1
|
Shao N, Cai K, Hong Y, Wu L, Luo Q. USP9X suppresses ferroptosis in diabetic kidney disease by deubiquitinating Nrf2 in vitro. Ren Fail 2025; 47:2458761. [PMID: 39967230 PMCID: PMC11841168 DOI: 10.1080/0886022x.2025.2458761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates many critical genes associated with iron storage and transportation, the activity of which is influenced by E3 ligase-mediated ubiquitination. We wondered whether there is a deubiquitinase that mediates the deubiquitination of Nrf2 to stabilize Nrf2 expression and further prevent diabetic kidney disease (DKD). High glucose (HG) was applied to induce an in vitro model of DKD. The effects of HG on HK-2 cell viability, apoptosis, Fe2+ level, Nrf2, and ubiquitin-specific protease 9X (USP9X) were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, iron assay, and Western blot. The direct interaction between Nrf2 and USP9X was analyzed using co-immunoprecipitation and ubiquitination assay. After transfection and ferrostatin-1 (Fer-1) intervention, Nrf2 and USP9X levels, cell viability, apoptosis, and Fe2+ level were tested again. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) contents, and ferroptosis-related markers were assessed by ROS assay kit, ELISA, and Western blot. HG reduced cell viability and levels of USP9X and Nrf2, while elevating apoptosis and Fe2+ level. An interaction between USP9X and Nrf2 has been verified and USP9X deubiquitinated Nrf2. Nrf2 up-regulation augmented the viability, GSH content, and ferroptosis-related protein expressions, while suppressing the apoptosis, Fe2+ level, MDA, and ROS content in HG-mediated HK-2 cells, which was reversed by USP9X silencing. Fer-1 offset the combined modulation of Nrf2 and siUSP9X on HG-induced HK-2 cells. USP9X mediates Nrf2 deubiquitinase to hamper the ferroptosis in DKD in vitro.
Collapse
Affiliation(s)
- Ningjun Shao
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Kedan Cai
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Yue Hong
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Lingping Wu
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| | - Qun Luo
- Department of Nephrology, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Wang X, Huang S, Li X, Cheng H. The Transfer of USP25 by Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorates Diabetic Nephropathy Through Stabilizing SMAD7 Expression. Chem Biol Drug Des 2025; 105:e70118. [PMID: 40317686 DOI: 10.1111/cbdd.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are identified to be potential therapeutic candidates for diabetic nephropathy (DN) through secreting exosomes (Exos). Ubiquitin-specific protease 25 (USP25) has been reported to be involved in DN-induced renal injury. Herein, this study aimed to investigate whether ADSCs affected DN progression by Exo transfer of USP25. High glucose (HG)-induced mouse podocytes were used to mimic DN-induced injury for in vitro viability, inflammation, and apoptosis analyses. The db/db mice of DN were established for renal injury and function analysis in vivo. The deubiquitination effect of USP25 was analyzed by cellular ubiquitination and immunoprecipitation assays. ADSCs reversed HG-induced apoptosis and inflammation in podocytes, and these effects were achieved by Exo-mediated transfer of USP25. Mechanistically, USP25 interacted with SMAD7 protein and elevated its expression in podocytes via inducing SMAD7 deubiquitination. USP25 transferred via ADSC-Exos abolished HG-induced apoptosis and inflammation in podocytes by elevating SMAD7 protein levels. In vivo assay also confirmed that ADSC-Exo attenuated Type 2 Diabetes Mellitus-induced kidney injury and podocyte apoptosis and inflammation by releasing USP25. ADSCs attenuated T2DM-induced kidney injury, podocyte apoptosis, and inflammation via elevating SMAD7 stabilization through exosome transfer of USP25.
Collapse
Affiliation(s)
- Xinjie Wang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Siyue Huang
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiaoqin Li
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huan Cheng
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
3
|
Buitrago L, Menezes MR, Larson C, Li J, Kartika T, Banerjee P, Glickman F, Coller B. Unbiased high-throughput screening of drug-repurposing libraries identifies small-molecule inhibitors of clot retraction. Blood Adv 2025; 9:1049-1068. [PMID: 39374578 PMCID: PMC11909436 DOI: 10.1182/bloodadvances.2024013810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT Platelet clot retraction, the ultimate phase of platelet thrombus formation, is critical for clot stabilization. It requires functional αIIbβ3 receptors, fibrin, and the integrated actions of the actin-myosin contractile and cytoskeletal systems. Disturbances in clot retraction have been associated with both bleeding and thrombosis. We recently demonstrated that platelets treated with the αIIbβ3 antagonist peptide Arg-Gly-Asp-Trp, which eliminates fibrinogen-mediated platelet aggregation, are still able to retract clots. We have exploited this observation to develop an unbiased, functional high-throughput assay to identify small-molecule inhibitors of fibrin-mediated clot retraction adapted for a 384-well plate format. We tested 9710 compounds from drug-repurposing libraries (DRLs). These libraries contain compounds that are either US Food and Drug Administration approved or have undergone preclinical/clinical development. We identified 27 compounds from the Library of Pharmacologically Active Compounds library as inhibitors of clot retraction, of which 14 are known inhibitors of platelet function. From the DRLs, we identified 135 compounds (1.6% hit rate). After extensive curation, these compounds were categorized based on the activity of their reported target. Multiple kinase and phosphodiesterase inhibitors with known antiplatelet effects were identified, along with multiple deubiquitination and receptor inhibitors, as well as compounds that have not previously been reported to have antiplatelet activity. Studies of 1 of the deubiquitination inhibitors (degrasyn) suggest that its effects are downstream of thrombin-induced platelet-fibrinogen interactions and thus may permit the separation of platelet thrombin-induced aggregation-mediated events from clot retraction. Additional studies of the identified compounds may lead to novel mechanisms of inhibiting thrombosis.
Collapse
Affiliation(s)
- Lorena Buitrago
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Jihong Li
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Thomas Kartika
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, NY
| | - Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY
| | - Barry Coller
- Allen and Frances Adler Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY
| |
Collapse
|
4
|
Zhao X, Wang S, He X, Wei W, Huang K. Quercetin prevents the USP22-Snail1 signaling pathway to ameliorate diabetic tubulointerstitial fibrosis. Food Funct 2024; 15:11990-12006. [PMID: 39556027 DOI: 10.1039/d4fo03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Our previous studies have demonstrated that ubiquitin-specific peptidase 22 (USP22) has the capacity to accelerate renal epithelial-to-mesenchymal transition (EMT) and promote the pathological progression of diabetic tubulointerstitial fibrosis (TIF) by regulating the ubiquitination of Snail1, an EMT transcription factor. Quercetin is a type of flavonol compound widely found in fruits and vegetables that has anti-inflammatory, antioxidant and anti-fibrosis effects. However, whether quercetin promotes the degradation of Snail1 and regulates the pathological progression of TIF by inhibiting USP22 requires further investigation. In this study, we found that quercetin significantly inhibited the expression of USP22 and Snail1 in high glucose (HG)-induced renal tubular epithelial cells (TECs), and reversed the expression of EMT-related proteins and inhibited the overproduction of fibronectin (FN) and Collage Type IV (Collagen IV) induced by high glucose. Additionally, quercetin blocked the deubiquitination of Snail1 mediated by USP22. Further study found that quercetin inhibited the interaction between USP22 and Snail1, thereby reducing the stability of Snail1. Furthermore, quercetin also reduced the protein levels of USP22 and Snail1 in the kidney tissue of diabetic mice and ameliorated renal function, delayed EMT and TIF. In conclusion, quercetin regulates the USP22-Snail1 signal pathway to inhibit the occurrence of EMT both in vitro and in vivo, and ultimately ameliorate the pathological progress of TIF.
Collapse
Affiliation(s)
- Xilin Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Songping Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuelan He
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Wentao Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Gong S, Xiong H, Lei Y, Huang S, Ouyang Y, Cao C, Wang Y. Usp9x contributes to the development of sepsis-induced acute kidney injury by promoting inflammation and apoptosis in renal tubular epithelial cells via activation of the TLR4/nf-κb pathway. Ren Fail 2024; 46:2361089. [PMID: 38874156 PMCID: PMC11182076 DOI: 10.1080/0886022x.2024.2361089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
As a pattern recognition receptor, Toll-like receptor 4 (TLR4) is crucial for the development and progression of acute kidney injury (AKI). This study aims to explore whether the deubiquitinase Usp9x influences the TLR4/NF-B pathway to cause sepsis-induced acute kidney injury (S-AKI). The model of AKI was established in Sprague-Dawley rats using the cecal ligation and puncture (CLP) method, while renal tubular epithelial cell NRK-52E was stimulated with lipopolysaccharide (LPS) in vitro. All plasmids were transfected into NRK-52E cells according to the indicated group. The deubiquitinase of TLR4 was predicted by the online prediction software Ubibrowser. Subsequently, Western blot and Pearson correlation analysis identified Usp9x protein as a potential candidate. Co-IP analysis verified the interaction between TLR4 and Usp9x. Further research revealed that overexpression of Usp9x inhibited degradation of TLR4 protein by downregulating its ubiquitination modification levels. Both in vivo and in vitro experiments observed that interference with Usp9x effectively alleviated the inflammatory response and apoptosis of renal tubular epithelial cells (RTECs) induced by CLP or LPS, whereas overexpression of TLR4 reversed this situation. Transfection with sh-Usp9x in NRK-52E cells suppressed the expression of proteins associated with the TLR4/NF-κB pathway induced by LPS. Moreover, the overexpression of TLR4 reversed the effect of sh-Usp9x transfection. Therefore, the deubiquitinase Usp9x interacts with TLR4, leading to the upregulation of its expression through deubiquitination modification, and the activation of the TLR4/NF-κB signaling pathway, thereby promoting inflammation and apoptosis in renal tubular epithelial cells and contributing to sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Shuhao Gong
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huawei Xiong
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingchao Lei
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shipeng Huang
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingdong Ouyang
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunshui Cao
- Department of Emergency, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Wang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Li Q, Liu J, Su R, Zhen J, Liu X, Liu G. Small extracellular vesicles-shuttled miR-23a-3p from mesenchymal stem cells alleviate renal fibrosis and inflammation by inhibiting KLF3/STAT3 axis in diabetic kidney disease. Int Immunopharmacol 2024; 139:112667. [PMID: 39018690 DOI: 10.1016/j.intimp.2024.112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) provide a pragmatic solution as a cell-free therapy for patients with diabetic kidney disease (DKD). However, the underlying protective mechanisms of MSC-sEV remain largely unknown in DKD. Invivo and in vitro analyses demonstrated that MSC-sEV attenuated renal fibrosis and inflammation of DKD. The underlying mechanism of the MSC-sEV-induced therapeutic effect was explored by high-throughput sequencing, which identified the unique enrichment of a set of miRNAs in MSC-sEV compared with human skin fibroblasts-sEV (HSF-sEV). Vitro experiments demonstrated that the protective potential was primarily attributed to miR-23a-3p, one of the most abundant miRNAs in MSC-sEV. Further, overexpression or knockdown analyses revealed that miR-23a-3p, and its target Krüppel-like factor 3 (KLF3) suppressed the STAT3 signaling pathway in high glucose (HG) induced HK-2 cells were essential for the renal-protective property of MSC-sEV. Moreover, we found that miR-23a-3p was packaged into MSC-sEV by RNA Binding Motif Protein X-Linked (RBMX) and transmitted to HG-induced HK-2 cells. Finally, inhibiting miR-23a-3p could mitigate the protective effects of MSC-sEV in db/db mice. These findings suggest that a systemic administration of sEV derived from MSC, have the capacity to incorporate into kidney where they can exert renal-protective potential against HG-induced injury through delivery of miR-23a-3p.
Collapse
Affiliation(s)
- Qianhua Li
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Jiaxi Liu
- Graduate School of Arts and Sciences, Columbia University, USA
| | - Rongyun Su
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiangchun Liu
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong,250012, China.
| |
Collapse
|
7
|
Zhao Y, Fan S, Zhu H, Zhao Q, Fang Z, Xu D, Lin W, Lin L, Hu X, Wu G, Min J, Liang G. Podocyte OTUD5 alleviates diabetic kidney disease through deubiquitinating TAK1 and reducing podocyte inflammation and injury. Nat Commun 2024; 15:5441. [PMID: 38937512 PMCID: PMC11211476 DOI: 10.1038/s41467-024-49854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
Recent studies have shown the crucial role of podocyte injury in the development of diabetic kidney disease (DKD). Deubiquitinating modification of proteins is widely involved in the occurrence and development of diseases. Here, we explore the role and regulating mechanism of a deubiquitinating enzyme, OTUD5, in podocyte injury and DKD. RNA-seq analysis indicates a significantly decreased expression of OTUD5 in HG/PA-stimulated podocytes. Podocyte-specific Otud5 knockout exacerbates podocyte injury and DKD in both type 1 and type 2 diabetic mice. Furthermore, AVV9-mediated OTUD5 overexpression in podocytes shows a therapeutic effect against DKD. Mass spectrometry and co-immunoprecipitation experiments reveal an inflammation-regulating protein, TAK1, as the substrate of OTUD5 in podocytes. Mechanistically, OTUD5 deubiquitinates K63-linked TAK1 at the K158 site through its active site C224, which subsequently prevents the phosphorylation of TAK1 and reduces downstream inflammatory responses in podocytes. Our findings show an OTUD5-TAK1 axis in podocyte inflammation and injury and highlight the potential of OTUD5 as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shijie Fan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingqing Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zimin Fang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Diyun Xu
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wante Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liming Lin
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Gaojun Wu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Julian Min
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Guang Liang
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
8
|
Gao H, Chen Z, Zhao L, Ji C, Xing F. Cellular functions, molecular signalings and therapeutic applications: Translational potential of deubiquitylating enzyme USP9X as a drug target in cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189099. [PMID: 38582329 DOI: 10.1016/j.bbcan.2024.189099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Protein ubiquitination, one of the most significant post-translational modifications, plays an important role in controlling the proteins activity in diverse cellular processes. The reversible process of protein ubiquitination, known as deubiquitination, has emerged as a critical mechanism for maintaining cellular homeostasis. The deubiquitinases (DUBs), which participate in deubiquitination process are increasingly recognized as potential candidates for drug discovery. Among these DUBs, ubiquitin-specific protease 9× (USP9X), a highly conserved member of the USP family, exhibits versatile functions in various cellular processes, including the regulation of cell cycle, protein endocytosis, apoptosis, cell polarity, immunological microenvironment, and stem cell characteristics. The dysregulation and abnormal activities of USP9X are influenced by intricate cellular signaling pathway crosstalk and upstream non-coding RNAs. The complex expression patterns and controversial clinical significance of USP9X in cancers suggest its potential as a prognostic biomarker. Furthermore, USP9X inhibitors has shown promising antitumor activity and holds the potential to overcome therapeutic resistance in preclinical models. However, a comprehensive summary of the role and molecular functions of USP9X in cancer progression is currently lacking. In this review, we provide a comprehensive delineation of USP9X participation in numerous critical cellular processes, complicated signaling pathways within the tumor microenvironment, and its potential translational applications to combat therapeutic resistance. By systematically summarizing the updated molecular mechanisms of USP9X in cancer biology, this review aims to contribute to the advancement of cancer therapeutics and provide essential insights for specialists and clinicians in the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ce Ji
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Sun X, Chen S, Zhao Y, Wu T, Zhao Z, Luo W, Han J, Fang Z, Ye B, Cao G, Huang S, Liang G. OTUD6A in tubular epithelial cells mediates angiotensin II-induced kidney injury by targeting STAT3. Am J Physiol Cell Physiol 2024; 326:C400-C413. [PMID: 38105755 DOI: 10.1152/ajpcell.00394.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, People's Republic of China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Periodontics and Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong Wu
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zheyu Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jibo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zimin Fang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bozhi Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Periodontics and Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, People's Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
10
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Xue B, Kadeerhan G, Sun LB, Chen YQ, Hu XF, Zhang ZK, Wang DW. Circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of diabetic cystopathy. Sci Rep 2024; 14:837. [PMID: 38191820 PMCID: PMC10774280 DOI: 10.1038/s41598-024-51451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Diabetic cystopathy (DCP) is a prevalent etiology of bladder dysfunction in individuals with longstanding diabetes, frequently leading to bladder interstitial fibrosis. Research investigating the initial pathological alterations of DCP is notably scarce. To comprehend the development of fibrosis and find effective biomarkers for its diagnosis, we prepared streptozotocin-induced long-term diabetic SD rats exhibiting a type 1 diabetes phenotype and bladder fibrosis in histology detection. After observing myofibroblast differentiation from rats' primary bladder fibroblasts with immunofluorescence, we isolated fibroblasts derived exosomes and performed exosomal miRNA sequencing. The co-differentially expressed miRNAs (DEMis) (miR-16-5p and let-7e-5p) were screened through a joint analysis of diabetic rats and long-term patients' plasma data (GES97123) downloaded from the GEO database. Then two co-DEMis were validated by quantitative PCR on exosomes derived from diabetic rats' plasma. Following with a series of analysis, including target mRNAs and transcription factors (TFs) prediction, hubgenes identification, protein-protein interaction (PPI) network construction and gene enrichment analysis, a miRNA-mediated genetic regulatory network consisting of two miRNAs, nine TFs, and thirty target mRNAs were identified in relation to fibrotic processes. Thus, circulating exosomal miR-16-5p and let-7e-5p are associated with bladder fibrosis of DCP, and the crucial genes in regulatory network might hold immense significance in studying the pathogenesis and molecular mechanisms of fibrosis, which deserves further exploration.
Collapse
Affiliation(s)
- Bo Xue
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Gaohaer Kadeerhan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Li-Bin Sun
- Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Xiao-Feng Hu
- Shanxi Medical University, Taiyuan, 030001, China
| | | | - Dong-Wen Wang
- Shanxi Medical University, Taiyuan, 030001, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
12
|
Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, Song W, Wang X. USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol 2023; 124:110877. [PMID: 37657242 DOI: 10.1016/j.intimp.2023.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice. Ablation of USP25 had no influence on glycemic control in type 1 diabetes but significantly aggravated diabetes-induced renal dysfunction and fibrosis by exacerbating inflammation in the kidney. In DKD, USP25 was mainly expressed in glomerular mesangial cells and kidney-infiltrating macrophages. Upon stimulation with advanced glycation end-products (AGEs), USP25 markedly inhibited the production of proinflammatory cytokines in these two cell populations by downregulating AGEs-induced activation of NF-κB and MAPK pathways. Mechanistically, USP25 interacted with TRAF6 and inhibited its K63 polyubiquitination induced by AGEs. Collectively, these findings identify USP25 as a novel regulator of DKD.
Collapse
Affiliation(s)
- Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xiaomin Miao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Jiangyun Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Liyan Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Kangmin Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Fuqi Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Meng Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xian Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Xue Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Zhenhu Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
13
|
He FT, Fu XL, Li MH, Fu CY, Chen JZ. USP14 Regulates ATF2/PIK3CD Axis to Promote Microvascular Endothelial Cell Proliferation, Migration, and Angiogenesis in Diabetic Retinopathy. Biochem Genet 2023; 61:2076-2091. [PMID: 36939972 DOI: 10.1007/s10528-023-10358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in diabetic patients. However, the pathogenesis of DR is complex, and no firm conclusions have been drawn so far. It has become a hot spot in ophthalmology research to deeply study the mechanism of DR pathological changes and find effective treatment options. Human retinal microvascular endothelial cells (HRMECs) were induced by high glucose (HG) to construct DR cell model. CCK-8 assay was used to detect the viability of HRMECs. Transwell assay was used to detect the migration ability of HRMECs. Tube formation assay was used to identify the tube formation ability of HRMECs. The expressions of USP14, ATF2 and PIK3CD were detected by Western blot analysis and qRT-PCR assay. Immunoprecipitation (IP) was used to ascertain the relationship of USP14 and ATF2. To explore the regulatory relationship between ATF2 and PIK3CD by dual-luciferase reporter gene assay and Chromatin immunoprecipitation (ChIP) assay. High glucose treatment promoted the proliferation, migration, and tube formation of HRMEC, and the expressions of USP14, ATF2 and PIK3CD were significantly up-regulated. USP14 or ATF2 knockdown inhibited HG-induced HRMECs proliferation, migration, and tube formation. USP14 regulated the expression of ATF2, and ATF2 promoted PIK3CD expression. PIK3CD overexpression attenuated the inhibitory effectiveness of USP14 knockdown on proliferation, migration and tube formation of DR cell model. Here, we revealed that USP14 regulated the ATF2/PIK3CD axis to promote proliferation, migration, and tube formation in HG-induced HRMECs.
Collapse
Affiliation(s)
- Fu-Tao He
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Xiao-Lin Fu
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China.
| | - Mo-Han Li
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Chun-Yan Fu
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| | - Jian-Zhi Chen
- Department of Ophthalmology, Hainan West Central Hospital, No.2 Fubo East Road, Nada Town, Danzhou, 571700, Hainan Province, People's Republic of China
| |
Collapse
|
14
|
Zhao Y, Chen X, Lin Y, Li Z, Su X, Fan S, Chen Y, Wang X, Liang G. USP25 inhibits renal fibrosis by regulating TGFβ-SMAD signaling pathway in Ang II-induced hypertensive mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166713. [PMID: 37059312 DOI: 10.1016/j.bbadis.2023.166713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
Renal fibrosis is a crucial pathological feature of hypertensive renal disease (HRD). In-depth analysis of the pathogenesis of fibrosis is of great significance for the development of new drugs for the treatment of HRD. USP25 is a deubiquitinase that can regulate the progression of many diseases, but its function in the kidney remains unclear. We found that USP25 was significantly increased in human and mice HRD kidney tissues. In the HRD model induced by Ang II, USP25-/- mice showed significant aggravation of renal dysfunction and fibrosis compared with the control mice. Consistently, AAV9-mediated overexpression of USP25 significantly improved renal dysfunction and fibrosis. Mechanistically, USP25 inhibited the TGF-β pathway by reducing SMAD4 K63-linked polyubiquitination, thereby suppressing SMAD2 nuclear translocation. In conclusion, this study demonstrates for the first time that the deubiquitinase USP25 plays an important regulatory role in HRD.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xi Chen
- Department of Pharmacology, Medical College, Taizhou University, Taizhou, Jiaojiang 318000, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongding Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xian Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shijie Fan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
15
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
16
|
Altered Expression of EMT-Related Factors Snail, Wnt4, and Notch2 in the Short-Term Streptozotocin-Induced Diabetic Rat Kidneys. Life (Basel) 2022; 12:life12101486. [PMID: 36294921 PMCID: PMC9605095 DOI: 10.3390/life12101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The aim of this study was to determine the expression of epithelial to mesenchymal transition (EMT)-related transcription factors Snail, Wnt4, and Notch2 with key roles in renal fibrosis, in different renal areas of diabetic rats: glomeruli (G), proximal and distal convoluted tubules (PCT; DCT). Methods: Male Sprague Dawley rats were instilled with 55 mg/kg streptozotocin (diabetes mellitus type I model, DM group) or citrate buffer (control group). Kidney samples were collected 2 weeks and 2 months after DM induction and processed for immunohistochemistry. Results: Diabetic animals showed higher Wnt4 kidney expression both 2 weeks and 2 months post-DM induction, while Snail expression significantly increased only 2 weeks after DM initiation (p < 0.0001). We determined significantly higher expression of examined EMT-related genes in different kidney regions in diabetic animals compared with controls. The most substantial differences were observed in tubular epithelial cells in the period of 2 weeks after induction, with higher Snail and Wnt4 expression in PCT and increased Snail and Notch2 expression in DCT of diabetic animals (p < 0.0001; p < 0.001). Conclusion: The obtained results point to the EMT-related factors Snail, Wnt4, and Notch2 as a potential contributor to diabetic nephropathy development and progression. Changes in their expression, especially in PCT and DCT, could serve as diagnostic biomarkers for the early stages of DM and might be a promising novel therapeutic target in this condition.
Collapse
|
17
|
Chen R, Zeng J, Li C, Xiao H, Li S, Lin Z, Huang K, Shen J, Huang H. Fraxin Promotes the Activation of Nrf2/ARE Pathway via Increasing the Expression of Connexin43 to Ameliorate Diabetic Renal Fibrosis. Front Pharmacol 2022; 13:853383. [PMID: 35401165 PMCID: PMC8987976 DOI: 10.3389/fphar.2022.853383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is quickly becoming the largest cause of end-stage renal disease (ESRD) in diabetic patients, as well as a major source of morbidity and mortality. Our previous studies indicated that the activation of Nrf2/ARE pathway via Connexin43 (Cx43) considerably contribute to the prevention of oxidative stress in the procession of DN. Fraxin (Fr), the main active glycoside of Fraxinus rhynchophylla Hance, has been demonstrated to possess many potential pharmacological activities. Whereas, whether Fr could alleviate renal fibrosis through regulating Cx43 and consequently facilitating the activation of Nrf2/ARE pathway needs further investigation. The in vitro results showed that: 1) Fr increased the expression of antioxidant enzymes including SOD1 and HO-1 to inhibit high glucose (HG)-induced fibronectin (FN) and inflammatory cell adhesion molecule (ICAM-1) overexpression; 2) Fr exerted antioxidant effect through activating the Nrf2/ARE pathway; 3) Fr significantly up-regulated the expression of Cx43 in HG-induced glomerular mesangial cells (GMCs), while the knock down of Cx43 largely impaired the activation of Nrf2/ARE pathway induced by Fr; 4) Fr promoted the activation of Nrf2/ARE pathway via regulating the interaction between Cx43 and AKT. Moreover, in accordance with the results in vitro, elevated levels of Cx43, phosphorylated-AKT, Nrf2 and downstream antioxidant enzymes related to Nrf2 were observed in the kidneys of Fr-treated group compared with model group. Importantly, Fr significantly improved renal dysfunction pathological changes of renal fibrosis in diabetic db/db mice. Collectively, Fr could increase the Cx43-AKT-Nrf2/ARE pathway activation to postpone the diabetic renal fibrosis and the up-regulation of Cx43 is probably a novel mechanism in this process.
Collapse
Affiliation(s)
- Rui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingran Zeng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuting Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeyuan Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kaipeng Huang
- Phase I Clinical Trial Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Heqing Huang, ; Kaipeng Huang, ; Juan Shen,
| |
Collapse
|
18
|
Tian Y, Bi Z, Ge S, Ye B, Han W. STAT5A modulated EndMT via upregulation of ELTD1 expression in diabetic nephropathy. Clin Exp Pharmacol Physiol 2022; 49:686-695. [PMID: 35320597 DOI: 10.1111/1440-1681.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Diabetic nephropathy (DN), one of microvascular complications of diabetes mellitus, results in renal dysfunction and end-stage renal disease. Recently, endothelial-to-mesenchymal transition (EndMT) was reported to mediate glomerular endothelial dysfunction, thus participating in the progress of fibrosis in DN. As a special type of epithelial-to-mesenchymal transition, EndMT and epithelial-to-mesenchymal transition may share corporate modulators. It was reported that EGF, Latrophilin And Seven Transmembrane Domain Containing 1 (ELTD1) and signal transducer and activator of transcription 5A (STAT5A) participate in epithelial-to-mesenchymal transition in some situations. In this work, we proposed that STAT5A participated in high glucose-mediated EndMT via modulation of ELTD1 levels in DN. Our data indicated that hyperglycemia/high glucose-induced ELTD1 and EndMT in DN rats and hyperglycemic human glomerular endothelial cells (HGECs). Also, high glucose mediated STAT5A nuclear translocation in HGECs. Moreover, high glucose-mediated EndMT was reversed by ELTD1 silencing. Further, STAT5A was found to be elevated in DN rats and hyperglycemic HGECs. The effect of high glucose-mediated increase of ELTD1 expression and EndMT was reversed by STAT5A silencing in vitro. Further, STAT5A overexpression enhanced ELTD1 levels and EndMT, which was inhibited by si-ELTD1. ChIP and luciferase assay represented that STAT5A directly regulated ELTD1 transcription. STAT5A directly regulated ELTD1 transcription, thus participating in high glucose-mediated EndMT in glomeruli of DN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ye Tian
- Department of Anesthesiology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhua Bi
- Department of Anesthesiology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuaina Ge
- Department of Anesthesiology, the Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Ye
- Department of Anesthesiology, Air force medical center, Beijing, China
| | - Wenjie Han
- Department of Geriatric Medicine, the Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Sun X, Xiao H, Li S, Chen R, Lin Z, Yang Y, Chen Z, Deng L, Huang H. Connexin32 ameliorates epithelial-to-mesenchymal-transition in diabetic renal tubular via inhibiting NOX4. Pharmacol Res 2022; 176:106084. [PMID: 35051590 DOI: 10.1016/j.phrs.2022.106084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.
Collapse
Affiliation(s)
- Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Cliff CL, Williams BM, Chadjichristos CE, Mouritzen U, Squires PE, Hills CE. Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int J Mol Sci 2022; 23:600. [PMID: 35054783 PMCID: PMC8776095 DOI: 10.3390/ijms23020600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release 'danger signals' including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.
Collapse
Affiliation(s)
- Chelsy L. Cliff
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Bethany M. Williams
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Christos E. Chadjichristos
- National Institutes for Health and Medical Research, UMR-S1155, Batiment Recherche, Tenon Hospital, 4 Rue de la Chine, 75020 Paris, France;
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark;
| | - Paul E. Squires
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| | - Claire E. Hills
- Joseph Banks Laboratories, School of Life, Sciences University of Lincoln, Lincoln LN6 7DL, UK; (C.L.C.); (B.M.W.); (P.E.S.)
| |
Collapse
|