing LC3BII/I ratio in Fe-exposed mice. CONCLUSION ITIH4 attenuated acute lung injury in mice exposed to PM, specifically Fe, by modulating the Hippo pathway in AECII.
Collapse
Affiliation(s)
- Vincent Laiman
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lina Choridah
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fara Silvia Yuliani
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hsiao-Chi Chuang
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
2
|
Marsal A, Frau L, Chaperot L, Amine I, Lyon-Caen S, Boudier A, Jaffrezo JL, Elazzouzi R, Philippat C, Supernant K, Lepeule J, Quentin J, Chartier R, Bayat S, Slama R, Uzu G, Siroux V. Personal exposure to air pollutants and immune system biomarkers in pregnant women. Sci Rep 2025; 15:17672. [PMID: 40399383 PMCID: PMC12095663 DOI: 10.1038/s41598-025-98712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/14/2025] [Indexed: 05/23/2025] Open
Abstract
The immune function is suspected to play an important role in the health effects of air pollution but it remains poorly investigated in pregnant women. One-week personal measurements of exposure to nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter of ≤ 2.5 µm mass concentration (PM2.5) and PM2.5 oxidative potential (OP) were assessed in 270 pregnant women from the French cohort SEPAGES. PM filters were analyzed for PM2.5 OP using the dithiothreitol (DTT) and the ascorbic acid (AA) assays. From a blood sample withdrawn at the end of the exposure measurement week, levels of 29 cytokines and chemokines were measured at baseline and after T cell and dendritic cell activation with phytohemagglutinin (PHA) and resiquimod (R848), respectively. Associations between each air pollutant and each cytokine were assessed using adjusted linear regression models. An increase in NO2 exposure was associated with higher interleukin 10 (IL-10) and lower PHA-activated tumor necrosis factor (TNF). No association with PM2.5 concentration was observed, but increased exposure to PMOP AA was associated with lower baseline and R848-activated IL-8 and increased exposure to PMOP DTT was associated with higher PHA-activated IL-17A. Our study provides insights into the relationships between air pollution exposure and immune function among pregnant women.
Collapse
Affiliation(s)
- Anouk Marsal
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Agence de L'environnement Et de La Maîtrise de L'Energie, 20, Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France
| | - Laurene Frau
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Laurence Chaperot
- EFS, Recherche Et Développement, 38000, Grenoble, France
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Team of Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, 38000, Grenoble, France
| | - Ines Amine
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Rhabira Elazzouzi
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Karine Supernant
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Joane Quentin
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, Durham, N.C., USA
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Inserm UA07 STROBE Laboratory, University Grenoble Alpes, Grenoble, France
| | - Remy Slama
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France
| | - Gaelle Uzu
- University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team of environmental epidemiology applied to development and respiratory health, 38000, Grenoble, France.
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Que H, Lu C, Zhou S. Occupational nanoparticles: major sources, physicochemical properties, multi-organ toxic effects, and associated mechanisms. Toxicol Mech Methods 2025:1-18. [PMID: 40394907 DOI: 10.1080/15376516.2025.2505629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Increased exposure to nanoscale particles (NPs) in living and occupational environments has produced various harmful effects in recent years. Owing to their small particle size and physicochemical properties, NPs can evade engineered defenses, exhibit greater toxicity, and affect the physiological functions of multiple organs in the human body through the circulatory system and biological barriers. Therefore, we should pay attention to the multi-organ toxicity effects caused by NPs and their mechanisms. High-level occupational exposure to NPs at elevated concentrations constitutes a substantial threat to the health of workers. Therefore, it is necessary to conduct a targeted assessment of the health risks of NPs in the occupational environment. This paper provides a comprehensive review of the sources of NPs in both living and occupational environments. Specifically, it highlights the disparities in the characteristics and associated toxicities between nanoscale and microscale inhalable particulate matter within the occupational context. Moreover, it delves deeply into the contributions of NPs to multi-organ toxicity effects and the underlying pathological mechanisms.
Collapse
Affiliation(s)
- Yinci Zhang
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Ying Zhang
- Bengbu Medical University, Bengbu, China
| | | | - Chao Lu
- The First Hospital of Anhui University of Science and Technology, Huainan, China
| | - Shuping Zhou
- The First Hospital of Anhui University of Science and Technology, Huainan, China
- Bengbu Medical University, Bengbu, China
| |
Collapse
|
4
|
Cheng WH, Zhuang TL, Lee MJ, Chou CL, Chen BC, Kuo HP, Weng CM. IL-33/ST2 axis mediates diesel exhaust particles-induced mast cell activation. Mol Med 2024; 30:262. [PMID: 39707175 DOI: 10.1186/s10020-024-01035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Mast cells are implicated in the pathogenesis and severity of asthma in children and adults. The release of proinflammatory mediators and cytokines from activated mast cells (MC) is associated with Type 2 (T2) cell-skewed inflammation. METHODS We obtained the airway tissues of Balb/c mice with or without intra-tracheal diesel exhaust particles (DEP) instillation to measure the extent of tryptase+ MCs infiltration and interleukin (IL)-33 expression. Cultured human mast cells (HMC-1) were stimulated with DEP to determine the role of aryl hydrocarbon receptor (AhR) in mediating the synthesis and release of IL-33 and type-2 cytokines. RESULTS In the control animals, most of the MC accumulated in the submucosal vessels without expression of IL-33. Intra-tracheal DEP installation increased the number of IL-33+ MC infiltrating in the epithelial and sub-epithelial areas of mice. Human MC exposed to DEP upregulated mRNA and protein expression of IL-33. These effects were abolished by knockdown of expression of the AhR or AhR nuclear translocator (ARNT) by small interfering (si)RNA transfection. DEP also activated nuclear factor-kappa B (NF-κB) to facilitate nuclear translocation of the AhR. DEP increased MC migration and induced the synthesis and release of IL-4, IL-5, and IL-13 in MCs, and these effects were abolished by anti-ST2 antibodies. CONCLUSIONS Airborne pollutants may activate MCs to produce IL-33 via the AhR/NF-κB pathway, leading to type 2 cytokines production and enhancing MC airway epithelium-shifted migration through the autocrine or paracrine IL-33/ST2 axis.
Collapse
Affiliation(s)
- Wun-Hao Cheng
- School of Respiratory Therapy, Taipei Medical University College of Medicine, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-Li Zhuang
- School of Respiratory Therapy, Taipei Medical University College of Medicine, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Meng-Jung Lee
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Chou
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Research Center of Thoracic Medicine and Asthma, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University College of Medicine, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Han-Pin Kuo
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Research Center of Thoracic Medicine and Asthma, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, Taipei Medical University College of Medicine, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan.
- Research Center of Thoracic Medicine and Asthma, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Kuramoto K, Morishima Y, Yoshida K, Ano S, Kawashima K, Yabuuchi Y, Sakai C, Matsumura S, Nishino K, Yazaki K, Matsuyama M, Kiwamoto T, Ishii Y, Hizawa N. Nrf2 Deficiency Accelerates IL-17-Dependent Neutrophilic Airway Inflammation in Asthmatic Mice. Antioxidants (Basel) 2024; 13:818. [PMID: 39061887 PMCID: PMC11274244 DOI: 10.3390/antiox13070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease that can be broadly classified into type 2, which is primarily steroid-sensitive and eosinophilic, and non-type 2, which is primarily steroid-resistant and neutrophilic. While the mechanisms leading to the development of molecular-targeted therapies for type 2 asthma are being elucidated, much remains to be learned about non-type 2 asthma. To investigate the role of oxidative stress in refractory allergic airway inflammation, we compared asthma models generated by immunizing wild-type and nuclear factor erythroid-2-related factor 2 (Nrf2)-deficient mice with the house dust mite antigen. Both asthma models had similar levels of airway inflammation and hyperresponsiveness, but the Nrf2-deficient mice had increased oxidative stress and exacerbated neutrophilic airway inflammation compared with the wild-type mice. Type 2 cytokines and the expression of GATA3, a transcription factor that is important for Th2 cell differentiation, had decreased in Nrf2-deficient mice compared with the wild-type mice, whereas helper T (Th) 17 cytokines and the expression of RORγt, which is important for Th17 cell differentiation, had increased. Furthermore, the neutrophilic airway inflammation caused by Nrf2 deficiency was ameliorated by interleukin (IL)-17 neutralization. We have concluded that the disruption of the Nrf2-mediated antioxidant defense system contributed to the induction of Th17 differentiation and exacerbated allergic neutrophilic airway inflammation.
Collapse
Affiliation(s)
| | - Yuko Morishima
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan (C.S.); (K.N.); (Y.I.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J, Bayram H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol 2024; 15:1324552. [PMID: 38524119 PMCID: PMC10957538 DOI: 10.3389/fimmu.2024.1324552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.
Collapse
Affiliation(s)
- Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Deniz Mortazavi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Gizem Tuşe Aksoy
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Türkiye
| |
Collapse
|
7
|
Gao Y, Zhou Y, Zhou X, Zheng R. Theoretical and observed mechanisms of diesel exhaust particles in promoting asthma. Chin Med J (Engl) 2023; 136:2374-2376. [PMID: 37442761 PMCID: PMC10538868 DOI: 10.1097/cm9.0000000000002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Affiliation(s)
- Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yan Zhou
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xinjia Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
8
|
Zhao L, Li B, Zhou L, Song C, Kang T, Xu Y, Liu Y, Han Y, Zhao W, Jia H, Zhang B, Guo J. PM 2.5 exposure promotes asthma in aged Brown-Norway rats: Implication of multiomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115393. [PMID: 37611479 DOI: 10.1016/j.ecoenv.2023.115393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Children are disproportionately represented among those who suffer asthma, which is a kind of chronic airway inflammation. Asthma symptoms might worsen when exposed to the air pollutant particulate matter 2.5 (PM2.5). However, it is becoming more prevalent among older adults, with more asthma-related deaths occurring in this pollution than in any other age group, and symptoms caused by asthma can reduce the quality of life of the elderly, whose asthma is underdiagnosed due to physiological factors. Therefore, in an effort to discover a therapy for older asthma during exposure to air pollution, we sought to ascertain the effects of pre-exposure (PA) and persistent exposure (PAP) to PM2.5 in aged asthma rats. In this study, we exposed aged rats to PM2.5 at different times (PA and PAP) and established an ovalbumin-mediated allergic asthma model. The basic process of elderly asthma caused by PM2.5 exposure was investigated by lung function detection, enzyme-linked immunosorbent assay (ELISA), histopathology, cytology, cytokine microarray, untargeted metabolomics, and gut microbiota analysis. Our findings demonstrated that in the PA and PAP groups, exposure to PM2.5 reduced lung function and exacerbated lung tissue damage, with varying degrees of effect on immunoglobulin levels, the findings of a cytological analysis, cytokines, and chemokines. The PA and PAP rats had higher amounts of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, 2-methylNaphthalene, 1-methylNaphthalene and flourene. Moreover, exposure to PM2.5 at different times showed different effects on plasma metabolism and gut microbiota. Bioinformatics analysis showed a strong correlation between PAHs, cytokines, and gut microbiota, and PAHs may cause metabolic disorders through the gut microbiota. These findings point to a possible mechanism for the development of asthma in older people exposure to PM2.5 that may be related to past interactions between PAHs, cytokines, gut microbiota, and plasma metabolites.
Collapse
Affiliation(s)
- Lianlian Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Laboratories, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Chenchen Song
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Taisheng Kang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Wenjie Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Hongliang Jia
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
9
|
Laiman V, Hsiao TC, Fang YT, Chen YY, Lo YC, Lee KY, Chen TT, Chen KY, Ho SC, Wu SM, Chen JK, Heriyanto DS, Chung KF, Ho KF, Chuang KJ, Chang JH, Chuang HC. Hippo signaling pathway contributes to air pollution exposure-induced emphysema in ageing rats. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131188. [PMID: 36963197 DOI: 10.1016/j.jhazmat.2023.131188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Fang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; TMU Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kin-Fai Ho
- School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; National Heart and Lung Institute, Imperial College London, London, UK; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, Pueyo-Bastida A, Ramos-González J, Urrutia-Landa I. Impact of Air Pollution on Asthma: A Scoping Review. OPEN RESPIRATORY ARCHIVES 2023; 5:100229. [PMID: 37496874 PMCID: PMC10369532 DOI: 10.1016/j.opresp.2022.100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Asthma is the most common chronic respiratory disease and a major public health problem. Although the causal relationship between air pollution and asthma remains controversial, a large number of studies have provided increasingly consistent evidence of the involvement of air pollutants in asthma onset and exacerbations. We conducted a keyword search-based literature review using PubMed, Scopus and Web of Science databases for studies with titles or abstracts containing predefined terms. This narrative review discusses the current evidence on the pathological effects of pollution throughout life and the mechanisms involved in the onset, development, and exacerbation of asthma, and presents current measures and interventions for pollution damage control. Further global efforts are still needed to improve air quality.
Collapse
Affiliation(s)
- Olaia Bronte-Moreno
- Department of Respiratory Medicine, Hospital Universitario Galdakao, Vizcaya, Spain
| | - Francisco-Javier González-Barcala
- Department of Respiratory Medicine, Hospital Clínico Universitario de Santiago de Compostela, Spain
- Traslational Research In Airway Diseases (TRIAD) Research Group, CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universidad de Santiago de Compostela, Spain
- CIBER Enfermedades Respiratorias (CibeRes), Spain
| | - Xavier Muñoz-Gall
- CIBER Enfermedades Respiratorias (CibeRes), Spain
- Department of Respiratory Medicine, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Spain
| | - Ana Pueyo-Bastida
- Department of Respiratory Medicine, Hospital Universitario de Burgos, Spain
| | | | - Isabel Urrutia-Landa
- Department of Respiratory Medicine, Hospital Universitario Galdakao, Vizcaya, Spain
| |
Collapse
|
11
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
12
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
13
|
Lin TY, Lin HC, Liu YS, Lo YL, Wang CH, Chang PJ, Lo CY, Lin SM. Proximity to Heavy Traffic Roads and Patient Characteristics of Late of Onset Asthma in an Urban Asthma Center. Front Med (Lausanne) 2021; 8:783720. [PMID: 34977086 PMCID: PMC8716741 DOI: 10.3389/fmed.2021.783720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Traffic-related pollution is associated with the onset of asthma and the development of different phenotypes of asthma. Few studies have investigated the association between traffic proximity and late-onset of asthma (LOA) and early-onset asthma (EOA). This study was conducted to investigate the associations of LOA phenotypes with a function of the distance between residence and heavy traffic roads (HTRs).Methods: The study group consisted of 280 patients who were (LOA: 78.4%) recruited consecutively from a pay-for-performance asthma program to clarify the patient characteristics and proximity to HTRs within 1,000 m from their residences between EOA and LOA in three urban centers in Taiwan. The subsequent analysis focused on patients with LOA (n = 210) linking phenotypes and distance to HTRs.Results: Subjects with LOA tended to be older than those with EOA and had shorter asthma duration, poorer lung function, lower atopy, and less exposure to fumes or dust at home. Patients with LOA were more likely than those with EOA to live within 900 m of two or more HTRs (14.3 vs. 3.4%, p = 0.02). Among patients with LOA, minimum distance to an HTR was negatively associated with numbers of specific IgE as well as positively associated with the age of onset and body weight significantly. A higher proportion of patients with atopy (26.3 vs. 20.6%, p = 0.001. odds ratio [OR]: 2.82) and anxiety/depression (21.0 vs. 18.1%, p = 0.047. OR: 1.81) and a trend of lower proportion of patients with obese (5.7 vs. 12.4%, p = 0.075) were found to be living within 900 m from HTRs.Conclusions: Late-onset of asthma (LOA) tended to live in areas of higher HTR density compared to EOAs. Among patients with LOA living close to HTRs, the interaction between traffic-related pollution, allergy sensitization, and mood status were the factors associated with asthma onset early. Obesity may be the factor for later onset who live far from HTRs.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Sheng Liu
- BalDr Strategic Consulting (Hong Kong) Ltd., Taipei, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yu Lo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Shu-Min Lin
| |
Collapse
|
14
|
Huang J, Yang X, Fan F, Hu Y, Wang X, Zhu S, Ren G, Wang G. Outdoor air pollution and the risk of asthma exacerbations in single lag0 and lag1 exposure patterns: a systematic review and meta-analysis. J Asthma 2021; 59:2322-2339. [PMID: 34809505 DOI: 10.1080/02770903.2021.2008429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective: To synthesize evidence regarding the relationship between outdoor air pollution and risk of asthma exacerbations in single lag0 and lag1 exposure patterns.Methods: We performed a systematic literature search using PubMed, Embase, Cochrane Library, Web of Science, ClinicalTrials, China National Knowledge Internet, Chinese BioMedical, and Wanfang databases. Articles published until August 1, 2020 and the reference lists of the relevant articles were reviewed. Two authors independently evaluated the eligible articles and performed structured extraction of the relevant information. Pooled relative risks (RRs) and 95% confidence intervals (CIs) of lag0 and lag1 exposure patterns were estimated using random-effect models.Results: Eighty-four studies met the eligibility criteria and provided sufficient information for meta-analysis. Outdoor air pollutants were associated with increased risk of asthma exacerbations in both single lag0 and lag1 exposure patterns [lag0: RR (95% CI) (pollutants), 1.057(1.011, 1.103) (air quality index, AQI), 1.007 (1.005, 1.010) (particulate matter of diameter ≤ 2.5 μm, PM2.5), 1.009 (1.005, 1.012) (particulate matter of diameter, PM10), 1.010 (1.006, 1.014) (NO2), 1.030 (1.011, 1.048) (CO), 1.005 (1.002, 1.009) (O3); lag1:1.064(1.022, 1.106) (AQI), 1.005 (1.002, 1.008) (PM2.5), 1.007 (1.004, 1.011) (PM10), 1.008 (1.004, 1.012) (NO2), 1.025 (1.007, 1.042) (CO), 1.010 (1.006, 1.013) (O3)], except SO2 [lag0: RR (95% CI), 1.004 (1.000, 1.007); lag1: RR (95% CI), 1.003 (0.999, 1.006)]. Subgroup analyses revealed stronger effects in children and asthma exacerbations associated with other events (including symptoms, lung function changes, and medication use).Conclusion: Outdoor air pollution increases the asthma exacerbation risk in single lag0 and lag1 exposure patterns.Trial registration: PROSPERO, CRD42020204097. https://www.crd.york.ac.uk/.Supplemental data for this article is available online at https://doi.org/10.1080/02770903.2021.2008429 .
Collapse
Affiliation(s)
- Junjun Huang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Sainan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Guanhua Ren
- Department of Library, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Croft DP, Burton DS, Nagel DJ, Bhattacharya S, Falsey AR, Georas SN, Hopke PK, Johnston CJ, Kottmann RM, Litonjua AA, Mariani TJ, Rich DQ, Thevenet-Morrison K, Thurston SW, Utell MJ, McCall MN. The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Sci Rep 2021; 11:19436. [PMID: 34593881 PMCID: PMC8484285 DOI: 10.1038/s41598-021-98729-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Combustion related particulate matter air pollution (PM) is associated with an increased risk of respiratory infections in adults. The exact mechanism underlying this association has not been determined. We hypothesized that increased concentrations of combustion related PM would result in dysregulation of the innate immune system. This epidemiological study includes 111 adult patients hospitalized with respiratory infections who underwent transcriptional analysis of their peripheral blood. We examined the association between gene expression at the time of hospitalization and ambient measurements of particulate air pollutants in the 28 days prior to hospitalization. For each pollutant and time lag, gene-specific linear models adjusting for infection type were fit using LIMMA (Linear Models For Microarray Data), and pathway/gene set analyses were performed using the CAMERA (Correlation Adjusted Mean Rank) program. Comparing patients with viral and/or bacterial infection, the expression patterns associated with air pollution exposure differed. Adjusting for the type of infection, increased concentrations of Delta-C (a marker of biomass smoke) and other PM were associated with upregulation of iron homeostasis and protein folding. Increased concentrations of black carbon (BC) were associated with upregulation of viral related gene pathways and downregulation of pathways related to antigen presentation. The pollutant/pathway associations differed by lag time and by type of infection. This study suggests that the effect of air pollution on the pathogenesis of respiratory infection may be pollutant, timing, and infection specific.
Collapse
Affiliation(s)
- Daniel P Croft
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA.
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA.
| | - David S Burton
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Nagel
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Soumyaroop Bhattacharya
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann R Falsey
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip K Hopke
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Carl J Johnston
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - R Matthew Kottmann
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Augusto A Litonjua
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Sally W Thurston
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J Utell
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Wu Z, Chen C, Zhang Q, Bao J, Fan Q, Li R, Ishfaq M, Li J. Arachidonic acid metabolism is elevated in Mycoplasma gallisepticum and Escherichia coli co-infection and induces LTC4 in serum as the biomarker for detecting poultry respiratory disease. Virulence 2021; 11:730-738. [PMID: 32441188 PMCID: PMC7549906 DOI: 10.1080/21505594.2020.1772653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Outbreaks of multiple respiratory diseases with high morbidity and mortality have been frequently reported in poultry industry. Metabolic profiling has showed widespread usage in metabolic and infectious disease for identifying biomarkers and understanding of complex mechanisms. In this study, the non-targeted metabolomics were used on Mycoplasma gallisepticum (MG) and Escherichia coli (E.coli) co-infection model in serum, which showed that Leukotriene C4 (LTC4), Leukotriene D4 (LTD4), Chenodeoxycholate, Linoleate and numerous energy metabolites were varied significantly. KEGG enrichment analysis revealed that the metabolic pathways of linoleic acid, taurine and arachidonic acid (AA) were upregulated. To further characterize the consequences of co-infection, we performed an AA metabolic network pathway with metabolic products and enzyme genes. The results showed that the expression of LTC4 increased extremely significant and accompanied with different degree of infection. Meanwhile, the AA network performed the changes and differences of various metabolites in the pathway when multiple respiratory diseases occurred. Taken together, co-infection induces distinct alterations in the serum metabolome owing to the activation of AA metabolism. Furthermore, LTC4 in serum could be used as the biomarker for detecting poultry respiratory disease. Abbreviations MG: Mycoplasma gallisepticum; E.coli: Escherichia coli; AA: Arachidonic acid; LTC4: Leukotriene C4; CRD: chronic respiratory diseases; KEGG: Kyoto Encyclopedia of Genes and Genomes; LTs: leukotrienes; PGs: prostaglandins; NO: nitric oxide; HIS: histamine; PCA: Principal Component Analysis; PLS-DA: Partial Least Squares Discriminant Analysis; CCU: color change unit; UPLC: ultra-performance liquid chromatography; MS: mass spectrometry; DEMs: differentially expressed metabolites; ELISA: enzyme-linked immunosorbent assay; SD: standard deviation; VIP: Variable importance in the projection
Collapse
Affiliation(s)
- Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Qiaomei Zhang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Qianqian Fan
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P. R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University , Harbin, P. R. China
| |
Collapse
|
17
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|
18
|
Wu M, Lai T, Jing D, Yang S, Wu Y, Li Z, Wu Y, Zhao Y, Zhou L, Chen H, Shen J, Li W, Ying S, Chen Z, Wu X, Shen H. Epithelium-derived IL17A Promotes Cigarette Smoke-induced Inflammation and Mucus Hyperproduction. Am J Respir Cell Mol Biol 2021; 65:581-592. [PMID: 34186014 DOI: 10.1165/rcmb.2020-0424oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway epithelium is a central modulator of innate and adaptive immunity in the lung. Interleukin (IL)17A expression was found to be increased in airway epithelium; however, the role of epithelial-derived IL17A in chronic obstructive pulmonary disease (COPD) remains unclear. In this study, we aim to determine whether epithelial-derived IL17A regulates inflammation and mucus hyperproduction in COPD using a cultured human bronchial epithelial (HBE) cell line in vitro and airway epithelium IL17A-specific knockout mouse in vivo. Increased IL17A expression was observed in mouse airway epithelium upon cigarette smoke (CS) exposure or in a COPD mouse model that was induced by CS and elastin. CS extract (CSE) also triggered IL17A expression in HBE cells. Blocking IL17A or IL17RA effectively attenuated CSE-induced MUC5AC and the inflammatory cytokines IL6, tumor necrosis factor (TNF)-α, and IL1β in HBE cells, suggesting that IL17A mediates CSE-induced inflammation and mucin production in an autocrine manner. CSE activated p-JUN and p-JNK, which were also reduced by IL17RA-siRNA, and JUN-siRNA attenuated CSE-induced IL6 and MUC5AC. In vivo, selective knockout of IL17A in airway epithelium markedly reduced the neutrophilic infiltration in Bronchoalveolar Lavage Fluid (BALF), peribronchial inflammation, pro-inflammatory mediators (CXCL1 and CXCL2), and mucus production in a COPD mouse model. We showed a novel function of airway epithelium-derived IL17A, which can act locally in an autocrine manner to amplify inflammation and increase mucus production in COPD pathogenesis.
Collapse
Affiliation(s)
- Mindan Wu
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Tianwen Lai
- Zhejiang University School of Medicine, 26441, Hangzhou, China
| | - Du Jing
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Shiyi Yang
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Yanping Wu
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Zhouyang Li
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Yinfang Wu
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Yun Zhao
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Lingren Zhou
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Haipin Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Hangzhou, China
| | - Jiaxin Shen
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Wen Li
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Respiratory and Critical Care Midicine, Hangzhou, China
| | - Songmin Ying
- Zhejiang University School of Medicine, 26441, Respiratory and Critical Care Medicine, Hangzhou, China
| | - Zhihua Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, 89681, Department of Respiratory and Critical Care Midicine, Hangzhou, China
| | - Xiaohong Wu
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, 56660, Hangzhou, China
| | - Huahao Shen
- Zhejiang University School of Medicine, 26441, Respiratory Medicine, Hangzhou, China;
| |
Collapse
|
19
|
Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr Opin Pulm Med 2021; 26:10-19. [PMID: 31724961 DOI: 10.1097/mcp.0000000000000644] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Air pollution has adverse effects on the onset and morbidity of respiratory diseases, including asthma. In this review, we discuss recent insights into the effects of air pollution on the incidence and exacerbation of asthma. We focus on epidemiological studies that describe the association between air pollution exposure and development, mortality, persistence and exacerbations of asthma among different age groups. Moreover, we also provide an update on translational studies describing the mechanisms behind this association. RECENT FINDINGS Mechanisms linking air pollutants such as particulate matter, nitrogen dioxide (NO2) and ozone to the development and exacerbation of asthma include the induction of both eosinophilic and neutrophilic inflammation driven by stimulation of airway epithelium and increase of pro-inflammatory cytokine production, oxidative stress and DNA methylation changes. Although exposure during foetal development is often reported as a crucial timeframe, exposure to air pollution is detrimental in people of all ages, thus influencing asthma onset as well as increase in asthma prevalence, mortality, persistence and exacerbation. SUMMARY In conclusion, this review highlights the importance of reducing air pollution levels to avert the progressive increase in asthma incidence and morbidity.
Collapse
|
20
|
Wang M, Zhao J, Wang Y, Mao Y, Zhao X, Huang P, Liu Q, Ma Y, Yao Y, Yang Z, Yuan W, Cui W, Payne TJ, Li MD. Genome-wide DNA methylation analysis reveals significant impact of long-term ambient air pollution exposure on biological functions related to mitochondria and immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114707. [PMID: 32388307 DOI: 10.1016/j.envpol.2020.114707] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/28/2023]
Abstract
Exposure to long-term ambient air pollution is believed to have adverse effects on human health. However, the mechanisms underlying these impacts are poorly understood. DNA methylation, a crucial epigenetic modification, is susceptible to environmental factors and likely involved in these processes. We conducted a whole-genome bisulfite sequencing study on 120 participants from a highly polluted region (HPR) and a less polluted region (LPR) in China, where the HPR had much higher concentrations of five air pollutants (PM2.5, PM10, SO2, NO2, and CO) (fold difference 1.6 to 6.6 times; P value 1.80E-07 to 3.19E-23). Genome-wide methylation analysis revealed 371 DMRs in subjects from the two areas and these DMRs were located primarily in gene regulatory elements such as promoters and enhancers. Gene enrichment analysis showed that DMR-related genes were significantly enriched in diseases related to pulmonary disorders and cancers and in biological processes related to mitochondrial assembly and cytokine production. Further, HPR participants showed a higher mtDNA copy number. Of those identified DMRs, 15 were significantly correlated with mtDNA copy number. Finally, cytokine assay indicated that an increased plasma interleukin-5 level was associated with greater air pollution. Taken together, our findings suggest that exposure to long-term ambient air pollution can lead to alterations in DNA methylation whose functions relate to mitochondria and immune responses.
Collapse
Affiliation(s)
- Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
22
|
Soliman NA, Abdel Ghafar MT, El Kolaley RM, Hafez YM, Abo Elgheit RE, Atef MM. Cross talk between Hsp72, HMGB1 and RAGE/ERK1/2 signaling in the pathogenesis of bronchial asthma in obese patients. Mol Biol Rep 2020; 47:4109-4116. [PMID: 32424522 DOI: 10.1007/s11033-020-05531-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The incidence of obesity-related asthma has shown a remarkable increase. OBJECTIVES We aimed to explore the role of heat shock protein 72 (Hsp72) and receptor for advanced glycation end products (RAGE) axis with its downstream signaling in the pathogenesis of obesity-related asthma. METHODS We enrolled a total of 55 subjects and divided them into three groups. Groups I and II included healthy, normal weight (n = 15) and obese (n = 15) subjects, respectively. Twenty-five obese asthmatics (group III) were subdivided into group IIIa (10 patients with mild to moderate asthma) and group IIIb (15 patients with severe asthma). High mobility group box 1 (HMGB1), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and urinary Hsp72 were immunoassayed. Hydrogen peroxide (H2O2) and free fatty acids (FFAs) levels were photometrically measured. RAGE mRNA expression was relatively quantified by real-time PCR. RESULTS We found significant elevations of serum HMGB1, IL-8, MCP1, ERK1/2, FFAs, and H2O2 levels as well as urinary Hsp72 levels in obese subjects compared to healthy control. These were more evident in patients with severe asthma (group IIIb). Multivariate regression analysis identified Hsp72 and ERK1/2 as independent predictors of bronchial asthma severity. Receiver operating characteristic (ROC) curve analysis revealed that areas under the curve (AUC) for Hsp72 and ERK1/2 were 0.991 and 0.981, respectively, which denotes a strong predictive value for identifying the severity of bronchial asthma in obese patients. CONCLUSION The current study highlights the role of Hsp72 and HMGB1/RAGE/ERK1/2 signaling cascade in the pathogenesis of bronchial asthma and its link to obesity, which could be reflected on monitoring, severity grading, and management of this disease.
Collapse
Affiliation(s)
- Nema Ali Soliman
- Departments of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Muhammad Tarek Abdel Ghafar
- Departments of Clinical Pathology, Faculty of Medicine, Tanta University, Medical Campus, El-Gash St, Tanta, 31527, Egypt.
| | | | - Yasser Mostafa Hafez
- Departments of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab E Abo Elgheit
- Departments of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Mohamed Atef
- Departments of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Barkhordari S, Mirmosayyeb O, Mansourian M, Hosseininasab F, Ramezani S, Barzegar M, Amin MM, Poursafa P, Esmaeil N, Kelishadi R. Omega 3 Supplementation Can Regulate Inflammatory States in Gas Station Workers: A Double-Blind Placebo-Controlled Clinical Trial. J Interferon Cytokine Res 2020; 40:262-267. [PMID: 32176565 DOI: 10.1089/jir.2019.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental exposure to diesel particulate matter and commercial gasoline in gas station workers might induce oxidative stress and changes in the balance of the immune system. In this study, the immunomodulatory impacts of omega 3 fatty acid (ω3FA) supplement were assessed on inflammatory and anti-inflammatory markers in gas station workers in a double-blind placebo-controlled clinical trial. Fifty-three men working in gas stations were treated with ω3FA (n = 29) or placebo (n = 24) for 60 days. C-reactive protein, interleukin-12 (IL-12), transforming growth factor β (TGF-β), interferon γ (IFN-γ), tumor necrosis factor α, IL-10, and IL-17 levels were measured by enzyme-linked immunosorbent assay method before and after the completion of the trial. The concentrations of IFN-γ and IL-17 were significantly decreased in ω3FA group compared with the placebo group (P < 0.001). Moreover, the levels of inhibitory cytokines including TGF-β and IL-10 significantly were increased in ω3FA group (P < 0.001). Overall, ω3FA nutritional supplementation can be useful in reducing inflammatory immune responses and maintaining immune tolerance in people with high exposure to inflammation-inducing factors. [Figure: see text].
Collapse
Affiliation(s)
- Shoresh Barkhordari
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marjan Mansourian
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hosseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Ramezani
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
25
|
Lawrence DW, Shornick LP, Kornbluth J. Mice deficient in NKLAM have attenuated inflammatory cytokine production in a Sendai virus pneumonia model. PLoS One 2019; 14:e0222802. [PMID: 31539400 PMCID: PMC6754162 DOI: 10.1371/journal.pone.0222802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies have begun to elucidate a role for E3 ubiquitin ligases as important mediators of the innate immune response. Our previous work defined a role for the ubiquitin ligase natural killer lytic-associated molecule (NKLAM/RNF19b) in mouse and human innate immunity. Here, we present novel data describing a role for NKLAM in regulating the immune response to Sendai virus (SeV), a murine model of paramyxoviral pneumonia. NKLAM expression was significantly upregulated by SeV infection. SeV-infected mice that are deficient in NKLAM demonstrated significantly less weight loss than wild type mice. In vivo, Sendai virus replication was attenuated in NKLAM-/- mice. Autophagic flux and the expression of autophagy markers LC3 and p62/SQSTM1 were also less in NKLAM-/- mice. Using flow cytometry, we observed less neutrophils and macrophages in the lungs of NKLAM-/- mice during SeV infection. Additionally, phosphorylation of STAT1 and NFκB p65 was lower in NKLAM-/- than wild type mice. The dysregulated phosphorylation profile of STAT1 and NFκB in NKLAM-/- mice correlated with decreased expression of numerous proinflammatory cytokines that are regulated by STAT1 and/or NFκB. The lack of NKLAM and the resulting attenuated immune response is favorable to NKLAM-/- mice receiving a low dose of SeV; however, at a high dose of virus, NKLAM-/- mice succumbed to the infection faster than wild type mice. In conclusion, our novel results indicate that NKLAM plays a role in regulating the production of pro-inflammatory cytokines during viral infection.
Collapse
Affiliation(s)
- Donald W. Lawrence
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Laurie P. Shornick
- Department of Biology, Saint Louis University, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Veterans Affairs Saint Louis Health Care System, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kim Y, Hao J, Gautam Y, Mersha TB, Kang M. DiffGRN: differential gene regulatory network analysis. INT J DATA MIN BIOIN 2018; 20:362-379. [PMID: 31114627 DOI: 10.1504/ijdmb.2018.094891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of differential gene regulators with significant changes under disparate conditions is essential to understand complex biological mechanism in a disease. Differential Network Analysis (DiNA) examines different biological processes based on gene regulatory networks that represent regulatory interactions between genes with a graph model. While most studies in DiNA have considered correlation-based inference to construct gene regulatory networks from gene expression data due to its intuitive representation and simple implementation, the approach lacks in the representation of causal effects and multivariate effects between genes. In this paper, we propose an approach named Differential Gene Regulatory Network (DiffGRN) that infers differential gene regulation between two groups. We infer gene regulatory networks of two groups using Random LASSO, and then we identify differential gene regulations by the proposed significance test. The advantages of DiffGRN are to capture multivariate effects of genes that regulate a gene simultaneously, to identify causality of gene regulations, and to discover differential gene regulators between regression-based gene regulatory networks. We assessed DiffGRN by simulation experiments and showed its outstanding performance than the current state-of-the-art correlation-based method, DINGO. DiffGRN is applied to gene expression data in asthma. The DiNA with asthma data showed a number of gene regulations, such as ADAM12 and RELB, reported in biological literature.
Collapse
Affiliation(s)
- Youngsoon Kim
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA
| | - Jie Hao
- Analytics and Data Science Institute, Kennesaw State University, Kennesaw, GA, USA
| | - Yadu Gautam
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Mingon Kang
- Department of Computer Science, Kennesaw State University, Marietta, GA, USA
| |
Collapse
|