1
|
Huang Y, Osouli A, Li H, Dudaney M, Pham J, Mancino V, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Therapeutic potential of urinary extracellular vesicles in delivering functional proteins and modulating gene expression for genetic kidney disease. Biomaterials 2025; 321:123296. [PMID: 40158444 PMCID: PMC12048220 DOI: 10.1016/j.biomaterials.2025.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Chronic kidney disease (CKD) is a widespread health concern, impacting approximately 600 million individuals worldwide and marked by a progressive decline in kidney function. A common form of CKD is autosomal dominant polycystic kidney disease (ADPKD), which is the most inherited genetic kidney disease and affects greater than 12.5 million individuals globally. Given that there are over 400 pathogenic PKD1/PKD2 mutations in patients with ADPKD, relying solely on small molecule drugs targeting a single signaling pathway has not been effective in treating ADPKD. Urinary extracellular vesicles (uEVs) are naturally released by cells from the kidneys and the urinary tract, and uEVs isolated from non-disease sources have been reported to carry functional polycystin-1 (PC1) and polycystin-2 (PC2), the respective products of PKD1 and PKD2 genes that are mutated in ADPKD. uEVs from non-disease sources, as a result, have the potential to provide a direct solution to the root of the disease by delivering functional proteins that are mutated in ADPKD. To test our hypothesis, we first isolated uEVs from healthy mice urine and conducted a comprehensive characterization of uEVs. Then, PC1 levels and EV markers CD63 and TSG101 of uEVs were confirmed via ELISA and Western blot. Following characterization of uEVs, the in vitro cellular uptake, inhibition of cyst growth, and gene rescue ability of uEVs were demonstrated in kidney cells. Next, upon administration of uEVs in vivo, uEVs showed bioavailability and accumulation in the kidneys. Lastly, uEV treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) showed smaller kidney size, lower cyst index, and enhanced PC1 levels without affecting safety despite repeated treatment. In summary, we demonstrate the potential of uEVs as natural nanoparticles to deliver protein and gene therapies for the treatment of chronic and genetic kidney diseases such as ADPKD.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megan Dudaney
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Bridge Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Sivalingam AM, Sureshkumar DD. Exosomes in Regulating miRNAs for Biomarkers of Neurodegenerative Disorders. Mol Neurobiol 2025; 62:7576-7596. [PMID: 39918711 DOI: 10.1007/s12035-025-04733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/29/2025] [Indexed: 05/15/2025]
Abstract
Exosomal proteins and miRNAs, including α-synuclein, Aβ, tau, CXCL12, miR-24, and miR-23b-3p, are emerging as valuable biomarkers for Parkinson's disease and prenatal diagnostics, with significant potential for personalized therapies. Advances in MRI and chitosan-based drug delivery systems are creating new opportunities for diagnosing and treating neurodegenerative disorders. Exosomes regulate miRNAs and proteins, presenting theranostic potential for Alzheimer's and Huntington's diseases, yet facing delivery and targeting challenges. Exosomal miRNAs, such as miR-1234, miR-5678, and miR-29a, are crucial for the early detection and monitoring of the progression of neurodegenerative diseases. Additionally, novel biomarkers such as SCA27B and FGF14 gene mutations and serum miR-455-3p offer promising noninvasive diagnostic methods for Alzheimer's disease. The expanding role of exosome-derived miRNAs in targeting oncogenes and regulating the cell cycle enhances therapeutic strategies for neurological disorders, opening doors to more personalized and effective disease management.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Darshitha D Sureshkumar
- Department of Forensic Science, NIMS Institute of Allied Medical Science and Technology, (NIMS University), Jaipur, 303121, Rajasthan, India
| |
Collapse
|
3
|
Rao S, Madhu LN, Babu RS, Shankar G, Kotian S, Nagarajan A, Upadhya R, Narvekar E, Cai JJ, Shetty AK. Extracellular vesicles from hiPSC-derived NSCs protect human neurons against Aβ-42 oligomers induced neurodegeneration, mitochondrial dysfunction and tau phosphorylation. Stem Cell Res Ther 2025; 16:191. [PMID: 40251643 PMCID: PMC12008877 DOI: 10.1186/s13287-025-04324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta-42 (Aβ-42) in the brain, causing various adverse effects. Thus, therapies that reduce Aβ-42 toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced toxicity. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons from Aβ-42 oligomers (Aβ-42o) induced neurodegeneration. METHODS We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42o alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. RESULTS A significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Neurodegeneration was associated with (1) elevated levels of reactive oxygen species (ROS), mitochondrial superoxide, malondialdehyde (MDA) and protein carbonyls (PCs), (2) increased expression of proapoptotic Bax and Bad genes and proteins, and genes encoding mitochondrial complex proteins, (3) diminished mitochondrial membrane potential and mitochondria, (4) reduced expression of the antiapoptotic gene and protein Bcl-2, and autophagy-related proteins, and (5) increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 × 109 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of ROS, superoxide, MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and autophagy-related proteins, higher mitochondrial membrane potential and mitochondria, enhanced expression of genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. CONCLUSIONS An optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
Affiliation(s)
- Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Roshni Sara Babu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Sanya Kotian
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Advaidhaa Nagarajan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Esha Narvekar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA.
| |
Collapse
|
4
|
Shi X, He W, Gupta A, To K, Clark L, Mirle N, Wynn T, Wang D, Ganesh A, Zeng HM, Wang H. Extracellular vesicles as drug and gene delivery vehicles in central nervous system diseases. Biomater Sci 2025; 13:1161-1178. [PMID: 39871579 PMCID: PMC11773327 DOI: 10.1039/d4bm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers. EVs from different cell types or biological fluids carry distinct cargo depending on their origin, and they perform diverse functions. For instance, EVs derived from stem cells possess pluripotent properties, reflecting the cargo from their parent cells. Over the past two decades, substantial preclinical and clinical research has explored EVs-mediated drug and gene delivery to various organs, including the brain. Natural or intrinsic EVs may be effective for certain applications, but as drug or gene carriers, they demonstrate broader and more efficient potential across various diseases. Here, we review research on using EVs to treat central nervous system (CNS) diseases, such as Alzheimer's Disease, Parkinson diseases, depression, anxiety, dementia, and acute ischemic strokes. We first reviewed the naïve EVs, especially mesenchymal stem cell (MSC) derived EVs in CNS diseases and summarized the clinical trials of EVs in treating CNS diseases and highlighted the reports of two complete trials. Then, we overviewed the preclinical research of EVs as drug and gene delivery vehicles in CNS disease models, including the most recent two years' progress and discussed the mechanisms and new methods of engineered EVs for targeting CNS. Finally, we discussed challenges and future directions and of EVs as personalized medicine for CNS diseases.
Collapse
Affiliation(s)
- Xi Shi
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Weilong He
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ashwin Gupta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyran To
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Leonardo Clark
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nitya Mirle
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akash Ganesh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena M Zeng
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huiliang Wang
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Reddi Sree R, Kalyan M, Anand N, Mani S, Gorantla VR, Sakharkar MK, Song BJ, Chidambaram SB. Newer Therapeutic Approaches in Treating Alzheimer's Disease: A Comprehensive Review. ACS OMEGA 2025; 10:5148-5171. [PMID: 39989768 PMCID: PMC11840625 DOI: 10.1021/acsomega.4c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an aging-related irreversible neurodegenerative disease affecting mostly the elderly population. The main pathological features of AD are the extracellular Aβ plaques generated by APP cleavage through the amyloidogenic pathway, the intracellular neurofibrillary tangles (NFT) resulting from the hyperphosphorylated tau proteins, and cholinergic neurodegeneration. However, the actual causes of AD are unknown, but several studies suggest hereditary mutations in PSEN1 and -2, APOE4, APP, and the TAU genes are the major perpetrators. In order to understand the etiology and pathogenesis of AD, various hypotheses are proposed. These include the following hypotheses: amyloid accumulation, tauopathy, inflammation, oxidative stress, mitochondrial dysfunction, glutamate/excitotoxicity, cholinergic deficiency, and gut dysbiosis. Currently approved therapeutic interventions are donepezil, galantamine, and rivastigmine, which are cholinesterase inhibitors (ChEIs), and memantine, which is an N-methyl-d-aspartate (NMDA) antagonist. These treatment strategies focus on only symptomatic management of AD by attenuating symptoms but not regeneration of neurons or clearance of Aβ plaques and hyperphosphorylated Tau. This review focuses on the pathophysiology, novel therapeutic targets, and disease-altering treatments such as α-secretase modulators, active immunotherapy, passive immunotherapy, natural antioxidant products, nanomaterials, antiamyloid therapy, tau aggregation inhibitors, transplantation of fecal microbiota or stem cells, and microtubule stabilizers that are in clinical trials or still under investigation.
Collapse
Affiliation(s)
- Radhakrishna Reddi Sree
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Manjunath Kalyan
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department
of Pharmacology, American University of
Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, Barbuda
| | - Sangeetha Mani
- Department
of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and
Research, Porur, Chennai 600116, India
| | - Vasavi Rakesh Gorantla
- Department
of Anatomical Sciences, St. George’s University School of Medicine, St. George’s University, Saint George, Grenada
| | - Meena Kishore Sakharkar
- College
of
Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Byoung-Joon Song
- Section
of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry
and Biophysics, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre
for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
6
|
Chang J, Yin XM, Zhang M, Liu JW, Zhao L. Bridging bioengineering and nanotechnology: Bone marrow derived mesenchymal stem cell-exosome solutions for peripheral nerve injury. World J Stem Cells 2025; 17:101161. [PMID: 39866899 PMCID: PMC11752453 DOI: 10.4252/wjsc.v17.i1.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs. BMSCs-derived exosomes (Exos) are considered as a promising cell-free nanomedicine for PNI, avoiding the ethical issues of BMSCs. Exos in combination with bioengineering therapeutics (including extracellular matrix, hydrogel) brings new hope for PNI, provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile, significantly increases expression of neurotrophic factors, promotes axonal and myelin regeneration, and demonstrates a strong potential to enhance neurogenesis. Therefore, engineered Exos exhibit better properties, such as stronger targeting and more beneficial components. This article briefly describes the role of nanotechnology and bioengineering therapies for BMSCs in PNI, proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiu-Mei Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Man Zhang
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian-Wei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
7
|
Melo RF, Nascimento Dari D, da Silva Aires FI, Simão Neto F, Freire TM, Fernandes BCC, Fechine PBA, Soares JM, Sousa dos Santos JC. Global Advancements in Bioactive Material Manufacturing for Drug Delivery: A Comprehensive Study. ACS OMEGA 2025; 10:1207-1225. [PMID: 39829510 PMCID: PMC11740136 DOI: 10.1021/acsomega.4c08669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Manufacturing bioactive materials for drug delivery involves developing materials that interact with biological tissues to release drugs in a controlled and targeted manner. The goal is to optimize therapeutic efficacy and reduce side effects by combining knowledge from materials engineering, biology, and pharmacology. This study presents a detailed bibliometric analysis, exploring the keywords "manufacturing," "bioactive materials," and "drug delivery" to identify and highlight significant advancements in the field. From the Web of Science, 36,504 articles were analyzed, with 171 selected for a deeper analysis, identifying key journals, countries, institutions, and authors. The results highlight the field's interdisciplinary nature, with keywords grouped into four main themes, including regenerative medicine, scaffolds, three-dimensional (3D) printing, bioactive glass, and tissue engineering. Future research in this area will focus on more effective and precise systems using technologies like 3D printing and nanotechnology to enhance the customization and control of drug release, aiming for more efficient and targeted therapies.
Collapse
Affiliation(s)
- Rafael
Leandro Fernandes Melo
- Departamento
de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Dayana Nascimento Dari
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Izaias da Silva Aires
- Grupo
de Engenharia e Desenvolvimento Sustentável (GENES), Instituto
de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia
Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Francisco Simão Neto
- Departamento
de Engenharia Química, Universidade
Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento
de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - João Maria Soares
- Departamento
de Física, Universidade do Estado
do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - José Cleiton Sousa dos Santos
- Grupo
de Química de Materiais Avançados (GQMat), Departamento
de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| |
Collapse
|
8
|
Lee GB, Park SM, Jung UJ, Kim SR. The Potential of Mesenchymal Stem Cells in Treating Spinocerebellar Ataxia: Advances and Future Directions. Biomedicines 2024; 12:2507. [PMID: 39595073 PMCID: PMC11591855 DOI: 10.3390/biomedicines12112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous disorder characterized by impaired balance and coordination caused by cerebellar dysfunction. The absence of treatments approved by the U.S. Food and Drug Administration for SCA has driven the investigation of alternative therapeutic strategies, including stem cell therapy. Mesenchymal stem cells (MSCs), known for their multipotent capabilities, have demonstrated significant potential in treating SCA. This review examines how MSCs may promote neuronal growth, enhance synaptic connectivity, and modulate brain inflammation. Recent findings from preclinical and clinical studies are also reviewed, emphasizing the promise of MSC therapy in addressing the unmet needs of SCA patients. Furthermore, ongoing clinical trials and future directions are proposed to address the limitations of the current approaches.
Collapse
Affiliation(s)
- Gi Beom Lee
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Se Min Park
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; (G.B.L.); (S.M.P.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
9
|
Saikia B, Dhanushkodi A. Engineered exosome therapeutics for neurodegenerative diseases. Life Sci 2024; 356:123019. [PMID: 39209250 DOI: 10.1016/j.lfs.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An increase in life expectancy comes with a higher risk for age-related neurological and cognitive dysfunctions. Given the psycho-socioeconomic burden due to unhealthy aging in the coming decades, the United Nations has declared 2021-2030 as a decade of healthy aging. In this line, multipotent mesenchymal stromal cell-based therapeutics received special interest from the research community. Based on decades of research on cell therapy, a consensus has emerged that the therapeutic effects of cell therapy are due to the paracrine mechanisms rather than cell replacement. Exosomes, a constituent of the secretome, are nano-sized vesicles that have been a focus of intense research in recent years as a possible therapeutic agent or as a cargo to deliver drugs of interest into the central nervous system to induce neurogenesis, reduce neuroinflammation, confer neuroregeneration/neuroprotection, and improve cognitive and motor functions. In this review, we have discussed the neuroprotective properties of exosomes derived from adult mesenchymal stem cells, with a special focus on the role of exosomal miRNAs. We also reviewed various strategies to improve exosome production and their content for better therapeutic effects. Further, we discussed the utilization of ectomesenchymal stem cells like dental pulp stem cells and their exosomes in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Biplob Saikia
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
11
|
Coughlan C, Lindenberger J, Jacot JG, Johnson NR, Anton P, Bevers S, Welty R, Graner MW, Potter H. Specific Binding of Alzheimer's Aβ Peptides to Extracellular Vesicles. Int J Mol Sci 2024; 25:3703. [PMID: 38612514 PMCID: PMC11011551 DOI: 10.3390/ijms25073703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aβ42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aβ42 is detectable in the plasma, a phenomenon thought to result from Aβ becoming more aggregated in the brain and less Aβ42 and Aβ40 being transported from the brain to the plasma via the CSF. We propose that extracellular vesicles (EVs) play a role in this transport. EVs are found in bodily fluids such as blood, urine, and cerebrospinal fluid and carry diverse "cargos" of bioactive molecules (e.g., proteins, nucleic acids, lipids, metabolites) that dynamically reflect changes in the cells from which they are secreted. While Aβ42 and Aβ40 have been reported to be present in EVs, it is not known whether this interaction is specific for these peptides and thus whether amyloid-carrying EVs play a role in AD and/or serve as brain-specific biomarkers of the AD process. To determine if there is a specific interaction between Aβ and EVs, we used isothermal titration calorimetry (ITC) and discovered that Aβ42 and Aβ40 bind to EVs in a manner that is sequence specific, saturable, and endothermic. In addition, Aβ incubation with EVs overnight yielded larger amounts of bound Aβ peptide that was fibrillar in structure. These findings point to a specific amyloid-EV interaction, a potential role for EVs in the transport of amyloid from the brain to the blood, and a role for this amyloid pool in the AD process.
Collapse
Affiliation(s)
- Christina Coughlan
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Jared Lindenberger
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
- Duke Human Vaccine Institute, Duke University, 2 Genome Ct., Durham, NC 27710, USA
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA
| | - Noah R. Johnson
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Paige Anton
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| | - Shaun Bevers
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
| | - Robb Welty
- Structural Biology and Biophysics Core, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (R.W.)
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA
| | - Huntington Potter
- University of Colorado Alzheimer’s and Cognition Center (CUACC), Linda Crnic Institute for Down Syndrome (LCI), Department of Neurology, University of Colorado Anschutz Medical Campus, 13001 E. 17th Pl, Aurora, CO 80045, USA (H.P.)
| |
Collapse
|