1
|
Magnifico S, Hinault-Boyer C, Bost F, Chevalier N. Prostate cancer and pollution: Dangerous connections. ANNALES D'ENDOCRINOLOGIE 2025; 86:101769. [PMID: 40339692 DOI: 10.1016/j.ando.2025.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Prostate cancer is the archetypal hormone-dependent cancer in men, mirroring breast cancer in women. The increase in its prevalence over time raises questions, and occupational exposure data, particularly among agricultural workers, have shown a probable or possible link with exposure to certain endocrine disruptors. The best-known of these is probably chlordecone, used in the French West Indies and responsible for an increased risk of prostate cancer. Outside these situations of occupational and/or acute exposure, it is more difficult to prove that endocrine disruptors are responsible for prostate cancer, particularly through epidemiological studies, the interpretation of which is still difficult. Animal models, in particular murine models, have demonstrated the role of fetal or early neonatal exposure in the development of prostate cancer in adulthood. In vitro models, meanwhile, are shedding light on the mechanisms involved in tumor promotion and progression, involving both classic hormone receptors (AR, ER) and other new signaling pathways. The aim of this review is to report the available data showing the link between exposure to endocrine disruptors and the risk of prostate cancer.
Collapse
Affiliation(s)
- Sébastien Magnifico
- Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet 2, Nice, France; Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France
| | - Charlotte Hinault-Boyer
- Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France; Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratoire d'Hormonologie, Hôpital Pasteur, Nice, France
| | - Frédéric Bost
- Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France
| | - Nicolas Chevalier
- Université Nice Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet 2, Nice, France; Université Nice Côte d'Azur, Inserm U1065, C3M (Centre Méditerranéen de Médecine Moléculaire), équipe 5 « Cancer, métabolisme et environnement », Nice, France.
| |
Collapse
|
2
|
Yang S, Dong H, Gou X, Chen L, Zhang Y, Wu J. Exposure to Per- and Polyfluoroalkyl Substances and the Risk of Prostate and Ovarian Cancer: An Epidemiologic Meta-Analysis. Am J Ind Med 2025; 68:399-412. [PMID: 40045703 DOI: 10.1002/ajim.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Previous research has linked PFAS exposure to prostate and ovarian cancer risk, however, the conclusions have been inconsistent. This research purpose was to determine the relationship between PFAS exposure and prostate and ovarian cancer at the population level. METHODS We systematically reviewed three databases-PubMed, Web of Science, and Embase-for research from when these databases were established to April 15, 2024. The quality of the retrieved research was evaluated using the Newcastle-Ottawa Scale (NOS) quality measurement tool. Meta-analysis of the extracted data was conducted using Stata 18. We also conducted sensitivity and subgroup analyses, as well as Begg's and Egger's tests. RESULTS Twelve publications were involved in the analysis for prostate cancer, and six were included for ovary cancer. The outcomes indicated that PFOS exposure was positively related to prostate cancer (OR: 1.13, 95% CI: 1.00-1.28), while mixed PFAS exposure was positively related to ovarian cancer (OR: 1.63, 95% CI: 1.49-1.78). The source of heterogeneity identified in the subgroup analysis was primarily attributable to variations in study design. No significant study bias was detected in the analysis. CONCLUSION The study demonstrated an association between PFAS exposure and both prostate and ovarian cancers. Further investigation is required to clarify the underlying mechanisms and potential associations.
Collapse
Affiliation(s)
- Shenglan Yang
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Dong
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Gou
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Limei Chen
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Hailemariam A, Upadhyay S, Srivastava V, Hafiz Z, Zhang L, Tsui WNT, Oany AR, Rivera-Rodriguez J, Chapkin RS, Riddell N, McCrindle R, McAlees A, Safe S. Perfluorooctane Sulfonate (PFOS) and Related Compounds Induce Nuclear Receptor 4A1 (NR4A1)-Dependent Carcinogenesis. Chem Res Toxicol 2025; 38:705-716. [PMID: 40066943 PMCID: PMC12015964 DOI: 10.1021/acs.chemrestox.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Polyfluoroalkyl substances (PFAS) are widely used industrial compounds that have been identified as contaminants in almost every component of the global ecosystem, and in human studies, higher levels of PFAS have been correlated with increased incidence of multiple diseases. Based on the results of human and laboratory animal studies, we hypothesize that the orphan nuclear receptor 4A1 (NR4A1) may be a critical target for some PFAS such as the legacy linear polyfluorooctanesulfonate (PFOS) and other sulfonates. We show that PFOS and related compounds bound the ligand binding domain (LBD) of NR4A1 and induced the growth of several cancer cell lines and enhanced tumor growth in an athymic nude mouse model. Using NR4A1-responsive rhabdomyosarcoma Rh30 cells as a model, PFOS induced NR4A1-dependent cell proliferation and Rh30 cell migration and invasion. Moreover, in Rh30 cells, PFOS also induces several NR4A1-regulated genes including the PAX3-FOXO1 oncogene and downstream gene products, and in a chromatin immunoprecipitation assay, PFOS does not decrease NR4A1 binding to the promoter. These results demonstrate that PFOS is an NR4A1 ligand and enhances tumorigenesis through the activation of this receptor.
Collapse
Affiliation(s)
- Amanuel Hailemariam
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Srijana Upadhyay
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Vinod Srivastava
- Department
of Veterinary Integrative Biosciences, Texas
A&M University, College
Station, Texas 77845 , United States
| | - Zahin Hafiz
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Lei Zhang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Wai Ning Tiffany Tsui
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Arafat Rahman Oany
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| | - Jaileen Rivera-Rodriguez
- Department
of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843 , United States
| | - Robert S. Chapkin
- Department
of Nutrition, Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843 , United States
| | - Nicole Riddell
- Wellington
Laboratories Inc, 345
Southgate Dr., Guelph, ON N1G 3M5 , Canada
| | - Robert McCrindle
- Wellington
Laboratories Inc, 345
Southgate Dr., Guelph, ON N1G 3M5 , Canada
| | - Alan McAlees
- Wellington
Laboratories Inc, 345
Southgate Dr., Guelph, ON N1G 3M5 , Canada
| | - Stephen Safe
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843 , United States
| |
Collapse
|
4
|
Chambial P, Thakur N, Kushawaha J, Kumar R. Per- and polyfluoroalkyl substances in environment and potential health impacts: Sources, remediation treatment and management, policy guidelines, destructive technologies, and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178803. [PMID: 40020591 DOI: 10.1016/j.scitotenv.2025.178803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl Substances (PFAS), also known as forever chemicals and ubiquitous persistence, pose significant public health challenges due to their potential toxicity, particularly in drinking water and soil contamination. However, PFAS occurrence and their concentrations in different environmental matrices vary globally, but factors influencing trends, transport, fate, toxicity, and interactions with co-contaminants remain largely unexplored. Therefore, this review critically examines the state-of-the-art worldwide PFAS sources, distribution, and pathways, and evaluates how PFASs are processed in wastewater treatment, generally, which causes severe problems with the quality and safety of drinking water. Importantly, the review also underscores health issues due to PFAS consumption and recent research trends on developing effective treatment strategies to manage PFAS contamination. Potential effects of PFAS were linked to urban land use and the proportion of wastewater effluent in streamflow. Besides, major emphasis was provided on challenges for conventional treatment, destructive technologies, environmental accumulation, precursor transformation, and cost-investment related to PFAS removal technologies. To combat PFAS contamination, this review proposes a framework that promotes the comprehensive identification of prevalent compounds, with a focus on their eradication through knowledge-based and targeted analysis. Additionally, it explores the ongoing debate surrounding PFAS laws and legal frameworks, offering ideas for enhancing contamination management. Lastly, this review provides a strategic plan for improving response and preparedness, serving as a foundation for addressing future environmental challenges and informing health risk assessments.
Collapse
Affiliation(s)
- Priyanka Chambial
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Mandi, Himachal Pradesh 175001, India.
| | - Jyoti Kushawaha
- Department of Environmental Studies, Ramanujan College, University of Delhi, New Delhi 110019, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
5
|
Kronstedt S, Chiu CB, Wahlstedt E, Cathey J, Saffati G, Rendon DO, Hinojosa-Gonzalez DE, Alrabaa A, Jones JA. Should Military Veterans Be Classified as High Risk for Prostate Cancer Screening? A Systematic Review and Meta-analysis. Urology 2025; 197:202-221. [PMID: 39426737 DOI: 10.1016/j.urology.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE To assess the unique risks of prostate cancer among U.S. veterans, and to advocate for improved care by raising awareness of the gaps in current AUA guidelines that do not address the specific needs of military personnel and veterans. METHODS Ovid interface, Google Scholar, PubMed, and Medline were searched for studies investigating prostate cancer in veterans published between 1975 and 2023. Search terms: "veteran", "military", "molecular markers", "prostate cancer", "prostate cancer risk", and "military exposure" were used. Articles meeting inclusion criteria underwent analysis, data synthesis, and meta-analysis where applicable. RESULTS Results from 45 articles indicate a significant increase in prostate cancer risk associated with exposure to Agent Orange (OR 1.97 [95% CI: 1.64-2.37], P <.00001), aromatic hydrocarbons (OR 1.14 [95% CI: 1.01-1.28], P = .03), and a slight increase with cadmium exposure (OR 1.03 [95% CI: 0.96-1.09], P = .42). While some evidence suggests an association between Camp Lejeune and prostate cancer risk in retrospective cohort studies, logistical regression analysis study did not entirely substantiate this relationship. CONCLUSION This review identifies several exposures that elevate prostate cancer risk. Military veterans should be further questioned about their exposures and potentially treated as a high-risk screening group. Further research is warranted to strengthen these associations, as the current evidence remains limited.
Collapse
Affiliation(s)
- Shane Kronstedt
- Scott Department of Urology, Baylor College of Medicine, Houston, TX.
| | | | - Eric Wahlstedt
- University of Kentucky College of Medicine, Lexington, KY
| | | | - Gal Saffati
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | | | | | | | | |
Collapse
|
6
|
Zhou X, Hu F, Chen Y, Xie K, Hong WJ, Li M, Guo LH. Insights into toxicological mechanisms of per-/polyfluoroalkyl substances by using omics-centered approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125634. [PMID: 39755359 DOI: 10.1016/j.envpol.2025.125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure. This paper comprehensively reviews the insights of omics approaches, especially the multi-omics approach, on the toxic mechanisms of both legacy and emerging PFASs in recent five years, focusing on hepatotoxicity, developmental toxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and the endocrine-disrupting effect. PFASs exert various toxic effects via lipid and amino acid metabolism disruption, perturbations in several cell signal pathways, and binding to nuclear receptors. Notably, integrating multi-omics offers a thorough insight into the mechanisms of toxicity associated with PFASs. The gut microbiota plays an essential regulatory role in the toxic mechanisms of PFAS-induced hepatotoxicity. Finally, further research directions for PFAS toxicology based on omics technologies are prospected.
Collapse
Affiliation(s)
- Xinyi Zhou
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China
| | - Fanglin Hu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, China
| | - Yafang Chen
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China
| | - Kun Xie
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
7
|
He X, Sun Z, Sun J, Chen Y, Luo Y, Wang Z, Linghu D, Song M, Cao C. Single-cell transcriptomics reveal the microenvironment landscape of perfluorooctane sulfonate-induced liver injury in female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173562. [PMID: 38825197 DOI: 10.1016/j.scitotenv.2024.173562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Epidemic and animal studies have reported that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are strongly associated with liver injury; however, to date, the effects of PFASs on the hepatic microenvironment remain largely unknown. In this study, we established perfluorooctane sulfonic acid (PFOS)-induced liver injury models by providing male and female C57BL/6 mice with water containing PFOS at varying doses for 4 weeks. Hematoxylin and eosin staining revealed that PFOS induced liver injury in both sexes. Elevated levels of serum aminotransferases including those of alanine aminotransferase and aspartate transaminase were detected in the serum of mice treated with PFOS. Female mice exhibited more severe liver injury than male mice. We collected the livers from female mice and performed single-cell RNA sequencing. In total, 36,529 cells were included and grouped into 10 major cell types: B cells, granulocytes, T cells, NK cells, monocytes, dendritic cells, macrophages, endothelial cells, fibroblasts, and hepatocytes. Osteoclast differentiation was upregulated and the T cell receptor signaling pathway was significantly downregulated in PFOS-treated livers. Further analyses revealed that among immune cell clusters in PFOS-treated livers, Tcf7+CD4+T cells were predominantly downregulated, whereas conventional dendritic cells and macrophages were upregulated. Among the fibroblast subpopulations, hepatic stellate cells were significantly enriched in PFOS-treated female mice. CellphoneDB analysis suggested that fibroblasts interact closely with endothelial cells. The major ligand-receptor pairs between fibroblasts and endothelial cells in PFOS-treated livers were Dpp4_Cxcl12, Ackr3_Cxcl12, and Flt1_complex_Vegfa. These genes are associated with directing cell migration and angiogenesis. Our study provides a general framework for understanding the microenvironment in the livers of female mice exposed to PFOS at the single-cell level.
Collapse
Affiliation(s)
- Xinrong He
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhichao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyao Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongli Linghu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Miao Song
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Arredondo Eve A, Tunc E, Mehta D, Yoo JY, Yilmaz HE, Emren SV, Akçay FA, Madak Erdogan Z. PFAS and their association with the increased risk of cardiovascular disease in postmenopausal women. Toxicol Sci 2024; 200:312-323. [PMID: 38758093 PMCID: PMC11285195 DOI: 10.1093/toxsci/kfae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the major causes of death globally. In addition to traditional risk factors such as unhealthy lifestyles (smoking, obesity, sedentary) and genetics, common environmental exposures, including persistent environmental contaminants, may also influence CVD risk. Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated chemicals used in household consumer and industrial products known to persist in our environment for years, causing health concerns that are now linked to endocrine disruptions and related outcomes in women, including interference of the cardiovascular and reproductive systems. In postmenopausal women, higher levels of PFAS are observed than in premenopausal women due to the cessation of menstruation, which is crucial for PFAS excretion. Because of these findings, we explored the association between perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorobutanesulfonic acid in postmenopausal women from our previously established CVD study. We used liquid chromatography with tandem mass spectrometry, supported by machine learning approaches, and the detection and quantification of serum metabolites and proteins. Here, we show that PFOS can be a good predictor of coronary artery disease, whereas PFOA can be an intermediate predictor of coronary microvascular disease. We also found that the PFAS levels in our study are significantly associated with inflammation-related proteins. Our findings may provide new insight into the potential mechanisms underlying the PFAS-induced risk of CVDs in this population. This study shows that exposure to PFOA and PFOS is associated with an increased risk of cardiovascular disease in postmenopausal women. PFOS and PFOA levels correlate with amino acids and proteins related to inflammation. These circulating biomarkers contribute to the etiology of CVD and potentially implicate a mechanistic relationship between PFAS exposure and increased risk of cardiovascular events in this population.
Collapse
Affiliation(s)
- Alicia Arredondo Eve
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elif Tunc
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | - Dhruv Mehta
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jin Young Yoo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huriye Erbak Yilmaz
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
- Izmir Biomedicine and Genome Center, Balcova, Izmir, 35340, Turkey
| | - Sadık Volkan Emren
- Research and Training Hospital, Katip Celebi University, Izmir, 35310, Turkey
| | | | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Mao X, Liu Y, Wei Y, Li X, Liu Y, Su G, Wang X, Jia J, Yan B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171188. [PMID: 38395163 DOI: 10.1016/j.scitotenv.2024.171188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Environmental exposure to per- and poly-fluoroalkyl substances (PFAS) has raised significant global health concerns due to potential hazards in healthy adults. However, the impact of PFAS on susceptible populations, including pregnant individuals, newborns, the older people, and those with underlying health conditions, has been overlooked. These susceptible groups often have physiological changes that make them less resilient to the same exposures. Consequently, there is an urgent need for a comprehensive understanding of the health risks posed by PFAS exposure to these populations. In this review, we delve into the potential health risks of PFAS exposure in these susceptible populations. Equally important, we also examine and discuss the molecular mechanisms that underlie this susceptibility. These mechanisms include the induction of oxidative stress, disruption of the immune system, impairment of cellular metabolism, and alterations in gut microbiota, all of which contribute to the enhanced toxicity of PFAS in susceptible populations. Finally, we address the primary research challenges and unresolved issues that require further investigation. This discussion aims to foster research for a better understanding of how PFAS affect susceptible populations and to pave the way for strategies to minimize their adverse effects.
Collapse
Affiliation(s)
- Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaodi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
10
|
Nguyen TV, Trang PN, Kumar A. Understanding PFAS toxicity through cell culture metabolomics: Current applications and future perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108620. [PMID: 38579451 DOI: 10.1016/j.envint.2024.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), ubiquitous environmental contaminants, pose significant challenges to ecosystems and human health. While cell cultures have emerged as new approach methodologies (NAMs) in ecotoxicity research, metabolomics is an emerging technique used to characterize the small-molecule metabolites present in cells and to understand their role in various biological processes. Integration of metabolomics with cell cultures, known as cell culture metabolomics, provides a novel and robust tool to unravel the complex molecular responses induced by PFAS exposure. In vitro testing also reduces reliance on animal testing, aligning with ethical and regulatory imperatives. The current review summarizes key findings from recent studies utilizing cell culture metabolomics to investigate PFAS toxicity, highlighting alterations in metabolic pathways, biomarker identification, and the potential linkages between metabolic perturbations. Additionally, the paper discusses different types of cell cultures and metabolomics methods used for studies of environmental contaminants and particularly PFAS. Future perspectives on the combination of metabolomics with other advanced technologies, such as single-cell metabolomics (SCM), imaging mass spectrometry (IMS), extracellular flux analysis (EFA), and multi-omics are also explored, which offers a holistic understanding of environmental contaminants. The synthesis of current knowledge and identification of research gaps provide a foundation for future investigations that aim to elucidate the complexities of PFAS-induced cellular responses and contribute to the development of effective strategies for mitigating their adverse effects on human health.
Collapse
Affiliation(s)
- Thao V Nguyen
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia; NTT Institute of High Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam.
| | - Phan Nguyen Trang
- Department of Food Technology, Institute of Food and Biotechnology, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam.
| | - Anu Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Waite Campus, South Australia 5064, Australia.
| |
Collapse
|
11
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
13
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Zhang Q, Wang Y, Shen X, Zhan M, Zhang J, Tian Y, Chen X. Environmental exposure to per- and perfluoroalkyl substances in early pregnancy and newborn anogenital distance: A prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99704-99712. [PMID: 37615915 DOI: 10.1007/s11356-023-29446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, ubiquitous pollutants, and the current epidemiological evidence regarding the impact of in utero exposure to PFAS on anogenital distance (AGD) is limited and inconclusive. The primary aim of this study was to investigate the potential associations between maternal exposure to PFAS during pregnancy and AGD in newborns. A total of 2273 mother-child pairs were recruited for this study, and both PFAS levels and AGD were measured. Multiple linear regression models were utilized to explore the relationships between individual PFAS and AGD. Additionally, quantile-based g-computation (QGC) was employed to assess the joint effects of mixtures of PFAS on AGD. Our findings showed that maternal exposure to PFOS (β = 0.518, 95% CI: 0.093, 0.942), PFNA (β = 0.487, 95% CI: 0.037, 0.937), PFDA (β = 0.443, 95% CI: 0.048, 0.838), PFUA (β = 0.434, 95% CI: 0.031, 0.838), and PFBS (β = 0.444, 95% CI: 0.124, 0.763) during early pregnancy had a significant positive association with AGD in boys. Similarly, in girls, maternal exposure to PFOS (β = 0.423, 95% CI: 0.006, 0.841), PFNA (β = 0.641, 95% CI: 0.207, 1.074), PFDA (β = 0.670, 95% CI: 0.306, 1.033), PFUA (β = 0.895, 95% CI: 0.509, 1.281), and PFBS (β = 0.474, 95% CI: 0.178, 0.770) had a positive association with AGD, while PFOA (β = -1.254, 95% CI: -1.786, -0.723) had a negative association. QGC models further confirmed that PFAS mixtures were positively associated with AGD. Moreover, PFBS was the primary contributor to the joint effects of PFAS mixtures on AGD. In summary, our study has provided further corroboration for the possibility that PFAS exposure can have an impact on AGD in both boys and girls. The use of AGD as a promising biomarker for endocrine disruption highlights the significance of our findings, which may have valuable clinical implications for reproductive diseases.
Collapse
Affiliation(s)
- Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoli Shen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ming Zhan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- Shanghai Human Sperm Bank, Shanghai, 200135, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiangfeng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- Shanghai Human Sperm Bank, Shanghai, 200135, China.
| |
Collapse
|
15
|
Durham J, Tessmann JW, Deng P, Hennig B, Zaytseva YY. The role of perfluorooctane sulfonic acid (PFOS) exposure in inflammation of intestinal tissues and intestinal carcinogenesis. FRONTIERS IN TOXICOLOGY 2023; 5:1244457. [PMID: 37662676 PMCID: PMC10469509 DOI: 10.3389/ftox.2023.1244457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.
Collapse
Affiliation(s)
- Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
Low Doses of PFOA Promote Prostate and Breast Cancer Cells Growth through Different Pathways. Int J Mol Sci 2022; 23:ijms23147900. [PMID: 35887249 PMCID: PMC9318902 DOI: 10.3390/ijms23147900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Compounds (EDCs) are found in everyday products. Widely distributed throughout the environment, persistent organic pollutants (POPs) are a specific class of EDCs that can accumulate in adipose tissue. Many of them induce adverse effects on human health—such as obesity, fertility disorders and cancers—by perturbing hormone effects. We previously identified many compounds with EDC activity in the circulation of obese patients who underwent bariatric surgery. Herein, we analyzed the effects of four of them (aldrin, BDE28, PFOA and PCB153) on two cancer cell lines of hormone-sensitive organs (prostate and breast). Each cell line was exposed to serial dilutions of EDCs from 10−6 M to 10−12 M; cytotoxicity and proliferation were monitored using the IncuCyte® technology. We showed that none of these EDCs induce cytotoxicity and that PFOA and PCB153, only at very low doses (10−12 M), increase the proliferation of DU145 (prostate cancer) and MCF7 (breast cancer) cells, while the same effects are observed with high concentrations (10−6 M) for aldrin or BDE28. Regarding the mechanistic aspects, PFOA uses two different signaling pathways between the two lines (the Akt/mTORC1 and PlexinD1 in MCF7 and DU145, respectively). Thus, our study demonstrates that even at picomolar (10−12 M) concentrations PFOA and PCB153 increase the proliferation of prostate and breast cancer cell lines and can be considered possible carcinogens.
Collapse
|
17
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Zuo Q, Mogol AN, Liu YJ, Santaliz Casiano A, Chien C, Drnevich J, Imir OB, Kulkoyluoglu-Cotul E, Park NH, Shapiro DJ, Park BH, Ziegler Y, Katzenellenbogen BS, Aranda E, O'Neill JD, Raghavendra AS, Tripathy D, Madak Erdogan Z. Targeting metabolic adaptations in the breast cancer-liver metastatic niche using dietary approaches to improve endocrine therapy efficacy. Mol Cancer Res 2022; 20:923-937. [PMID: 35259269 DOI: 10.1158/1541-7786.mcr-21-0781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant (Fulv) as standard-of-care. Yet, among such patients, metastasis in the liver is associated with reduced overall survival compared to other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to Fulv. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of Fulv treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. Implications: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.
Collapse
Affiliation(s)
- Qianying Zuo
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ayca Nazli Mogol
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yu-Jeh Liu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Christine Chien
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jenny Drnevich
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ozan Berk Imir
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | - David J Shapiro
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ben Ho Park
- Vanderbilt University, Nashville, TN, United States
| | - Yvonne Ziegler
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | | | | | | - Debu Tripathy
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|