1
|
Zhu S, Gu Q, Meng C, Liu J, Du X, Liao B, Liu F, Xia C. Oleanolic Acid Up-Regulated UGT1A1 and Antagonized Inflammation by Affecting the Binding of PXR and PKCα to HSP90α and SRC1. Phytother Res 2025. [PMID: 40420319 DOI: 10.1002/ptr.8515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 05/28/2025]
Abstract
Our previous studies have demonstrated that oleanolic acid (OA) can induce UGT1A1 expression in HepG2 cells by activating PXR and alleviate inflammatory damage caused by alpha-naphthyl isothiocyanate (ANIT). Activation of PKCα by phorbol-12-myristate-13-acetate (PMA) can significantly down-regulate the expression of UGT1A1 and counteract the inductive effect of OA on UGT1A1. This study aimed to explore the molecular mechanism of OA in up-regulating UGT1A1 and antagonizing inflammation based on the interaction of PXR and PKCα with HSP90α and SRC1. The expressions of PKCα, PXR, and UGT1A1, and the binding of PKCα and PXR to HSP90α and SRC1 were detected in HepG2 cells and in rats. The activation of PKCα induced by PMA or ANIT led to hyperinflammatory response and increased transfer of PKCα to the membrane, accompanied by decreased binding of PKCα to HSP90α and increased binding of PXR to HSP90α in the cytoplasm, which decreased the nuclear translocation of PXR and its binding to SRC1, and finally down-regulated the expression of UGT1A1. OA significantly inhibited the transfer of PKCα to cell membrane induced by PMA or ANIT, resulting in increased binding of PKCα to HSP90α and decreased binding of HSP90α to PXR in the cytoplasm. This facilitates PXR to enter the nucleus and increases its binding with SRC1, up-regulates UGT1A1 expression and inhibits inflammatory response. OA can affect the binding of PXR and PKCα with HSP90α and SRC1 to up-regulate the expression of UGT1A1 and finally antagonize inflammatory injury.
Collapse
Affiliation(s)
- Suqin Zhu
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Gu
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Meng
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianming Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinyue Du
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bin Liao
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fanglan Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, China
| | - Chunhua Xia
- Institute of Clinical Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of New Drug Transformation and Evaluation of Jiangxi Province, Nanchang, China
| |
Collapse
|
2
|
Du Q, He W, Chen X, Liu J, Guan M, Chen Y, Chen M, Yuan Y, Zuo Y, Miao Y, Wang Q, Zhou H, Liu Y, Jiang J, Zheng H. Bilirubin metabolism in the liver orchestrates antiviral innate immunity in the body. Cell Rep 2025; 44:115481. [PMID: 40153433 DOI: 10.1016/j.celrep.2025.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/09/2025] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
Bilirubin metabolism crucially maintains normal liver function, but whether it contributes to antiviral immunity remains unknown. Here, we reveal that the liver bilirubin metabolic pathway facilitates antiviral innate immunity of the body. We discovered that viral infection upregulates uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) expression in the liver, which in turn stabilizes IRF3 proteins to promote type I interferon (IFN-I) production. Moreover, we found that serum unconjugated bilirubin (UCB), a unique physiological substrate of UGT1A1, can competitively inhibit the binding of IFN-I to IFN-I receptor 2 (IFNAR2), thus attenuating IFN-I-induced antiviral signaling of the body. Accordingly, effective bilirubin metabolism in the liver promotes antiviral immunity of the body by specifically employing liver UGT1A1-mediated enhancement of IFN-I production and reducing serum bilirubin-mediated inhibition of IFN-I signaling. This study uncovers the significance of bilirubin metabolism in antiviral innate immunity and demonstrates that conventional IFN-I therapy is less efficient for patients with hepatitis B virus (HBV) with high levels of bilirubin.
Collapse
Affiliation(s)
- Qian Du
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei He
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiangjie Chen
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Mingcheng Guan
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yichang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Meixia Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yukang Yuan
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yibo Zuo
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Ying Miao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Qin Wang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Haiyan Zhou
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jingting Jiang
- Department of Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Hui Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences (IBMS), Collaborative Innovation Center of Hematology, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China; Department of Laboratory Medicine, Institute of Laboratory Medicine, Translational Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| |
Collapse
|
3
|
Wang X, Shi LL, Zhang YH, Zhu HZ, Cao SS, Shi Y, Shangguan HZ, Liu JP, Xie YD. Ameliorative Effect of Glycyrrhizic Acid on Diosbulbin B-Induced Liver Injury and Its Mechanism. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:309-335. [PMID: 39829229 DOI: 10.1142/s0192415x25500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study aimed to clarify the protective effect of Glycyrrhizic acid (GL) against Diosbulbin B (DB) - induced liver injury in mice and investigate its mechanisms of action. A liver injury DB was established in mice through the oral administration of DB for 15 days. At the same time, GL was administered to the mice for treatment. After the experiment, the pharmacodynamics and mechanisms of GL in ameliorating DB-induced liver injury were explored using biochemical indexes, non-targeted metabolomics, targeted metabolomics, Western blotting analysis of protein expression, 16S rDNA sequencing, and Spearman correlation analysis. The results show reduced liver function indices and improved DB-induced hepatic pathological changes. It also attenuated DB-induced hepatic inflammation and oxidative stress. Hepatic metabolomics revealed that GL regulated ABC transporters and bile secretion. Targeted bile acid (BA) metabolomics and Western blotting demonstrated that GL improved DB-induced reduction in BA efflux by regulating FXR-mediated efflux transporters. Furthermore, analysis of 16S rDNA gene sequencing revealed that GL effectively restored the relative abundance of beneficial bacteria, reduced the relative abundance of harmful bacteria, and reinstated the structure of the intestinal flora. Additionally, correlation analyses between BA and intestinal flora indicated that Firmicutes, Bacteroidota, TDGA, DGA, UDGA, GDGA, THDGA, and HDGA could serve as major markers for DB-induced liver injury. In conclusion, GL significantly improved DB-induced liver injury by increasing the expression of Nrf2/FXR-BSEP/MRP2/P-gp/UGT1A1, promoting BA efflux, regulating intestinal flora, and alleviating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Lei-Lei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Yu-Han Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Hong-Zhe Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Shan-Shan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Yong Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Hui-Zi Shangguan
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory for Safety Monitoring of Food and Drug, Xianyang 712046, P. R. China
| | - Yun-Dong Xie
- Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China
| |
Collapse
|
4
|
Peng Z, Wang X, Li Y, Ren Y, Meng Y, Sun L, Zhang Z, Song Y, Xia Y, Shi L, Yu S, Cheng L, Zhang X. Functional Characterization and In Silico Prediction Tools Improve the Pathogenicity Prediction of Novel Bile Acid Transporter Variants. Clin Genet 2025. [PMID: 39806568 DOI: 10.1111/cge.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The pathogenicity of cholestatic liver diseases (CLDs) remains insufficiently characterized, hindering definitive diagnosis and timely treatment. The aim of this study was to improve the pathogenicity prediction of novel bile acid (BA) transporter variants in patients with CLDs. We analyzed the clinical characteristics and genetic profiles of a CLD cohort (n = 57) using multiple in silico tools and in vitro functional assays. We identified 78 unique variants in four BA transporter genes. The predominant defects were associated with ABCC2 (57/78, 73.1%), with the most frequent being missense variants (39/78, 50.0%). Using in silico tools, we identified 47 novel variants: 12 mis-splicing, 21 deleterious missense, and 23 with altered protein stability. Of the 34 novel variants in ABCC2 identified through in vitro functional assays, seven incurred aberrant splicing, 11 missense variants resulted in MRP2 reduction, 9 missense variants resulted in abnormal N-glycosylation, 18 variants altered MRP2 localization, and 26 variants reduced organic anion transport activity. These findings indicate that a multidisciplinary approach, integrating bioinformatics and experimental data, significantly enhances the accuracy of genetic-based CLD diagnosis. It serves as a foundational study for BA transport variants pathogenicity reclassification and expands the mutation spectrum of CLDs in China.
Collapse
Affiliation(s)
- Ziyue Peng
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuhuan Meng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liwei Sun
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zitong Zhang
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yue Song
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Xia
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shihui Yu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liang Cheng
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xue Zhang
- Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Zhou Y, Shen W, Cui Y, Li Y, Liu H, Bao J, Jin Q. Primary sclerosing cholangitis with PLKR and UGT1A1 mutation manifested as recurrent bile duct stones: A case report. Medicine (Baltimore) 2025; 104:e41192. [PMID: 40184140 PMCID: PMC11709192 DOI: 10.1097/md.0000000000041192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 04/05/2025] Open
Abstract
RATIONALE Primary sclerosing cholangitis (PSC) is characterized by idiopathic intra- and extrahepatic bile duct inflammation and biliary fibrotic changes. Recurrent bile duct stones due to PLKR and UGT1A1 mutation is an extremely rare complications of PSC. PATIENT CONCERNS A 26-year-old male patient complains a history of recurrent yellow skin and urine for over a year. DIAGNOSES Following dynamic magnetic resonance cholangiopancreatography imaging, colonoscopic manifestation, liver biopsy and whole exome sequencing, the patient was finally diagnosed with PSC - ulcerative colitis with PLKR and UGT1A1 mutation. INTERVENTIONS Following resolution of the obstruction, a long-term regimen of 1000 mg/d ursodeoxycholic acid in combination with 10 mg/d obeticholic acid to improve cholestasis, 8 g/d colestyramine to facilitate adsorption of excess bile acids and 1.2 g/d rifaximin to prevent biliary tract infection were prescribed. OUTCOMES The patient's liver biochemical parameters have improved significantly. His condition is stable and has not undergone liver transplantation at this time. LESSONS Close and dynamic detection of the patient's biliary ductal lesions play an important role in the diagnosis of PSC. In the event of relatively rare biliary complications, attention should be paid to the presence of gene mutation.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Wei Shen
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Yusheng Cui
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Yunjiang Li
- Department of Radiology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Hong Liu
- Department of Pathology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Jianfeng Bao
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| | - Qiaofei Jin
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Nan N, Liu Y, Yan Z, Zhang Y, Li S, Zhang J, Qin G, Sang N. Ozone induced multigenerational glucose and lipid metabolism disorders in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175477. [PMID: 39151609 DOI: 10.1016/j.scitotenv.2024.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Ozone (O3), a persistent pollutant, poses a significant health threat. However, research on its multigenerational toxicity remains limited. Leveraging the Drosophila model with its short lifespan and advanced genetic tools, we explored the effects of O3 exposure across three generations of fruit flies. The findings revealed that O3 disrupted motility, body weight, stress resistance, and oxidative stress in three generations of flies, with varying effects observed among them. Transcriptome analysis highlighted the disruption of glucose metabolism-related pathways, encompassing gluconeogenesis/glycolysis, galactose metabolism, and carbon metabolism. Hub genes were identified, and RT-qPCR results indicated that O3 decreased their transcription levels. Comparative analysis of their human orthologs was conducted using Comparative Toxicogenomics Database (CTD) and DisGeNET databases. These genes are linked to various metabolic diseases, including diabetes, hypoglycemia, and obesity. The trehalose content was reduced in F0 generation flies but increased in F1-F2 generations after O3 exposure. While the trehalase and glucose levels were decreased across F0-F2 generations. TAG synthesis-related genes were significantly upregulated in F0 generation flies but downregulated in F1-F2 generations. The expression patterns of lipolysis-related genes varied among the three generations of flies. Food intake was increased in F0 generation flies but decreased in F1-F2 generations. Moreover, TAG content was significantly elevated in F0 generation flies by O3 exposure, while it was reduced in F2 generation flies. These differential effects of O3 across three generations of flies suggest a metabolic reprogramming aimed at mitigating the damage caused by O3 to flies. The study affirms the viability of employing the Drosophila model to investigate the mechanisms underlying O3-induced glucose and lipid metabolism disorders while emphasizing the importance of studying the long-term health effects of O3 exposure. Moreover, this research highlights the Drosophila model as a viable tool for investigating the multigenerational effects of pollutants, particularly atmospheric pollutants.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yuntong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Shiya Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
7
|
Xiao S, Yin H, Lv X, Wang Z, Jiang L, Xia Y, Liu Y. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by darolutamide: Prediction of in vivo drug-drug interactions. Chem Biol Interact 2024; 403:111246. [PMID: 39278459 DOI: 10.1016/j.cbi.2024.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Darolutamide is a potent second-generation, selective nonsteroidal androgen receptor inhibitor (ARI), which has been approved by the US Food and Drug Administration (FDA) in treating castrate-resistant, non-metastatic prostate cancer (nmCRPC). Whether darolutamide affects the activity of UDP-glucuronosyltransferases (UGTs) is unknown. The purpose of the present study is to evaluate the inhibitory effect of darolutamide on recombinant human UGTs and pooled human liver microsomes (HLMs), and explore the potential for drug-drug interactions (DDIs) mediated by darolutamide through UGTs inhibition. The product formation rate of UGTs substrates with or without darolutamide was determined by HPLC or UPLC-MS/MS to estimate the inhibitory effect and inhibition modes of darolutamide on UGTs were evaluated by using the inhibition kinetics experiments. The results showed that 100 μM darolutamide exhibited inhibitory effects on most of the 12 UGTs tested. Inhibition kinetic studies of the enzyme revealed that darolutamide noncompetitively inhibited UGT1A1 and competitively inhibited UGT1A7 and 2B15, with the Ki of 14.75 ± 0.78 μM, 14.05 ± 0.42 μM, and 6.60 ± 0.08 μM, respectively. In particular, it also potently inhibited SN-38, the active metabolite of irinotecan, glucuronidation in HLMs with an IC50 value of 3.84 ± 0.46 μM. In addition, the in vitro-in vivo extrapolation (IVIVE) method was used to quantitatively predict the risk of darolutamide-mediated DDI via inhibiting UGTs. The prediction results showed that darolutamide may increase the risk of DDIs when administered in combination with substrates of UGT1A1, UGT1A7, or UGT2B15. Therefore, the combined administration of darolutamide and drugs metabolized by the above UGTs should be used with caution to avoid the occurrence of potential DDIs.
Collapse
Affiliation(s)
- Shichao Xiao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Hang Yin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Xin Lv
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Zhen Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Lili Jiang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Yangliu Xia
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| | - Yong Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
8
|
Park SC, Kim YJ, Kim JW. Targeting uridine diphosphate glucuronosyltransferase 1A1 in liver disease: Current research and future directions. World J Gastroenterol 2024; 30:4305-4307. [PMID: 39492821 PMCID: PMC11525851 DOI: 10.3748/wjg.v30.i39.4305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
The current letter to the editor pertains to the manuscript entitled 'Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury'. Increased levels of uridine diphosphate glucuronosyltransferase 1A1 during liver injury could mitigate damage by reducing endoplasmic reticulum stress, oxidative stress, and dysregulated lipid metabolism, impeding hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yu Ji Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical School, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, South Korea
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15216, United States
| |
Collapse
|
9
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
10
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024; 56:302-317. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Wang K, Zhu Y, Li M, Yang Y, Zuo D, Sheng J, Zhang X, Wang W, Zhou P, Feng M. Genetically Modified Hepatocytes Targeting Bilirubin and Ammonia Metabolism for the Construction of Bioartificial Liver System. Biomater Res 2024; 28:0043. [PMID: 39011520 PMCID: PMC11246981 DOI: 10.34133/bmr.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Acute liver failure (ALF) is a complex syndrome that impairs the liver's function to detoxify bilirubin, ammonia, and other toxic metabolites. Bioartificial liver (BAL) aims to help ALF patients to pass through the urgent period by temporarily undertaking the liver's detoxification functions and promoting the recovery of the injured liver. We genetically modified the hepatocellular cell line HepG2 by stably overexpressing genes encoding UGT1A1, OATP1B1, OTC, ARG1, and CPS1. The resulting SynHeps-II cell line, encapsulated by Cytopore microcarriers, dramatically reduced the serum levels of bilirubin and ammonia, as demonstrated both in vitro using patient plasma and in vivo using ALF animal models. More importantly, we have also completed the 3-dimensional (3D) culturing of cells to meet the demands for industrialized rapid and mass production, and subsequently assembled the plasma-cell contacting BAL (PCC-BAL) system to fulfill the requirements of preclinical experiments. Extracorporeal blood purification of ALF rabbits with SynHeps-II-embedded PCC-BAL saved more than 80% of the animals from rapid death. Mechanistically, SynHeps-II therapy ameliorated liver and brain inflammation caused by high levels of bilirubin and ammonia and promoted liver regeneration by modulating the nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways. Also, SynHeps-II treatment reduced cerebral infiltration of neutrophils, reduced reactive oxygen species (ROS) levels, and mitigated hepatic encephalopathy. Taken together, SynHeps-II cell-based BAL was promising for the treatment of ALF patients and warrants clinical trials.
Collapse
Affiliation(s)
- Ke Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuankui Zhu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengqing Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaxi Yang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dianbao Zuo
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junfeng Sheng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinhai Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Wang
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Ping Zhou
- Wuhan TOGO Medical Technology Co. Ltd., Wuhan, Hubei 430205, China
| | - Mingqian Feng
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Rong Y, Li N, Qiao X, Yang L, Han P, Meng Z, Gan H, Wu Z, Zhu X, Sun Y, Liu S, Dou G, Gu R. Icaritin exhibits potential drug-drug interactions through the inhibition of human UDP-glucuronosyltransferase in vitro. Biopharm Drug Dispos 2024; 45:149-158. [PMID: 38886878 DOI: 10.1002/bdd.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17β-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (μM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (μM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.
Collapse
Affiliation(s)
- Yi Rong
- Office of Pharmacotoxicology, Center for Drug Evaluation, NMPA, Beijing, China
| | - Nanxi Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng Han
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
14
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
15
|
Xue Q, Wang Y, Liu Y, Hua H, Zhou X, Xu Y, Zhang Y, Xiong C, Liu X, Yang K, Huang Y. Dysregulated Glucuronidation of Bilirubin Exacerbates Liver Inflammation and Fibrosis in Schistosomiasis Japonica through the NF-κB Signaling Pathway. Pathogens 2024; 13:287. [PMID: 38668242 PMCID: PMC11054532 DOI: 10.3390/pathogens13040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this study, we observed a positive correlation between total bilirubin levels and the levels of ALT, AST, LN, and CIV in patients with advanced schistosomiasis. Additionally, we established mouse models at different time points following S. japonicum infection. As the infection time increased, liver fibrosis escalated, while liver UGT1A1 consistently exhibited a low expression, indicating impaired glucuronidation of bilirubin metabolism in mice. In vitro experiments suggested that SEA may be a key inhibitor of hepatic UGT1A1 expression after schistosome infection. Furthermore, a high concentration of bilirubin activated the NF-κB signaling pathway in L-O2 cells in vitro. These findings suggested that the dysregulated glucuronidation of bilirubin caused by S. japonicum infection may play a significant role in schistosomiasis liver fibrosis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qingkai Xue
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yuyan Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yiyun Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Haiyong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xiangyu Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yuzheng Huang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
16
|
Jiang JL, Zhou YY, Zhong WW, Luo LY, Liu SY, Xie XY, Mu MY, Jiang ZG, Xue Y, Zhang J, He YH. Uridine diphosphate glucuronosyltransferase 1A1 prevents the progression of liver injury. World J Gastroenterol 2024; 30:1189-1212. [PMID: 38577195 PMCID: PMC10989491 DOI: 10.3748/wjg.v30.i9.1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances. However, its contribution to the progression of liver damage remains unclear. AIM To determine the role and mechanism of UGT1A1 in liver damage progression. METHODS We investigated the relationship between UGT1A1 expression and liver injury through clinical research. Additionally, the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study. RESULTS Patients with UGT1A1 gene mutations showed varying degrees of liver damage, while patients with acute-on-chronic liver failure (ACLF) exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis. This suggests that low UGT1A1 levels may be associated with the progression of liver damage. In mouse models of liver injury induced by carbon tetrachloride (CCl4) and concanavalin A (ConA), the hepatic levels of UGT1A1 protein were found to be increased. In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression, the hepatic protein levels of UGT1A1 were decreased, which is consistent with the observations in patients with ACLF. UGT1A1 knockout exacerbated CCl4- and ConA-induced liver injury, hepatocyte apoptosis and necroptosis in mice, intensified hepatocyte endoplasmic reticulum (ER) stress and oxidative stress, and disrupted lipid metabolism. CONCLUSION UGT1A1 is upregulated as a compensatory response during liver injury, and interference with this upregulation process may worsen liver injury. UGT1A1 reduces ER stress, oxidative stress, and lipid metabolism disorder, thereby mitigating hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Jin-Lian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yi-Yang Zhou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen 448000, Hubei Province, China
| | - Lin-Yan Luo
- Department of Respiratory Medicine, Anshun People’s Hospital, Anshun 561099, Guizhou Province, China
| | - Si-Ying Liu
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao-Yu Xie
- Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Mao-Yuan Mu
- Department of Intervention Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Yuan Xue
- Department of Liver Diseases, Third People’s Hospital of Changzhou, Changzhou 213000, Jiangsu Province, China
| | - Jian Zhang
- Department of Digestion, Dafang County People’s Hospital, Bijie 551600, Guizhou Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
17
|
Chen X, Hao Z, Wang N, Zhu J, Yi H, Tang S. Genetic Polymorphisms of UDP-Glucuronosyltransferases and Susceptibility to Antituberculosis Drug-Induced Liver Injury: A Systematic Review and Meta-Analysis. J Trop Med 2023; 2023:5044451. [PMID: 37868740 PMCID: PMC10586897 DOI: 10.1155/2023/5044451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Methods The PRISMA statement was strictly followed, and the protocol was registered in PROSPERO (CRD42022339317). The PICOS framework was used: patients received antituberculosis treatment, UGTs polymorphisms (mutants), UGTs polymorphisms (wild), AT-DILI, and case-control studies. Eligible studies were searched through nine databases up to April 27, 2022. The study's qualities were assessed by the revised Little's recommendations. Meta-analysis was conducted with a random-effects model using odds ratios (ORs) with 95% confidence intervals (95% CIs) as the effect size. Results Twelve case-control studies with 2128 cases and 4338 controls were included, and 32 single nucleotide polymorphisms (SNPs) in the seven UGT genes have been reported in Chinese and Korean. All studies were judged as high quality. The pooled results indicated that UGT1A1 rs3755319 (AC vs. AA, OR = 1.454, 95% CI: 1.100-1.921, P = 0.009), UGT2B7 rs7662029 (G vs. A, OR = 1.547, 95% CI: 1.249-1.917, P < 0.0001; GG + AG vs. AA, OR = 2.371, 95% CI: 1.779-3.160, P < 0.0001; AG vs. AA, OR = 2.686, 95% CI: 1.988-3.627, P < 0.0001), and UGT2B7 rs7439366 (C vs. T, OR = 0.585, 95% CI: 0.477-0.717, P < 0.0001; CC + TC vs. TT, OR = 0.347, 95% CI: 0.238-0.506, P < 0.0001; CC vs. TC + TT, OR = 0.675, 95% CI: 0.507-0.898, P = 0.007) might be associated with the risk of AT-DILI. Conclusions The polymorphisms of UGT1A1 rs3755319, UGT2B7 rs7662029, and UGT2B7 rs7439366 were significantly associated with AT-DILI susceptibility. However, this conclusion should be interpreted with caution due to the low number of studies and the relatively small sample size.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Shintani T, Imamura C, Ueyama-Toba Y, Inui J, Watanabe A, Mizuguchi H. Establishment of UGT1A1-knockout human iPS-derived hepatic organoids for UGT1A1-specific kinetics and toxicity evaluation. Mol Ther Methods Clin Dev 2023; 30:429-442. [PMID: 37663646 PMCID: PMC10471830 DOI: 10.1016/j.omtm.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.
Collapse
Affiliation(s)
- Tomohiro Shintani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Chiharu Imamura
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Watanabe
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
20
|
Aronson SJ, Junge N, Trabelsi M, Kelmemi W, Hubert A, Brigatti KW, Fox MD, de Knegt RJ, Escher JC, Ginocchio VM, Iorio R, Zhu Y, Özçay F, Rahim F, El-Shabrawi MHF, Shteyer E, Di Giorgio A, D'Antiga L, Mingozzi F, Brunetti-Pierri N, Strauss KA, Labrune P, Mrad R, Baumann U, Beuers U, Bosma PJ. Disease burden and management of Crigler-Najjar syndrome: Report of a world registry. Liver Int 2022; 42:1593-1604. [PMID: 35274801 DOI: 10.1111/liv.15239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sem J Aronson
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Norman Junge
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Mediha Trabelsi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia
- Service des Maladies Congénitales et Héréditaires (Department of Hereditary and Congenital Disorders), Hôpital Charles Nicolle (Charles Nicolle Hospital), Tunis, Tunisia
| | - Wided Kelmemi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia
| | - Aurelie Hubert
- Department of Hereditary Diseases of Hepatic Metabolism, Hôpital Antoine Béclère, Clamart, France
| | | | - Michael D Fox
- Clinic for Special Children, Strasburg, Pennsylvania, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Virginia M Ginocchio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Yan Zhu
- Third Military Medical University, Chongqing, China
| | - Figen Özçay
- Department of Pediatric Gastroenterology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Health research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortada H F El-Shabrawi
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eyal Shteyer
- Paediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Angelo Di Giorgio
- Department of Paediatric Gastroenterology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Lorenzo D'Antiga
- Department of Paediatric Gastroenterology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, Pennsylvania, USA
- Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Philippe Labrune
- Department of Hereditary Diseases of Hepatic Metabolism, Hôpital Antoine Béclère, Clamart, France
| | - Ridha Mrad
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis (Laboratory of Human Genetics, Faculty of Medicine of Tunis, Université de Tunis El Manar (University of Tunis El Manar), Tunis, Tunisia
- Service des Maladies Congénitales et Héréditaires (Department of Hereditary and Congenital Disorders), Hôpital Charles Nicolle (Charles Nicolle Hospital), Tunis, Tunisia
| | - Ulrich Baumann
- Division for Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Piter J Bosma
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Liu W, Liu Y, Fang S, Yao W, Wang X, Bao Y, Shi W. Salvia miltiorrhiza polysaccharides alleviates florfenicol-induced liver metabolic disorder in chicks by regulating drug and amino acid metabolic signaling pathways. Poult Sci 2022; 101:101989. [PMID: 35841637 PMCID: PMC9289867 DOI: 10.1016/j.psj.2022.101989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Excessive and nonstandard use of florfenicol (FFC) can damage animal body, pollute ecological environment, and even harm human health. The toxic and side effects of FFC directly affect the production performance of poultry and the safe supply of chicken-related food. Salvia miltiorrhaza polysaccharides (SMPs) are natural macromolecular compounds, and were proved to have the effect of protecting animal liver. We used transcriptome and proteome sequencing technologies to study the effect of FFC on specific signal transduction pathways in chick livers and further explored the regulatory effect of SMPs on the above same signal pathways, and finally revealed the intervention effect and mechanism of SMPs on FFC-induced changes of liver function. The screened sequencing results were verified by qPCR and PRM methods. The results showed that FFC changed significantly 9 genes and 5 proteins in drug metabolism-cytochrome P450 signaling pathway, and the intervention of SMPs adjusted the expression levels of 5 genes and 4 proteins of the above factors. In glycine, serine and threonine metabolism signaling pathway, 8 genes and 8 proteins were significantly changed due to FFC exposure, and SMPs corrected the expression levels of 5 genes and 6 proteins to a certain extent. In conclusion, SMPs alleviated FFC-induced liver metabolic disorder in chicks by regulating the drug and amino acid metabolism pathway. This study is of great significance for promoting the healthy breeding of broilers and ensuring the safe supply of chicken-related products.
Collapse
Affiliation(s)
- Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Siyuan Fang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Weiyu Yao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
22
|
Zhan Z, Dai F, Zhang T, Chen Y, She J, Jiang H, Liu S, Gu T, Tang L. Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis. Pharmacol Res 2022; 178:106188. [PMID: 35338002 DOI: 10.1016/j.phrs.2022.106188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Hyperbilirubinemia is a serious hazard to human health due to its neurotoxicity and lethality. So far, successful therapy for hyperbilirubinemia with fewer side effects is still lacking. In this study, we aimed to clarify the effects of oridonin (Ori), an active diterpenoid extracted from Rabdosia rubescens, on hyperbilirubinemia and revealed the underlying molecular mechanism in vivo and in vitro. Here, we showed that liver X receptor alpha (LXRα) deletion eliminated the protective effect of Ori on phenylhydrazine hydrochloride-induced hyperbilirubinemia mice, indicating that LXRα acted as a key target for Ori treatment of hyperbilirubinemia. Ori significantly increased the expression of LXRα and UDP-glucuronosyltransferase 1A1 (UGT1A1) in the liver of wild-type (WT) mice, which were lost in LXRα-/- mice. Ori or LXR agonist GW3965 also reduced lipopolysaccharide/D-galactosamine-induced hyperbilirubinemia via activating LXRα/UGT1A1 in WT mice. Liver UGT1A1 enzyme activity was elevated by Ori or GW3965 in WT mice. Further, Ori up-regulated LXRα gene expression, increased its nuclear translocation and stimulated UGT1A1 promoter activity in HepG2 cells. After silencing LXRα by siRNA, Ori-induced UGT1A1 expression was markedly reduced in HepG2 cells and primary mouse hepatocytes. Taken together, Ori stimulated the transcriptional activity of LXRα, resulting in the up-regulation of UGT1A1. Therefore, Ori or its analogs might have the potential to treat hyperbilirubinemia-related diseases through modulating LXRα-UGT1A1 signaling.
Collapse
Affiliation(s)
- Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fahong Dai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tao Zhang
- Department of Pharmaceutical, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China
| | - Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
23
|
Liu D, Yu Q, Ning Q, Liu Z, Song J. The relationship between UGT1A1 gene & various diseases and prevention strategies. Drug Metab Rev 2021; 54:1-21. [PMID: 34807779 DOI: 10.1080/03602532.2021.2001493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UDP-glucuronyltransferase 1A1 (UGT1A1) is a member of the Phase II metabolic enzyme family and the only enzyme that can metabolize detoxified bilirubin. Inactivation and very low activity of UGT1A1 in the liver can be fatal or lead to lifelong Gilbert's syndrome (GS) and Crigler-Najjar syndrome (CN). To date, more than one hundred UGT1A1 polymorphisms have been discovered. Although most UGT1A1 polymorphisms are not fatal, which diseases might be associated with low activity UGT1A1 or UGT1A1 polymorphisms? This scientific topic has been studied for more than a hundred years, there are still many uncertainties. Herein, this article will summarize all the possibilities of UGT1A1 gene-related diseases, including GS and CN, neurological disease, hepatobiliary disease, metabolic difficulties, gallstone, cardiovascular disease, Crohn's disease (CD) obesity, diabetes, myelosuppression, leukemia, tumorigenesis, etc., and provide guidance for researchers to conduct in-depth study on UGT1A1 gene-related diseases. In addition, this article not only summarizes the prevention strategies of UGT1A1 gene-related diseases, but also puts forward some insights for sharing.
Collapse
Affiliation(s)
- Dan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China.,Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| |
Collapse
|