1
|
Song Z, Wang Y, Zhu M, Zhang P, Li Z, Geng X, Cao X, Zheng J, Tang J, Chen L. Exploring ribosome biogenesis in lung adenocarcinoma to advance prognostic methods and immunotherapy strategies. J Transl Med 2025; 23:503. [PMID: 40316986 PMCID: PMC12048935 DOI: 10.1186/s12967-025-06489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/13/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) presents a considerable danger to human health and has evolved into a major public health concern. Ribosome biogenesis (RiboSis) is a critical process for synthesizing ribosomes, closely associated with cancer initiation, progression, and treatment resistance, potentially serving as a target for future cancer therapies. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) technology, a single-cell atlas of LUAD was delineated, focusing on the analysis of T cell subpopulations. Cells were scored based on the expression patterns of 331 genes associated with RiboSis across different cell types, and monocle2 was employed to analyze the developmental trajectory of CD4+ T cells. Employing various machine learning algorithms, a ribosome biogenesis-related signature (RBS) was constructed and compared to 140 published LUAD prognostic models. The relationship between RBS risk scores and various factors in LUAD patients, including prognosis, the tumor immune microenvironment (TIME), responsiveness to immunotherapy, and sensitivity to pharmacological treatments was specifically analyzed. Immunohistochemistry was utilized to validate the expression levels of immune markers in the high- and low- RBS groups, and in vitro experiments were performed to validate the functional role of the pivotal gene KIF23 in the progression of LUAD. RESULTS Using single-cell analysis, two distinct T cell subtypes were identified: CD8+ interferon (IFN) response T cells and CD4+ stress response T cells. It was observed that CD4+ naive-like T cells exhibit high expression of RiboSis-related genes, with a gradual decrease in RiboSis activity as CD4+ T cells develop. Compared to other prognostic models, RBS demonstrated superior performance in prognosis prediction. The low-RBS group exhibited a tumor microenvironment (TME) more favorable for efficient immune monitoring and reaction, higher responsiveness to immunotherapy, and a better prognosis. Immunohistochemistry confirmed higher expression levels of immune markers in the low-RBS group, while in vitro experiments validated the promoting role of KIF23 in LUAD cell proliferation, migration and invasion. CONCLUSION This study delves into the relationship between RiboSis and LUAD cell subpopulations, identifying a potent prognostic biomarker for LUAD. This biomarker aids in assessing immunotherapy efficacy in LUAD patients, ultimately enhancing their prognosis and guiding clinical decision-making.
Collapse
Affiliation(s)
- Zipei Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miaolin Zhu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Geng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xincen Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jianwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Tian Y, Zhang H, Xiang Z, Xu C, Xue H, Xu Q. Periodic tryptophan protein 1 promotes colorectal cancer growth via ribosome biogenesis. Int J Clin Oncol 2025; 30:944-955. [PMID: 40057905 DOI: 10.1007/s10147-025-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/25/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Periodic tryptophan protein 1 (PWP1) is a member of the WD-40 family, located at the nucleus. The study of PWP1 in malignant tumors is at the initial stage. Its role and mechanism in colorectal cancer (CRC) remain unclear. METHODS KEGG pathway analysis were used for bioinformatics analysis. The protein expression of PWP1 in the tissue microarrays was detected by immunohistochemical methods. Colony and CCK-8 were used for PWP1 function in vitro, and the orthotopic model was used to assess PWP1 function in vivo. The growth of CRC was tracked by the Living Imaging System. Immunofluorescence was used for the quantification of nascent rRNAs. Polysome fractionation analysis was used to detect mRNA abundance. RESULTS GEO database was used to identify differential genes with elevated expression in CRC and followed by a KEGG analysis, which revealed that the ribosome synthesis pathway was enriched in CRC, with PWP1 displaying the most significant differential expression. Subsequently, the results of both in vitro and in vivo experiments demonstrated that PWP1 knockdown inhibited the proliferation of CRC. The results of immunofluorescence demonstrated that PWP1 knockdown suppressed de novo rRNA synthesis. Then, the differential proteins were examined, and this revealed that the most significantly downregulated proteins were those associated with DNA replication and mismatch repair functions following PWP1 interference. Moreover, ribosome profiling demonstrated significant downregulation of mRNAs associated with above functions. CONCLUSION We found that the PWP1-ribosome synthesis pathway is instrumental in achieving precise regulation of downstream signaling pathways, which in turn promote CRC growth.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatologyschool of Medicineshanghai Institute of Digestive Disease, Ministry of Healthrenji Hospitalshanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Du B, Yan R, Hu X, Lou J, Zhu Y, Shao Y, Jiang H, Hao Y, Lv L. Role of Bifidobacterium animalis subsp. lactis BB-12 in mice with acute pancreatitis. AMB Express 2025; 15:62. [PMID: 40186645 PMCID: PMC11972277 DOI: 10.1186/s13568-025-01867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Acute pancreatitis (AP) is a prevalent acute gastrointestinal disease, which may be prevented and alleviated by probiotics. Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is a widely studied probiotic strain; however, its specific effects in this context remain unexplored. In this study, we aimed to investigate the prophylactic and therapeutic effects of BB-12 in AP. Our findings revealed that BB-12 administration via gavage significantly reduced pathological pancreatic damage and serum amylase activity. Microbiome analysis showed that BB-12 treatment significantly increased the relative abundance of Ligilactobacillus and decreased that of Bilophila in the gut microbiota of mice with AP. Transcriptome analysis revealed that BB-12 mitigated the AP-induced dysregulation of several pathways, specifically attenuating the upregulation of the pancreatic secretion and ascorbate and aldarate metabolism pathways while reversing the downregulation of the ribosome, oxidative phosphorylation, and thermogenesis pathways. Spearman's correlation analysis revealed a positive correlation between the abundances of Bilophila and ASF356 and serum amylase activity. Furthermore, the abundances of Bilophila and ASF356 were significantly correlated with BB-12-regulated pancreatic genes and were predominantly enriched in the ribosome pathway. In conclusion, BB-12 pretreatment alleviated AP, likely by regulating the abundance of intestinal Lactobacillus, Bilophila, and ASF356, as well as the pancreatic secretion, ascorbate and aldarate metabolism, oxidative phosphorylation, ribosome, and thermogenesis pathways.
Collapse
Affiliation(s)
- Bingbing Du
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jing Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yixin Zhu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China
| | - Yini Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Longxian Lv
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Voukeng I, Chen J, Lafontaine DLJ. The natural alkaloid nitidine chloride targets RNA polymerase I to inhibit ribosome biogenesis and repress cancer cell growth. Cell Death Discov 2025; 11:116. [PMID: 40121213 PMCID: PMC11929923 DOI: 10.1038/s41420-025-02396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nature is an abundant and largely untapped source of potent bioactive molecules. Ribosome biogenesis modulators have proven effective in suppressing cancer cell growth and are currently being evaluated in clinical trials for anticancer therapies. In this study, we characterized the alkaloid nitidine chloride (NC), produced by the endemic Cameroonian plant Fagara (and other plants). We demonstrate that NC kills cancer cells regardless of their p53 status and inhibits tumor growth in vitro. Furthermore, NC profoundly suppresses global protein synthesis. Treatment of human cells with NC causes severe nucleolar disruption and inhibits pre-rRNA synthesis by destabilizing key factors required for recruitment of RNA polymerase I to ribosomal DNA promoters. In vitro, NC intercalates into DNA and inhibits topoisomerases I and II. Consistently, NC treatment activates a DNA damage response. We propose that the torsional stress on rDNA caused by topoisomerase inhibition leads to loss of RNA polymerase I function and to shutdown of ribosome biogenesis. Although NC has long been suspected of possessing anticancer properties, here we provide a molecular explanation for its mechanism of action. In budding yeast cells, interestingly, NC inhibits cell growth, impairs ribosome biogenesis, and disrupts nucleolar structure. This suggests that its mode of action is at least partially evolutionarily conserved.
Collapse
Affiliation(s)
- Igor Voukeng
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Jing Chen
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium.
| |
Collapse
|
5
|
Tang G, Wang Z, Geng W, Yu Y, Zhang Y. Exploration of crucial stromal risk genes associated with prognostic significance and chemotherapeutic opportunities in invasive ductal breast carcinoma. J Genet Eng Biotechnol 2025; 23:100448. [PMID: 40074422 PMCID: PMC11732444 DOI: 10.1016/j.jgeb.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Few studies revealed that stromal genes regulate the tumor microenvironment (TME). However, identification of key-risk genes in the invasive ductal breast carcinoma-associated stroma (IDBCS) and their associations with the prediction of risk group remains lacking. METHODS This study used the GSE9014, GSE10797, GSE8977, GSE33692, and TGGA BRCA datasets. We explored the differentially expressed transcriptional markers, hub genes, gene modules, and enriched KEGG pathways. We employed a variety of algorithms, such as the log-rank test, the LASSO-cox model, the univariate regression model, and the multivariate regression model, to predict prognostic-risk genes and the prognostic-risk model. Finally, we employed a molecular docking-based study to explore the interaction of sensitive drugs with prognostic-risk genes. RESULTS In comparing IDBCS and normal stroma, we discovered 1472 upregulated genes and 1400 downregulated genes (combined ES > 0585 and adjusted p-value < 0.05). The hub genes enrich cancer, immunity, and cellular signaling pathways. We explored the 12 key risk genes (ADAM8, CD86, CSRP1, DCTN2, EPHA1, GALNT10, IGFBP6, MIA, MMP11, RBM22, SLC39A4, and SYT2) in the IDBCS to identify the high-risk group and low-risk group patients. The high-risk group had a lower survival rate, and the constructed ROC curves evaluated the validity of the risk model. Expression validation and diagnostic efficacy revealed that the key stromal risk genes are consistently deregulated in the high-risk group and high stromal samples of the TCGA BRCA cohort. The expression of crucial risk genes, including CD86, CSRP1, EPHA1, GALNT10, IGFBP6, MIA, and RBM22 are associated with drug resistance and drug sensitivity. Finally, a molecular docking study explored several sensitive drugs (such as QL-XII-61, THZ-2-49, AZ628, NG-25, lapatinib, dasatinib, SB590885, and dabrafenib) interacted with these essential risk genes through hydrogen bonds and other chemical interactions. CONCLUSIONS Exploring essential prognostic-risk genes and their association with the prognosis, diagnostic efficacy, and risk-group prediction may provide substantial clues for targeting the breast cancer stromal key-risk genes.
Collapse
Affiliation(s)
- Guohua Tang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Zhi Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Wei Geng
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Yu
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yang Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Department of Hepatobiliary and Echinococcosis Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
6
|
Song D, Wang X, Zhao Z, Yang R, Zhang S, Guo Z. Targeting Ribosome Biogenesis for Cancer Therapy with Oral Platinum Complexes. JACS AU 2025; 5:73-81. [PMID: 39886599 PMCID: PMC11775699 DOI: 10.1021/jacsau.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025]
Abstract
Cancer cells often upregulate ribosome biogenesis to meet increased protein synthesis demands for rapid proliferation; therefore, targeting ribosome biogenesis has emerged as a promising cancer therapeutic strategy. Herein, we introduce two Pt complexes, ataluren monosubstituted platinum(IV) (SPA, formula: c,c,t,-[Pt(NH3)2Cl2(OH)(C15H8FN2O3)], where C15H8FN2O3 = ataluren) and ataluren bisubstituted platinum(IV) complex (DPA, formula: c,c,t,-[Pt(NH3)2Cl2(C15H8FN2O3)2], where C15H8FN2O3 = ataluren), which effectively suppress ribosome biogenesis by inhibiting 47s pre-RNA expression. Furthermore, SPA and DPA induce nucleolar stress by dispersing nucleolar protein NPM1, ultimately inhibiting protein generation in tumor cells. More importantly, DPA exhibits superior cytotoxicity to various cancer cells and in vivo antitumor efficacy compared to cisplatin, with lower systemic toxicity. Notably, in clinically relevant models, including orthotopic hepatic tumor-bearing mice and patient-derived bladder cancer organoids, DPA outperforms cisplatin significantly, with the added benefit of oral administration, enhancing clinical feasibility. To our knowledge, DPA emerges as the pioneering Pt(IV) agent targeting the ribosome, providing new insights for designing next-generation metal-based therapeutics.
Collapse
Affiliation(s)
- Dongfan Song
- School
of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation
Center (ChemBIC), State Key Laboratory of
Coordination Chemistry, Najing University, Nanjing 210023, PR China
| | - Xiaoyu Wang
- School
of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation
Center (ChemBIC), State Key Laboratory of
Coordination Chemistry, Najing University, Nanjing 210023, PR China
| | - Zihan Zhao
- Department
of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical
School, Nanjing University, Nanjing 210093, PR China
| | - Rong Yang
- Department
of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical
School, Nanjing University, Nanjing 210093, PR China
| | - Shuren Zhang
- School
of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation
Center (ChemBIC), State Key Laboratory of
Coordination Chemistry, Najing University, Nanjing 210023, PR China
| | - Zijian Guo
- School
of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation
Center (ChemBIC), State Key Laboratory of
Coordination Chemistry, Najing University, Nanjing 210023, PR China
| |
Collapse
|
7
|
Jia L, Gao S, Qiao Y. Optical Control over Liquid–Liquid Phase Separation. SMALL METHODS 2024; 8:e2301724. [PMID: 38530063 DOI: 10.1002/smtd.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Indexed: 03/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
Collapse
Affiliation(s)
- Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Department of Orthopedic, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Panichnantakul P, Aguilar LC, Daynard E, Guest M, Peters C, Vogel J, Oeffinger M. Protein UFMylation regulates early events during ribosomal DNA-damage response. Cell Rep 2024; 43:114738. [PMID: 39277864 DOI: 10.1016/j.celrep.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The highly repetitive and transcriptionally active ribosomal DNA (rDNA) genes are exceedingly susceptible to genotoxic stress. Induction of DNA double-strand breaks (DSBs) in rDNA repeats is associated with ataxia-telangiectasia-mutated (ATM)-dependent rDNA silencing and nucleolar reorganization where rDNA is segregated into nucleolar caps. However, the regulatory events underlying this response remain elusive. Here, we identify protein UFMylation as essential for rDNA-damage response in human cells. We further show the only ubiquitin-fold modifier 1 (UFM1)-E3 ligase UFL1 and its binding partner DDRGK1 localize to nucleolar caps upon rDNA damage and that UFL1 loss impairs ATM activation and rDNA transcriptional silencing, leading to reduced rDNA segregation. Moreover, analysis of nuclear and nucleolar UFMylation targets in response to DSB induction further identifies key DNA-repair factors including ATM, in addition to chromatin and actin network regulators. Taken together, our data provide evidence of an essential role for UFMylation in orchestrating rDNA DSB repair.
Collapse
Affiliation(s)
- Pudchalaluck Panichnantakul
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Lisbeth C Aguilar
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Evan Daynard
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mackenzie Guest
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Colten Peters
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Jackie Vogel
- Department of Biology, Faculty of Medicine, McGill University, Montréal, QC H3A 1B1, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Center for Genetic and Neurological Diseases, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada; Département de biochimie et médicine moléculaire, Faculté de Médicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
9
|
Fuller KB, Jacobs RQ, Carter ZI, Cuny ZG, Schneider DA, Lucius AL. Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation. Biophys Chem 2024; 312:107281. [PMID: 38889653 PMCID: PMC11260521 DOI: 10.1016/j.bpc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3' end was fastest when the 3' terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA
| | | | - Zachary G Cuny
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Piecyk M, Triki M, Laval P, Duret C, Fauvre J, Cussonneau L, Machon C, Guitton J, Rama N, Gibert B, Ichim G, Catez F, Bourdelais F, Durand S, Diaz J, Coste I, Renno T, Manié SN, Aznar N, Ansieau S, Ferraro‐Peyret C, Chaveroux C. The stress sensor GCN2 differentially controls ribosome biogenesis in colon cancer according to the nutritional context. Mol Oncol 2024; 18:2111-2135. [PMID: 37452637 PMCID: PMC11467793 DOI: 10.1002/1878-0261.13491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Nutrient availability is a key determinant of tumor cell behavior. While nutrient-rich conditions favor proliferation and tumor growth, scarcity, and particularly glutamine starvation, promotes cell dedifferentiation and chemoresistance. Here, linking ribosome biogenesis plasticity with tumor cell fate, we uncover that the amino acid sensor general control non-derepressible 2 (GCN2; also known as eIF-2-alpha kinase 4) represses the expression of the precursor of ribosomal RNA (rRNA), 47S, under metabolic stress. We show that blockade of GCN2 triggers cell death by an irremediable nucleolar stress and subsequent TP53-mediated apoptosis in patient-derived models of colon adenocarcinoma (COAD). In nutrient-rich conditions, a cell-autonomous GCN2 activity supports cell proliferation by stimulating 47S rRNA transcription, independently of the canonical integrated stress response (ISR) axis. Impairment of GCN2 activity prevents nuclear translocation of methionyl-tRNA synthetase (MetRS), resulting in nucleolar stress, mTORC1 inhibition and, ultimately, autophagy induction. Inhibition of the GCN2-MetRS axis drastically improves the cytotoxicity of RNA polymerase I (RNA pol I) inhibitors, including the first-line chemotherapy oxaliplatin, on patient-derived COAD tumoroids. Our data thus reveal that GCN2 differentially controls ribosome biogenesis according to the nutritional context. Furthermore, pharmacological co-inhibition of the two GCN2 branches and RNA pol I activity may represent a valuable strategy for elimination of proliferative and metabolically stressed COAD cells.
Collapse
Affiliation(s)
- Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Mouna Triki
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Pierre‐Alexandre Laval
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Cedric Duret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Joelle Fauvre
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Laura Cussonneau
- INRAE, Unité de Nutrition Humaine, UMR1019Université Clermont AuvergneClermont‐FerrandFrance
| | - Christelle Machon
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Jerôme Guitton
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Biochemistry and Pharmaco‐Toxicology Laboratory, Lyon Sud HospitalHospices Civils de Lyon Pierre‐Bénite, University Hospital of LyonFrance
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Benjamin Gibert
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Gabriel Ichim
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Frederic Catez
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Fleur Bourdelais
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Sebastien Durand
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Jean‐Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Serge N. Manié
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Stephane Ansieau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| | - Carole Ferraro‐Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
- Hospices Civils de Lyon, Plateforme AURAGENFrance
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon BérardUniversité de Lyon, Université Claude Bernard Lyon 1France
| |
Collapse
|
11
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Hao BB, Ma K, Xu JY, Fan RF, Zhao WS, Jia XL, Zhai LH, Lee S, Xie D, Tan MJ. Proteomics analysis of histone deacetylase inhibitor-resistant solid tumors reveals resistant signatures and potential drug combinations. Acta Pharmacol Sin 2024; 45:1305-1315. [PMID: 38383757 PMCID: PMC11130134 DOI: 10.1038/s41401-024-01236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.
Collapse
Affiliation(s)
- Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Ru-Feng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Si Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - SangKyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Li S, Jin Z, Song X, Ma J, Peng Z, Yu H, Song J, Zhang Y, Sun X, He M, Yu X, Jin F, Zheng A. The small nucleolar RNA SNORA51 enhances breast cancer stem cell-like properties via the RPL3/NPM1/c-MYC pathway. Mol Carcinog 2024; 63:1117-1132. [PMID: 38421204 DOI: 10.1002/mc.23713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer stem cells (BCSCs) are key players in carcinogenesis and development. Small nucleolar RNAs (snoRNAs) seem to have a crucial influence on regulating stem cell-like properties in various cancers, but the underlying mechanism in breast cancer has not been determined. In this study, we first found that the expression of SNORA51 might be strongly and positively related to BCSCs-like properties. SNORA51 expression was assessed in breast cancer tissues (n = 158 patients) by in situ hybridization. Colony formation, cell counting kit-8, and sphere formation assays were used to detect cell proliferation and self-renewal, respectively. Wound healing and transwell assays were used to detect cell migration. Coimmunoprecipitation and molecular docking were used to determine the underlying mechanism through which SNORA51 regulates BCSCs-like properties. High SNORA51 expression was associated with a worse prognosis, overall survival, and disease-free survival, in 158 breast cancer patients and was also closely related to lymph node status, ER status, the Ki-67 index, histological grade, and TNM stage. Further analysis proved that SNORA51 could enhance and maintain stem cell-like properties, including cell proliferation, self-renewal, and migration, in breast cancer. Moreover, high SNORA51 expression could reduce nucleolar RPL3 expression, induce changes in the expression of NPM1 in the nucleolus and nucleoplasm, and ultimately increase c-MYC expression. Taken together, our findings demonstrated that SNORA51 could enhance BCSCs-like properties via the RPL3/NPM1/c-MYC pathway both in vitro and in vivo. Therefore, SNORA51 might be a significant biomarker and potential therapeutic target and might even provide a new viewpoint on the regulatory mechanism of snoRNAs in breast cancer or other malignant tumors.
Collapse
Affiliation(s)
- Shan Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jinfei Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Basan M, Mukherjee A, Huang Y, Oh S, Sanchez C, Chang YF, Liu X, Bradshaw G, Benites N, Paulsson J, Kirschner M, Sung Y, Elgeti J. Homeostasis of cytoplasmic crowding by cell wall fluidization and ribosomal counterions. RESEARCH SQUARE 2024:rs.3.rs-4138690. [PMID: 38699329 PMCID: PMC11065075 DOI: 10.21203/rs.3.rs-4138690/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In bacteria, algae, fungi, and plant cells, the wall must expand in concert with cytoplasmic biomass production, otherwise cells would experience toxic molecular crowding1,2 or lyse. But how cells achieve expansion of this complex biomaterial in coordination with biosynthesis of macromolecules in the cytoplasm remains unexplained3, although recent works have revealed that these processes are indeed coupled4,5. Here, we report a striking increase of turgor pressure with growth rate in E. coli, suggesting that the speed of cell wall expansion is controlled via turgor. Remarkably, despite this increase in turgor pressure, cellular biomass density remains constant across a wide range of growth rates. By contrast, perturbations of turgor pressure that deviate from this scaling directly alter biomass density. A mathematical model based on cell wall fluidization by cell wall endopeptidases not only explains these apparently confounding observations but makes surprising quantitative predictions that we validated experimentally. The picture that emerges is that turgor pressure is directly controlled via counterions of ribosomal RNA. Elegantly, the coupling between rRNA and turgor pressure simultaneously coordinates cell wall expansion across a wide range of growth rates and exerts homeostatic feedback control on biomass density. This mechanism may regulate cell wall biosynthesis from microbes to plants and has important implications for the mechanism of action of antibiotics6.
Collapse
|
16
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
17
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
18
|
Jacobs RQ, Schneider DA. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications. J Biol Chem 2024; 300:105737. [PMID: 38336292 PMCID: PMC10907179 DOI: 10.1016/j.jbc.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
19
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
20
|
Cooper SL, Lucius AL, Schneider DA. Quantifying the impact of initial RNA primer length on nucleotide addition by RNA polymerase I. Biophys Chem 2024; 305:107151. [PMID: 38088007 PMCID: PMC11043954 DOI: 10.1016/j.bpc.2023.107151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Transient state kinetic studies of eukaryotic DNA-dependent RNA polymerases (Pols) in vitro provide quantitative characterization of enzyme activity at the level of individual nucleotide addition events. Previous work revealed heterogeneity in the rate constants governing nucleotide addition by yeast RNA polymerase I (Pol I) for each position on a template DNA. In contrast, the rate constants that described nucleotide addition by yeast RNA polymerase II (Pol II) were more homogeneous. This observation led to the question, what drives the variability of rate constants governing RNA synthesis by Pol I? Are the kinetics of nucleotide addition dictated by the position of the nascent RNA within the polymerase or by the identity of the next encoded nucleotide? In this study, we examine the impact of nucleotide position (i.e. nascent RNA primer length) on the rate constants governing nine sequential nucleotide addition events catalyzed by Pol I. The results reveal a conserved trend in the observed rate constants at each position for all primer lengths used, and highlight that the 9-nucleotide, or 9-mer, RNA primer provides the fastest observed rate constants. These findings suggest that the observed heterogeneity of rate constants for RNA synthesis by Pol I in vitro is driven primarily by the template sequence.
Collapse
Affiliation(s)
- Stephanie L Cooper
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Zang Y, Ran X, Yuan J, Wu H, Wang Y, Li H, Teng H, Sun Z. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer. Brief Bioinform 2024; 25:bbae023. [PMID: 38343327 PMCID: PMC10859687 DOI: 10.1093/bib/bbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4, BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53 mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted 23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for RiboSis-based anti-tumor therapy.
Collapse
Affiliation(s)
- Yue Zang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences and Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Xia Ran
- Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Jie Yuan
- BGI Education Center, University of Chinese Academy of Sciences, China
| | - Hao Wu
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Youya Wang
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - He Li
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhongsheng Sun
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Institute of Genomic Medicine, Wenzhou Medical University, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
22
|
Gelfo V, Venturi G, Zacchini F, Montanaro L. Decoding Ribosome Heterogeneity: A New Horizon in Cancer Therapy. Biomedicines 2024; 12:155. [PMID: 38255260 PMCID: PMC10813612 DOI: 10.3390/biomedicines12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The traditional perception of ribosomes as uniform molecular machines has been revolutionized by recent discoveries, revealing a complex landscape of ribosomal heterogeneity. Opposing the conventional belief in interchangeable ribosomal entities, emerging studies underscore the existence of specialized ribosomes, each possessing unique compositions and functions. Factors such as cellular and tissue specificity, developmental and physiological states, and external stimuli, including circadian rhythms, significantly influence ribosome compositions. For instance, muscle cells and neurons are characterized by distinct ribosomal protein sets and dynamic behaviors, respectively. Furthermore, alternative forms of ribosomal RNA (rRNAs) and their post-transcriptional modifications add another dimension to this heterogeneity. These variations, orchestrated by spatial, temporal, and conditional factors, enable the manifestation of a broad spectrum of specialized ribosomes, each tailored for potentially distinct functions. Such specialization not only impacts mRNA translation and gene expression but also holds significant implications for broader biological contexts, notably in the realm of cancer research. As the understanding of ribosomal diversity deepens, it also paves the way for exploring novel avenues in cellular function and offers a fresh perspective on the molecular intricacies of translation.
Collapse
Affiliation(s)
- Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy
| | - Federico Zacchini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Lorenzo Montanaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (V.G.); (G.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
23
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. 9S1R nullomer peptide induces mitochondrial pathology, metabolic suppression, and enhanced immune cell infiltration, in triple-negative breast cancer mouse model. Biomed Pharmacother 2024; 170:115997. [PMID: 38118350 PMCID: PMC10872342 DOI: 10.1016/j.biopha.2023.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide prime sequence attached to 5-arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo mouse model. This unique peptide, administered with a trehalose carrier (9S1R-NulloPT), offers enhanced solubility and exhibits distinct anti-cancer effects against TNBC. In our study, we investigated the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, tumor immune-microenvironment (TME), and transcriptome of aggressive mouse TNBC tumors. Notably, treated mice had smaller tumors in the initial phase of the treatment, as compared to untreated control, and diminished in vivo and ex vivo bioluminescence at later-stages - indicative of metabolically quiescent, dying tumors. The treatment also caused changes in TME with increased infiltration of immune cells and altered tumor transcriptome, with 365 upregulated genes and 710 downregulated genes. Consistent with in vitro data, downregulated genes were enriched in cellular metabolic processes (179), specifically mitochondrial TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis (45). The upregulated genes were associated with the developmental (13), ECM organization (12) and focal adhesion pathways (7). In conclusion, our study demonstrates that 9S1R-NulloPT effectively reduced tumor growth during its initial phase, altering the TME and tumor transcriptome. The treatment induced mitochondrial pathology which led to a metabolic deceleration in tumors, aligning with in vitro observations.
Collapse
Affiliation(s)
- Nilufar Ali
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| | - Cody Wolf
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Swarna Kanchan
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Department of Biomedical Sciences, Jaon C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shivakumar R Veerabhadraiah
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Laura Bond
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID, USA
| | - Matthew W Turner
- Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Greg Hampikian
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| |
Collapse
|
24
|
Paraqindes H, Mourksi NEH, Ballesta S, Hedjam J, Bourdelais F, Fenouil T, Picart T, Catez F, Combe T, Ferrari A, Kielbassa J, Thomas E, Tonon L, Viari A, Attignon V, Carrere M, Perrossier J, Giraud S, Vanbelle C, Gabut M, Bergeron D, Scott MS, Castro Vega L, Magne N, Huillard E, Sanson M, Meyronet D, Diaz JJ, Ducray F, Marcel V, Durand S. Isocitrate dehydrogenase wt and IDHmut adult-type diffuse gliomas display distinct alterations in ribosome biogenesis and 2'O-methylation of ribosomal RNA. Neuro Oncol 2023; 25:2191-2206. [PMID: 37531290 PMCID: PMC10708943 DOI: 10.1093/neuonc/noad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND High-grade adult-type diffuse gliomas (HGGs) constitute a heterogeneous group of aggressive tumors that are mostly incurable. Recent advances highlighting the contribution of ribosomes to cancer development have offered new clinical perspectives. Here, we uncovered that isocitrate dehydrogenase (IDH)wt and IDHmut HGGs display distinct alterations of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, which could constitute novel hallmarks that can be exploited for the management of these pathologies. METHODS We analyzed (1) the ribosomal RNA 2'O-ribose methylation (rRNA 2'Ome) using RiboMethSeq and in-house developed bioinformatics tools (https://github.com/RibosomeCRCL/ribomethseq-nfandrRMSAnalyzer) on 3 independent cohorts compiling 71 HGGs (IDHwt n = 30, IDHmut n = 41) and 9 non-neoplastic samples, (2) the expression of ribosome biogenesis factors using medium throughput RT-qPCR as a readout of ribosome biogenesis, and (3) the sensitivity of 5 HGG cell lines to RNA Pol I inhibitors (CX5461, BMH-21). RESULTS Unsupervised analysis demonstrated that HGGs could be distinguished based on their rRNA 2'Ome epitranscriptomic profile, with IDHwt glioblastomas displaying the most significant alterations of rRNA 2'Ome at specific sites. In contrast, IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblastoma, while all HGG spheroids display a similar cytotoxicity to BMH-21. CONCLUSIONS In HGGs, IDH mutational status is associated with specific alterations of the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors.
Collapse
Affiliation(s)
- Hermes Paraqindes
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Nour-El-Houda Mourksi
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Samantha Ballesta
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Jordan Hedjam
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Fleur Bourdelais
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Tanguy Fenouil
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Thiébaud Picart
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Frédéric Catez
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Théo Combe
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Anthony Ferrari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Emilie Thomas
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Laurie Tonon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Alain Viari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Valéry Attignon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Marjorie Carrere
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Jessie Perrossier
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Stéphane Giraud
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Christophe Vanbelle
- Plateforme d’Imagerie Cellulaire, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Mathieu Gabut
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Danny Bergeron
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michelle S Scott
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luis Castro Vega
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Nathalie Magne
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Emmanuelle Huillard
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Jean-Jacques Diaz
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - François Ducray
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Marcel
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Sébastien Durand
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
25
|
Wang YF, Hu YN, Shen ZF, Zhao CF, Liu K, Wang H, Zhang Q. Clinicopathological and prognostic significance of Ephrin A3 in bladder urothelial carcinoma. Oncol Lett 2023; 26:524. [PMID: 37927410 PMCID: PMC10623084 DOI: 10.3892/ol.2023.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Ephrin A3 (EFNA3) is a member of the Eph/ephrin tyrosine kinase family, which is associated with multiple signaling pathways involved in cell growth and tumor cell metastasis. Aberrant regulation of EFNA3 is associated with the occurrence and development of various types of cancer. However, despite the high incidence of EFNA3 upregulation in cancer, studies concerning EFNA3 in urothelial carcinoma have not, to the best of our knowledge, been conducted. In the present study, bioinformatics analyses using data from multiple online databases were performed to confirm the upregulation of EFNA3 in bladder cancer. The co-expression gene set of EFNA3 and enriched signaling pathways were also analyzed. In addition, immunohistochemistry was conducted to detect EFNA3 expression in 491 clinically confirmed bladder urothelial carcinoma samples and 80 non-cancerous bladder tissues. Kaplan-Meier survival analysis, binary logistic regression analysis, and Cox regression analysis were conducted to confirm the validity of EFNA3 in predicting patient prognosis and its significance in clinical pathology. Statistical analysis demonstrated a significant association between EFNA3 expression levels with tumor size, lymph node metastasis, distant metastasis, and pathological grade. In conclusion, high EFNA3 expression may be a potential biomarker that indicates bladder tumor occurrence and patient prognosis.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yu-Ning Hu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Graduate Department, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ze-Fan Shen
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Graduate Department, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chang-Feng Zhao
- Graduate Department, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Kun Liu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Heng Wang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Qi Zhang
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
26
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
27
|
Eastham M, Pelava A, Wells G, Lee J, Lawrence I, Stewart J, Deichner M, Hertle R, Watkins N, Schneider C. The induction of p53 correlates with defects in the production, but not the levels, of the small ribosomal subunit and stalled large ribosomal subunit biogenesis. Nucleic Acids Res 2023; 51:9397-9414. [PMID: 37526268 PMCID: PMC10516649 DOI: 10.1093/nar/gkad637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Ribosome biogenesis is one of the biggest consumers of cellular energy. More than 20 genetic diseases (ribosomopathies) and multiple cancers arise from defects in the production of the 40S (SSU) and 60S (LSU) ribosomal subunits. Defects in the production of either the SSU or LSU result in p53 induction through the accumulation of the 5S RNP, an LSU assembly intermediate. While the mechanism is understood for the LSU, it is still unclear how SSU production defects induce p53 through the 5S RNP since the production of the two subunits is believed to be uncoupled. Here, we examined the response to SSU production defects to understand how this leads to the activation of p53 via the 5S RNP. We found that p53 activation occurs rapidly after SSU production is blocked, prior to changes in mature ribosomal RNA (rRNA) levels but correlated with early, middle and late SSU pre-rRNA processing defects. Furthermore, both nucleolar/nuclear LSU maturation, in particular late stages in 5.8S rRNA processing, and pre-LSU export were affected by SSU production defects. We have therefore uncovered a novel connection between the SSU and LSU production pathways in human cells, which explains how p53 is induced in response to SSU production defects.
Collapse
Affiliation(s)
- Matthew John Eastham
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andria Pelava
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Graeme Raymond Wells
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Justine Katherine Lee
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabella Rachel Lawrence
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Joshua Stewart
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Deichner
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Regina Hertle
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas James Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
28
|
Xu J, Zhou X, Zhang T, Zhang B, Xu PX. Smarca4 deficiency induces Pttg1 oncogene upregulation and hyperproliferation of tubular and interstitial cells during kidney development. Front Cell Dev Biol 2023; 11:1233317. [PMID: 37727504 PMCID: PMC10506413 DOI: 10.3389/fcell.2023.1233317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Kidney formation and nephrogenesis are controlled by precise spatiotemporal gene expression programs, which are coordinately regulated by cell-cycle, cell type-specific transcription factors and epigenetic/chromatin regulators. However, the roles of epigenetic/chromatin regulators in kidney development and disease remain poorly understood. In this study, we investigated the impact of deleting the chromatin remodeling factor Smarca4 (Brg1), a human Wilms tumor-associated gene, in Wnt4-expressing cells. Smarca4 deficiency led to severe tubular defects and a shortened medulla. Through unbiased single-cell RNA sequencing analyses, we identified multiple types of Wnt4 Cre-labeled interstitial cells, along with nephron-related cells. Smarca4 deficiency increased interstitial cells but markedly reduced tubular cells, resulting in cells with mixed identity and elevated expression of cell-cycle regulators and genes associated with extracellular matrix and epithelial-to-mesenchymal transition/fibrosis. We found that Smarca4 loss induced a significant upregulation of the oncogene Pttg1 and hyperproliferation of Wnt4 Cre-labeled cells. These changes in the cellular state could hinder the cellular transition into characteristic tubular structures, eventually leading to fibrosis. In conclusion, our findings shed light on novel cell types and genes associated with Wnt4 Cre-labeled cells and highlight the critical role of Smarca4 in regulating tubular cell differentiation and the expression of the cancer-causing gene Pttg1 in the kidney. These findings may provide valuable insights into potential therapeutic strategies for renal cell carcinoma resulting from SMARCA4 deficiency.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
29
|
Yang XM, Wang XQ, Hu LP, Feng MX, Zhou YQ, Li DX, Li J, Miao XC, Zhang YL, Yao LL, Nie HZ, Huang S, Xia Q, Zhang XL, Jiang SH, Zhang ZG. Nucleolar HEAT Repeat Containing 1 Up-regulated by the Mechanistic Target of Rapamycin Complex 1 Signaling Promotes Hepatocellular Carcinoma Growth by Dominating Ribosome Biogenesis and Proteome Homeostasis. Gastroenterology 2023; 165:629-646. [PMID: 37247644 DOI: 10.1053/j.gastro.2023.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND & AIMS Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xuan Feng
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Qi Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Xue Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Cao Miao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-Li Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Montel F. [Structural and mechanical plasticity of the nuclear pore]. Med Sci (Paris) 2023; 39:625-631. [PMID: 37695152 DOI: 10.1051/medsci/2023096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The nuclear pore, which can be seen as the gateway to the cell nucleus, is central to many processes including gene regulation. It is a complex and dynamic structure composed of more than 30 proteins present in multiple copies that allows the selective and directional transport of RNA and proteins. As shown by recent studies, it is able to adapt its overall structure to the state of the cell. These results suggest that the structural and mechanical plasticity of the nuclear pore is important for its function but also in the development of cancer or viral infections.
Collapse
Affiliation(s)
- Fabien Montel
- Laboratoire de physique, CNRS UMR 5672, école normale supérieure de Lyon, université de Lyon, F-69342 Lyon, France
| |
Collapse
|
31
|
Xu J, Zhong A, Zhang S, Chen M, Zhang L, Hang X, Zheng J, Wu B, Deng X, Pan X, Wang Z, Qi L, Shi K, Li S, Wang Y, Wang M, Chen X, Zhang Q, Liu P, Gale RP, Chen C, Liu Y, Niu T. KMT2D Deficiency Promotes Myeloid Leukemias which Is Vulnerable to Ribosome Biogenesis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206098. [PMID: 37142882 PMCID: PMC10323629 DOI: 10.1002/advs.202206098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.
Collapse
Grants
- 82130007 National Natural Science Foundation of China
- 2022M722272 China Postdoctoral Science Foundation
- 2018RZ0140 Sichuan Science and Technology Program
- 2022SCUH0037 "From 0 to 1" Innovation Project of Sichuan University
- 19HXFH030 Incubation Program for Clinical Trials, West China Hospital, Sichuan University
- ZYJC21007 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21009 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYGD22012 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- National Institute of Health Research Biomedical Research Centre
- 2023HXBH019 Post-Doctor Research Project, West China Hospital, Sichuan University
- 2023SCU12073 Post-Doctor Research Project of Sichuan University
- National Natural Science Foundation of China
- China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ailing Zhong
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shan Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Mei Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lanxin Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaohang Hang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Jianan Zheng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Baohong Wu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xintong Deng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangyu Pan
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Zhongwang Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Qi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Kaidou Shi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shujun Li
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yiyun Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Manli Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelan Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Qi Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Pengpeng Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Robert Peter Gale
- Centre for HematologyImperial College of ScienceTechnology and MedicineLondonSW7 2BXUK
- Department of Hematologic OncologySun Yat‐sen Cancer CenterGuangzhou510060China
| | - Chong Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yu Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ting Niu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
32
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. Nullomer peptide increases immune cell infiltration and reduces tumor metabolism in triple negative breast cancer mouse model. RESEARCH SQUARE 2023:rs.3.rs-3097552. [PMID: 37461536 PMCID: PMC10350184 DOI: 10.21203/rs.3.rs-3097552/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Background Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide derived from a prime sequence that is tagged with 5 arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo TNBC mouse model. 9S1R is administered in trehalose (9S1R-NulloPT), which enhances solubility and exhibits some independent effects against tumor growth and is thus an important component in the drug preparation. Method We examined the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, necrosis, tumor immune microenvironment, and the transcriptome of aggressive mouse TNBC tumors. Results The peptide-treated mice had smaller tumors in the initial phase of the treatment, as compared to the untreated control, and reduced in vivo bioluminescence at later stages, which is indicative of metabolically inactive tumors. A decrease in ex vivo bioluminescence was also observed in the excised tumors of treated mice, but not in the secondary metastasis in the lungs. The treatment also caused changes in tumor immune microenvironment with increased infiltration of immune cells and margin inflammation. The treatment upregulated 365 genes and downregulated 710 genes in tumors compared to the untreated group. Consistent with in vitro findings in breast cancer cell lines, downregulated genes in the treated TNBC tumors include Cellular Metabolic Process Related genes (179), specifically mitochondrial genes associated with TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis genes (45). Among upregulated genes, the Developmental Pathway (13), ECM Organization (12) and Focal Adhesion Related Pathways (7) were noteworthy. We also present data from a pilot study using a bilateral BC mouse model, which supports our findings. Conclusion In conclusion, although 9S1R-NulloPT was moderate at reducing the tumor volume, it altered the tumor immune microenvironment as well as the tumor transcriptome, rendering tumors metabolically less active by downregulating the mitochondrial function and ribosome biogenesis. This corroborates previously published in vitro findings.
Collapse
|
33
|
Cai P, Yuan H, Gao Z, Qiao H, Zhang W, Jiang S, Xiong Y, Gong Y, Wu Y, Jin S, Fu H. 17β-Estradiol Induced Sex Reversal and Gonadal Transcriptome Analysis in the Oriental River Prawn ( Macrobrachium nipponense): Mechanisms, Pathways, and Potential Harm. Int J Mol Sci 2023; 24:ijms24108481. [PMID: 37239827 DOI: 10.3390/ijms24108481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Sex reversal induced by 17β-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
34
|
Kurata K, Samur MK, Liow P, Wen K, Yamamoto L, Liu J, Morelli E, Gulla A, Tai YT, Qi J, Hideshima T, Anderson KC. BRD9 Degradation Disrupts Ribosome Biogenesis in Multiple Myeloma. Clin Cancer Res 2023; 29:1807-1821. [PMID: 36780189 PMCID: PMC10150249 DOI: 10.1158/1078-0432.ccr-22-3668] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
PURPOSE BRD9 is a defining component of the noncanonical SWI/SNF complex, which regulates gene expression by controlling chromatin dynamics. Although recent studies have found an oncogenic role for BRD9 in multiple cancer types including multiple myeloma, its clinical significance and oncogenic mechanism have not yet been elucidated. Here, we sought to identify the clinical and biological impact of BRD9 in multiple myeloma, which may contribute to the development of novel therapeutic strategies. EXPERIMENTAL DESIGN We performed integrated analyses of BRD9 in vitro and in vivo using multiple myeloma cell lines and primary multiple myeloma cells in established preclinical models, which identified the molecular functions of BRD9 contributing to multiple myeloma cell survival. RESULTS We found that high BRD9 expression was a poor prognostic factor in multiple myeloma. Depleting BRD9 by genetic (shRNA) and pharmacologic (dBRD9-A; proteolysis-targeting chimera; BRD9 degrader) approaches downregulated ribosome biogenesis genes, decreased the expression of the master regulator MYC, and disrupted the protein-synthesis maintenance machinery, thereby inhibiting multiple myeloma cell growth in vitro and in vivo in preclinical models. Importantly, we identified that the expression of ribosome biogenesis genes was associated with the disease progression and prognosis of patients with multiple myeloma. Our results suggest that BRD9 promotes gene expression by predominantly occupying the promoter regions of ribosome biogenesis genes and cooperating with BRD4 to enhance the transcriptional function of MYC. CONCLUSIONS Our study identifies and validates BRD9 as a novel therapeutic target in preclinical models of multiple myeloma, which provides the framework for the clinical evaluation of BRD9 degraders to improve patient outcome.
Collapse
Affiliation(s)
- Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K. Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Priscilla Liow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Leona Yamamoto
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Annamaria Gulla
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C. Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
36
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Akrami S, Tahmasebi A, Moghadam A, Ramezani A, Niazi A. Integration of mRNA and protein expression data for the identification of potential biomarkers associated with pancreatic ductal adenocarcinoma. Comput Biol Med 2023; 157:106529. [PMID: 36921457 DOI: 10.1016/j.compbiomed.2022.106529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most death-dealing tumors, with a tremendously poor prognosis. Here, we, through interrogation of mRNA and protein data combined with a system biology approach, identified several key genes, functional processes, and pathways that can have critical roles in PDAC. We detected an interesting module related to the clinical traits that enriched in the ribosome, hematopoietic cell lineage, and cell adhesion molecules-related pathways. We also identified several hub genes in important modules that are associated with immune system processes. The results also indicated some lncRNAs, such as FAM30A, and MIR223HG with essential functions that are involved in PDAC. Additionally, five genes, including CD53, ITGAL, WDFY4, TLX1, and LMAN1L were screened by survival analysis and can be considered as candidate biomarkers or therapeutic targets. According to our strategy, the findings of this study may provide a better understanding of the molecular mechanisms and suggest potential prognostic and therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Sahar Akrami
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
38
|
Mourksi N, Dalban C, Colombe‐Vermorel A, Odeyer L, Simioni V, Frenel J, Fabbro M, Bazan F, Abadie‐Lacourtoisie S, Coquan E, Martinez S, Garin G, Tabone‐Eglinger S, Treilleux I, Chabaud S, Pérol D, Ray‐Coquard I, Heudel P, Diaz J, Marcel V. Ribosome biogenesis-based predictive biomarkers in endocrine therapy (Anastrozole) combined with mTOR inhibitor (Vistusertib) in endometrial cancer: translational study from the VICTORIA trial in collaboration with the GINECO group. Mol Oncol 2022; 17:27-36. [PMID: 36370117 PMCID: PMC9812831 DOI: 10.1002/1878-0261.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/17/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Resistance of advanced hormone-dependent endometrial carcinoma to endocrine therapy remains a worldwide clinical issue. We recently reported that the combination of Vistusertib (V, mTOR inhibitor) and Anastrozole (A, aromatase inhibitor) improves the progression-free rate compared to Anastrozole alone. However, a better patient selection based on biomarkers would improve patient outcome. We evaluate for the first time the usage of ribosome biogenesis (RiBi) factors as a source of innovative markers. Using 47 FFPE tumours (A n = 18; V + A n = 29), 32 blood samples (A n = 13; V + A n = 19) and 30 samples of total RNAs (A n = 12; V + A n = 18) from the VICTORIA clinical trial, we observed an association between RiBi-associated markers and drug activity or prediction of treatment response. NOP10 and NHP2 mRNA levels were significantly higher in non-responders compared to responders in the Vistusertib + Anastrozole arm (P = 0.0194 and P = 0.0002 respectively; i.e. 8 weeks progression-free survival as endpoint). This study provides RiBi-based markers relevant for a better selection of patients with advanced endometrial carcinoma by predicting the response of endocrine therapy combined with mTOR inhibitor.
Collapse
Affiliation(s)
- Nour‐El‐Houda Mourksi
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Centre Léon BérardUniversité de LyonLyonFrance,Institut Convergence PLAsCANLyonFrance,DevWeCan Labex LaboratoryLyonFrance
| | - Cécile Dalban
- Clinical Research DepartmentCentre Léon BérardLyonFrance
| | | | | | - Valentin Simioni
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Centre Léon BérardUniversité de LyonLyonFrance,Institut Convergence PLAsCANLyonFrance,DevWeCan Labex LaboratoryLyonFrance
| | - Jean‐Sébastien Frenel
- Medical Oncology Department, Institut Cancérologie de l'Ouest, and GINEGEPSSt HerblainFrance
| | - Michel Fabbro
- Department of Surgical Oncology, Institut du Cancer de MontpellierUniversity of MontpellierMontpellierFrance
| | - Fernando Bazan
- Department of Medical OncologyUniversity Hospital of BesançonBesançonFrance
| | | | - Elodie Coquan
- Department of Clinical Research, Department of Medical OncologyComprehensive Cancer Centre François BaclesseCaenFrance
| | | | | | | | | | - Sylvie Chabaud
- Clinical Research DepartmentCentre Léon BérardLyonFrance
| | - David Pérol
- Clinical Research DepartmentCentre Léon BérardLyonFrance
| | - Isabelle Ray‐Coquard
- Medical Oncology DepartmentCentre Léon Bérard and University Claude Bernard Lyon 1, GINECOLyonFrance
| | - Pierre‐Etienne Heudel
- Medical Oncology DepartmentCentre Léon Bérard and University Claude Bernard Lyon 1, GINECOLyonFrance
| | - Jean‐Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Centre Léon BérardUniversité de LyonLyonFrance,Institut Convergence PLAsCANLyonFrance,DevWeCan Labex LaboratoryLyonFrance
| | - Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Centre Léon BérardUniversité de LyonLyonFrance,Institut Convergence PLAsCANLyonFrance,DevWeCan Labex LaboratoryLyonFrance
| |
Collapse
|
39
|
Jacobs RQ, Fuller KB, Cooper SL, Carter ZI, Laiho M, Lucius AL, Schneider DA. RNA Polymerase I Is Uniquely Vulnerable to the Small-Molecule Inhibitor BMH-21. Cancers (Basel) 2022; 14:5544. [PMID: 36428638 PMCID: PMC9688676 DOI: 10.3390/cancers14225544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells require robust ribosome biogenesis to maintain rapid cell growth during tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials. BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and represses cancer cell growth. Several recent studies have uncovered key mechanisms by which BMH-21 inhibits ribosome biosynthesis but the selectivity of BMH-21 for Pol I has not been directly measured. Here, we quantify the effects of BMH-21 on Pol I, RNA polymerase II (Pol II), and RNA polymerase III (Pol III) in vitro using purified components. We found that BMH-21 directly impairs nucleotide addition by Pol I, with no or modest effect on Pols II and III, respectively. Additionally, we found that BMH-21 does not affect the stability of any of the Pols' elongation complexes. These data demonstrate that BMH-21 directly exploits unique vulnerabilities of Pol I.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kaila B. Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie L. Cooper
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
40
|
Multi-Omics Analysis Revealed a Significant Alteration of Critical Metabolic Pathways Due to Sorafenib-Resistance in Hep3B Cell Lines. Int J Mol Sci 2022; 23:ijms231911975. [PMID: 36233276 PMCID: PMC9569810 DOI: 10.3390/ijms231911975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is usually encountered within six months of treatment. Therefore, there is a critical need to identify the underlying reasons for drug resistance. In the present study, we investigated the proteomic and metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker). For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were significantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype. D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochondrial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain small subunit 1 were among the significantly altered proteins. The findings revealed that resistant Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways, energy production pathways and other pathways related to cancer aggressiveness, such as migration, proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways, including the antifolate resistance pathway and other important pathways that maintain cancer cells' survival, growth, and proliferation. Collectively, the results identified potential biomarkers for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance, cancer initiation, progression and aggressiveness, which may contribute to better prognosis and chemotherapeutic outcomes.
Collapse
|
41
|
Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 2022; 28:109. [PMID: 36071402 PMCID: PMC9450376 DOI: 10.1186/s10020-022-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics. METHODS Based on the crystal structure of the interface between RPL11 and MDM2, we have identified 15 potential allosteric modulators of MDM2 through the virtual screening. RESULTS One of these compounds, named S9, directly binds MDM2 and competitively inhibits the interaction between RPL11 and MDM2, leading to p53 stabilization and activation. Moreover, S9 inhibits cancer cell proliferation in vitro and in vivo. Mechanistic study reveals that MDM2 is required for S9-induced G2 cell cycle arrest and apoptosis, whereas p53 contributes to S9-induced apoptosis. CONCLUSIONS Putting together, S9 may serve as a lead compound for the development of an anticancer drug that specifically targets RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jian Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hui Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yanping Zhang
- Department of Radiation and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, USA
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China. .,The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
42
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
43
|
Han P, Cao P, Yue J, Kong K, Hu S, Deng Y, Li L, Li F, Zhao B. Knockdown of hnRNPA1 Promotes NSCLC Metastasis and EMT by Regulating Alternative Splicing of LAS1L exon 9. Front Oncol 2022; 12:837248. [PMID: 35814393 PMCID: PMC9260696 DOI: 10.3389/fonc.2022.837248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor metastasis is still an insurmountable obstacle in tumor treatment. Lung cancer represents one of the most common malignancies with high morbidity worldwide. hnRNPA1 has been reported to be involved in the regulation of tumor metastasis, while its specific role in tumor metastasis seems to be controversial and its molecular mechanism in lung cancer metastasis remains to be further elucidated. In this study, we confirmed that knockdown of the hnRNPA1 led to enhanced migration, invasion and EMT transition in lung cancer cells. Bioinformatics analysis of the GSE34992 dataset revealed that hnRNPA1 may regulate the alternative splicing (AS) of LAS1L exon 9. Further AGE assays and RIP assays revealed that hnRNPA1 can directly bind to the LAS1L pre-mRNA to inhibit the splicing of LAS1L exon 9. The RNA pull-down assays showed that hnRNPA1 can specifically bind to the two sites (UAGGGU(WT1) and UGGGGU(WT3)) of LAS1L Intron 9. Further Transwell assays indicated that the expression ratio of LAS1L-L/LAS1L-S regulated by hnRNPA1 can further promote the migration, invasion and EMT transition in lung cancer cells. Moreover, hnRNPA1 expression showed significant heterogeneity in lung cancer tissues, which may contain new research directions and potential therapeutic targets. Our results indicate that hnRNPA1 can affect the metastasis of lung cancer cells by modulating the AS of LAS1L exon 9, highlighting the potential significance of hnRNPA1 in lung cancer metastasis.
Collapse
Affiliation(s)
- Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Yue
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Zhao, ; Fan Li,
| |
Collapse
|
44
|
Chen X, Shao Z, Wu L, He B, Yang W, Chen J, Jin E, Huang Q, Lei L, Xu J, Li H, Zhang H, Wan Y, Liu W, Zhou R. Involvement of the Actinobacillus pleuropneumoniae ompW Gene in Confrontation of Environmental Pressure. Front Vet Sci 2022; 9:846322. [PMID: 35664844 PMCID: PMC9161549 DOI: 10.3389/fvets.2022.846322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae causes porcine pleuropneumonia. The function of the outer membrane protein W gene (ompW) of A. pleuropneumoniae has not been evaluated. Thus a deletion mutant of ompW, ΔompW, was constructed to explore the effect of ompW gene deletion on bacterial growth, biofilm formation, bacterial morphology, oxidative tolerance, susceptibility to antibiotics, and the expression of ribosome synthesis and ABC transporter related genes. Results showed that the ompW gene deletion did not affect biofilm formation and the growth of A. pleuropneumoniae but did affect bacterial morphology during steady growth, oxidative tolerance, and bacterial susceptibility to polymyxin B, kanamycin, and penicillin. The ompW gene deletion also affected the expression of ribosome synthesis and ABC transporter related genes. These results suggested that ompW may regulate the biological phenotype of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
- *Correspondence: Xiabing Chen
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Lijun Wu
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Erguang Jin
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liancheng Lei
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, China
| | - Jiajia Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yun Wan
- Wuhan Animal Disease Control Center, Wuhan, China
| | - Wu Liu
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Sciences, Wuhan, China
- Wu Liu
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Rui Zhou
| |
Collapse
|
45
|
Nguyen Van Long F, Lardy-Cleaud A, Carène D, Rossoni C, Catez F, Rollet P, Pion N, Monchiet D, Dolbeau A, Martin M, Simioni V, Bray S, Le Beherec D, Mosele F, Bouakka I, Colombe-Vermorel A, Odeyer L, Diot A, Jordan LB, Thompson AM, Jamen F, Dubois T, Chabaud S, Michiels S, Treilleux I, Bourdon JC, Pérol D, Puisieux A, André F, Diaz JJ, Marcel V. Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer. BMC Cancer 2022; 22:526. [PMID: 35545761 PMCID: PMC9092774 DOI: 10.1186/s12885-022-09552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. Methods Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levels-related breast tumours. Results We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. Conclusion Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper- but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09552-x.
Collapse
Affiliation(s)
- Flora Nguyen Van Long
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Audrey Lardy-Cleaud
- Biostatistics Unit, Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Dimitri Carène
- Predictive Biomarkers and Novel Therapeutic Strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800, Villejuif, France.,Department of Biostatistics and Epidemiology, Institut Gustave Roussy, 94800, Villejuif, France
| | - Caroline Rossoni
- Department of Biostatistics and Epidemiology, Institut Gustave Roussy, 94800, Villejuif, France
| | - Frédéric Catez
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Paul Rollet
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Nathalie Pion
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Déborah Monchiet
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Agathe Dolbeau
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Marjorie Martin
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Valentin Simioni
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Susan Bray
- Tayside Tissue Bank, Ninewells Hospital and Medical School, NHS Tayside, Dundee, DD1 9SY, Scotland, UK
| | - Doris Le Beherec
- Department Translational Research, Institut Gustave Roussy, 94800, Villejuif, France
| | - Fernanda Mosele
- Predictive Biomarkers and Novel Therapeutic Strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Ibrahim Bouakka
- Predictive Biomarkers and Novel Therapeutic Strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Amélie Colombe-Vermorel
- Department of Translational Research and Innovation, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Laetitia Odeyer
- Department of Translational Research and Innovation, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Alexandra Diot
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Lee B Jordan
- Department of Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Alastair M Thompson
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK.,Olga Keith Wiess Chair of Surgery, Dan L. Duncan Breast Center, Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Françoise Jamen
- Université Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Gif-sur-Yvette, France.,Université Paris-Saclay, CIAMS, 91405, Orsay, Cedex, France
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department, Institut Curie-PSL Research University, 26 rue d'Ulm, 75005, Paris, France
| | - Sylvie Chabaud
- Biostatistics Unit, Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Stefan Michiels
- Department of Biostatistics and Epidemiology, Institut Gustave Roussy, 94800, Villejuif, France
| | - Isabelle Treilleux
- Department of Translational Research and Innovation, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - David Pérol
- Biostatistics Unit, Department of Clinical Research, Léon Bérard Cancer Centre, 28 rue Laennec, 69008, Lyon, France
| | - Alain Puisieux
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France.,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France
| | - Fabrice André
- Predictive Biomarkers and Novel Therapeutic Strategies Group, Institut Gustave Roussy, University of Paris Sud, INSERM 981, Université Paris Saclay, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Jean-Jacques Diaz
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France. .,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France. .,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France.
| | - Virginie Marcel
- Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Léon Bérard Cancer Centre, Cheney A, 28 rue Laennec, 69373 cedex 08, Lyon, France. .,Institut Convergence PLAsCAN, 69373 cedex 08, Lyon, France. .,DevWeCan Labex Laboratory, 69373 cedex 08, Lyon, France.
| |
Collapse
|
46
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
47
|
Li J, Liu L, Chen Y, Wu M, Lin X, Shen Z, Cheng Y, Chen X, Weygant N, Wu X, Wei L, Sferra TJ, Han Y, Chen X, Shen A, Shen A, Peng J. Ribosome assembly factor PNO1 is associated with progression and promotes tumorigenesis in triple‑negative breast cancer. Oncol Rep 2022; 47:108. [PMID: 35445733 PMCID: PMC9073417 DOI: 10.3892/or.2022.8319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the expression of ribosome assembly factor partner of NOB1 homolog (PNO1) and its association with the progression of breast cancer (BC) in patients, as well as its biological function and underlying mechanism of action in BC cells. Bioinformatics and immunohistochemical analyses revealed that PNO1 expression was significantly increased in BC tissues and its high mRNA expression was associated with shorter overall survival (OS) and relapse-free survival (RFS) of patients with BC, as well as multiple clinical characteristics (including advanced stage of NPI and SBR, etc.) of patients with BC. Biological functional studies revealed that transduction of lentivirus encoding sh-PNO1 significantly downregulated PNO1 expression, reduced cell confluency and the number of BC cells in vitro and inhibited tumor growth in vivo. Moreover, PNO1 knockdown decreased the cell viability and arrested cell cycle progression at the G2/M phase, as well as downregulated cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDK1) protein expression in BC cells. Correlation analysis demonstrated that PNO1 expression was positively correlated with both CDK1 and CCNB1 expression in BC samples. Collectively, PNO1 was upregulated in BC and associated with BC patient survival, and PNO1 knockdown suppressed tumor growth in vitro and in vivo. In addition, positive regulation of CCNB1 and CDK1 may be one of the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xi Chen
- Department of Oncology, No. 900 Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
48
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
49
|
Tsai HI, Wu Y, Huang R, Su D, Wu Y, Liu X, Wang L, Xu Z, Pang Y, Sun C, He C, Shu F, Zhu H, Wang D, Cheng F, Huang L, Chen H. PHF6 functions as a tumor suppressor by recruiting methyltransferase SUV39H1 to nucleolar region and offers a novel therapeutic target for PHF6-muntant leukemia. Acta Pharm Sin B 2022; 12:1913-1927. [PMID: 35847518 PMCID: PMC9279718 DOI: 10.1016/j.apsb.2021.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in the plant homeodomain-like finger protein 6 (PHF6) gene are strongly associated with acute myeloid (AML) and T-cell acute lymphoblastic leukemia (T-ALL). In this study, we demonstrated that PHF6 can bind to H3K9me3 and H3K27me1 on the nucleolar chromatin and recruit histone methyltransferase SUV39H1 to the rDNA locus. The deletion of PHF6 caused a decrease in the recruitment of SUV39H1 to rDNA gene loci, resulting in a reduction in the level of H3K9me3 and the promotion of rDNA transcription. The knockdown of either SUV39H1 or PHF6 significantly attenuated the effects of increase in H3K9me3 and suppressed the transcription of rDNA induced by the overexpression of the other interacting partner, thereby establishing an interdependent relationship between PHF6 and SUV39H1 in their control of rRNA transcription. The PHF6 clinical mutants significantly impaired the ability to bind and recruit SUV39H1 to the rDNA loci, resulting in an increase in rDNA transcription activity, the proliferation of in vitro leukemia cells, and the growth of in vivo mouse xenografts. Importantly, significantly elevated levels of pre-rRNA were observed in clinical AML patients who possessed a mutated version of PHF6. The specific rDNA transcription inhibitor CX5461 significantly reduced the resistance of U937 AML cells deficient in PHF6 to cytarabine, the drug that is most commonly used to treat AML. Collectively, we revealed a novel molecular mechanism by which PHF6 recruits methyltransferase SUV39H1 to the nucleolar region in leukemia and provided a potential therapeutic target for PHF6-mutant leukemia.
Collapse
Affiliation(s)
- Hsiang-i Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yanping Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuxin Pang
- School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University, Yunfu 527322, China
| | - Chong Sun
- Immune Regulation in Cancer, German Cancer Research Center, Heidelberg 69120, Germany
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Haitao Zhu
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Department of Medical Imaging, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Corresponding authors.
| | - Laiqiang Huang
- The Shenzhen Key Lab of Gene and Antibody Therapy, Center for Biotechnology & Biomedicine, Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Corresponding authors.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Corresponding authors.
| |
Collapse
|
50
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|