1
|
Tottori S, Ichinose S, Sakai F, Segawa R, Yokoyama T, Wang G, Nishizawa M. Quantitative evaluation of accelerated transdermal drug delivery by electroosmosis via frustoconical porous microneedles. J Mater Chem B 2025; 13:5023-5026. [PMID: 40227822 DOI: 10.1039/d4tb02583k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Electroosmosis-based transdermal drug delivery via frustoconical porous microneedles (F-PMNs) is studied by quantitative fluorescence analysis of the drug models penetrated into excised pig skin. An array of 300 μm height F-PMN made of poly-glycidyl methacrylate is modified by a grafted thin film of anionic poly (2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) or a cationic poly-(3-acrylamidopropyl trimethylammonium) (PAPTAC) to generate electroosmotic flow (EOF) upon application of current through the needles. Owing to the synergy of the EOF-promoted transport and the expansion of the stratum corneum with the frustoconical protrusions, the penetration rates of rhodamine B (479 Da) and FITC-dextran (4 kDa and 10 kDa) are found to be accelerated by more than 10 times. In addition, the F-PMNs modified with PAMPS and PAPTAC show similar delivery rates in opposite directions, enabling the possible dual-mode delivery from both anode and cathode in an integrated iontophoresis device.
Collapse
Affiliation(s)
- Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Sae Ichinose
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Fumika Sakai
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Reiji Segawa
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiki Yokoyama
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Gaobo Wang
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
- bionto Co., Material Innovation Center, Tohoku University, 468-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
2
|
Wang G, Moriyama N, Tottori S, Nishizawa M. Recent advances in iontophoresis-assisted microneedle devices for transdermal biosensing and drug delivery. Mater Today Bio 2025; 31:101504. [PMID: 39906204 PMCID: PMC11791360 DOI: 10.1016/j.mtbio.2025.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Integrating advanced manufacturing techniques and nanotechnology with cutting-edge materials has driven significant progress in global healthcare. Microneedles, recognized for their minimally invasive approach to transdermal sensing and drug delivery, achieve enhanced functionality when combined with iontophoresis. Iontophoresis-assisted microneedles have emerged as an innovative solution, enabling real-time biosensing and precise drug delivery within closed-loop systems. These integrated platforms represent a major advancement in personalized medicine, allowing dynamic therapeutic adjustments based on continuous feedback. This review highlights the latest developments in iontophoresis-assisted microneedles for transdermal biosensing, drug delivery, and closed-loop applications. It delves into the mechanisms of iontophoresis, assesses its advantages and limitations, and explores future directions for these transformative technologies.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Natsuho Moriyama
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
3
|
Richard W, Moga A, Genain G, Amalric N, Eveillard M, Shourick J, Le Tanneur S, Funck-Brentano E, Skayem C, Vandier S, Duong TA. Electrochemistry to Monitor Skin Barrier: A Proof-of-Concept Study on Skin Differentiation Compared with Corneometry, Transepidermal Water Loss Measurement, and High-Performance Liquid Chromatography. J Invest Dermatol 2025:S0022-202X(25)00091-0. [PMID: 39922454 DOI: 10.1016/j.jid.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 02/10/2025]
Affiliation(s)
- William Richard
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Alain Moga
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | | | - Nicolas Amalric
- QIMA Life Sciences, QIMA Bioalternatives SAS, Labège, France
| | - Mélissa Eveillard
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | - Jason Shourick
- Department of Clinical Epidemiology and Public Health, Toulouse University Hospital, Toulouse, France
| | | | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Research Unit EA4340 "Biomarkers in cancerology and in hemato-oncology," Université Versailles-St-Quentin-en -Yvelines-Paris-Saclay, Versailles, France
| | - Charbel Skayem
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France
| | | | - Tu Anh Duong
- Department of General and Oncologic Dermatology, Ambroise Paré Hospital, GHU Paris-Saclay AP-HP, Boulogne-Billancourt, France; Laboratoire de Génie Industriel, CentraleSupelec, Université Paris-Saclay, Gif-sur-Yvette, France; Chaire Avenir Santé Numérique, Equipe 8 IMRB, Inserm, Paris-East Créteil University, Créteil, France.
| |
Collapse
|
4
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
5
|
Wang G, Kato K, Aoki I, Ichinose S, Inoue D, Tottori S, Nishizawa M. Transdermal drug delivery using a porous microneedle device driven by a hydrogel electroosmotic pump. J Mater Chem B 2024; 12:1490-1494. [PMID: 38234189 DOI: 10.1039/d3tb02208k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Integrating a hydrogel electroosmotic pump with a parylene C-coated porous microneedle (PMN) is developed for transdermal drug delivery applications. The hydrogel pump is fabricated by combining an anionic and a cationic hydrogel to generate enhanced electroosmosis flow (EOF) to drive the transportation of molecules via PMN.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Kosuke Kato
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Izuru Aoki
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Sae Ichinose
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Daisuke Inoue
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Soichiro Tottori
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan.
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-4 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
6
|
Terutsuki D, Segawa R, Kusama S, Abe H, Nishizawa M. Frustoconical porous microneedle for electroosmotic transdermal drug delivery. J Control Release 2023; 354:694-700. [PMID: 36693528 DOI: 10.1016/j.jconrel.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
A truncated cone-shaped porous microneedle (PMN) made of poly-glycidyl methacrylate was studied as a minimally invasive tool for transdermal drug delivery. The transdermal electrical resistance of a pig skin was evaluated during the indentation of the PMNs, revealing that the frustoconical PMN (300 μm height) significantly reduced the resistance of the skin by expanding the stratum corneum without penetrating into the skin. A thin film of poly (2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) was grafted onto the inner wall of the microchannels of the frustoconical PMN to generate electroosmotic flow (EOF) upon current application in the direction of injection of the drug into the skin. Owing to the synergy of the expansion of the stratum corneum and the EOF-promotion, the PAMPS-modified frustoconical PMN effectively enhances the penetration of larger (over 500 Da) molecules, such as dextran (∼10 kDa).
Collapse
Affiliation(s)
- Daigo Terutsuki
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Reiji Segawa
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-04 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Shinya Kusama
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroya Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan; Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-04 Aramaki Aoba, Aoba-ku, Sendai 980-8579, Japan; Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
7
|
Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv Healthc Mater 2023; 12:e2202066. [PMID: 36414019 PMCID: PMC11468661 DOI: 10.1002/adhm.202202066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Indexed: 11/24/2022]
Abstract
Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.
Collapse
Affiliation(s)
- Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT97BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | | | - Andi Dian Permana
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Sumarheni Sudir
- Department of PharmacyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Airin R. Nurdin
- Department of Dermatology and VenereologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
| | - Ririn Nislawati
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
- Department of OphthalmologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
| | - Rafikah Hasyim
- Department of Oral BiologyFaculty of DentistryHasanuddin UniversityMakassar90245Indonesia
| | - Christopher J. Scott
- Patrick G Johnson Centre for Cancer ResearchQueen's University BelfastBelfastBT97BLUK
| | | |
Collapse
|
8
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
9
|
Terui H, Kimura N, Segawa R, Kusama S, Abe H, Terutsuki D, Yamasaki K, Nishizawa M. Intradermal vaccination via electroosmotic injection from a porous microneedle patch. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng 2021; 5:041509. [PMID: 34849444 PMCID: PMC8604566 DOI: 10.1063/5.0064529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Skin is one of the indispensable organs for life. The epidermis at the outermost surface provides a permeability barrier to infectious agents, chemicals, and excessive loss of water, while the dermis and subcutaneous tissue mechanically support the structure of the skin and appendages, including hairs and secretory glands. The integrity of the integumentary system is a key for general health, and many techniques have been developed to measure and control this protective function. In contrast, the effective skin barrier is the major obstacle for transdermal delivery and detection. Changes in the electrical properties of skin, such as impedance and ionic activity, is a practical indicator that reflects the structures and functions of the skin. For example, the impedance that reflects the hydration of the skin is measured for quantitative assessment in skincare, and the current generated across a wound is used for the evaluation and control of wound healing. Furthermore, the electrically charged structure of the skin enables transdermal drug delivery and chemical extraction. This paper provides an overview of the electrical aspects of the skin and summarizes current advances in the development of devices based on these features.
Collapse
Affiliation(s)
- Yuina Abe
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|