1
|
Santoro C, Aiello F, Farina A, Miraglia del Giudice E, Pascarella F, Licenziati MR, Improda N, Piluso G, Torella A, Del Vecchio Blanco F, Cirillo M, Nigro V, Grandone A. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. CHILDREN (BASEL, SWITZERLAND) 2025; 12:364. [PMID: 40150646 PMCID: PMC11941417 DOI: 10.3390/children12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Multiple genes can disrupt hypothalamic-pituitary axis development, causing multiple pituitary hormone deficiencies (MPHD). Despite advances in next-generation sequencing (NGS) identifying over 30 key genes, 85% of cases remain unsolved, indicating complex genotype-phenotype correlations and variable inheritance patterns. OBJECTIVE This study aimed to identify the MPHD genetics in three probands from two unrelated families. METHODS Family A had one affected child, while Family B had two affected siblings. All probands exhibited poor growth since birth, and family B's probands were born small for gestational age. Growth hormone deficiency was confirmed in all subjects. Family B's probands responded poorly to growth hormone treatment compared to the first patient. Furthermore, Family A's proband and Family B's younger sibling developed central hypothyroidism, while Family B's older sibling presented hypogonadotropic hypogonadism. Brain magnetic resonance imaging (MRI) revealed pituitary hypoplasia, ectopic posterior pituitary gland, and small sella turcica in all probands. Patients and their available relatives underwent NGS. RESULTS NGS identified the same novel and likely pathogenic LHX4 variant (c.481C>G) in all probands despite the families being unrelated. Additionally, Family A's proband carried a GLI2 variant (c.2105C>A), and Family B's probands carried an IGF1R variant (c.166G>A), both interpreted as being of uncertain significance. CONCLUSIONS This study confirms that heterozygous pathogenic variants of LHX4 can cause MPHD associated with a specific neuroradiological triad of abnormalities despite incomplete penetrance and variable phenotype. Moreover, the co-occurrence of the other two gene variants was debated. The IGF1R variant could explain the unusually poor response to growth hormone therapy in Family B, suggesting an oligogenic mechanism underlying the phenotype.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Francesca Aiello
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Emanuele Miraglia del Giudice
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Filomena Pascarella
- Pediatric Endocrinology Unit, Sant’Anna e San Sebastiano Hospital, Palasciano Street, 81100 Caserta, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Nicola Improda
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy;
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Grandone
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| |
Collapse
|
2
|
Jiang Z, Gu Z, Yu X, Cheng T, Liu B. Research progress on the role of bypass activation mechanisms in resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Front Oncol 2024; 14:1447678. [PMID: 39582541 PMCID: PMC11581962 DOI: 10.3389/fonc.2024.1447678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The clinical application of small molecule tyrosine kinase inhibitors (TKIs) has significantly improved the quality of life and prognosis of patients with non-small cell lung cancer (NSCLC) carrying driver genes. However, resistance to TKI treatment is inevitable. Bypass signal activation is one of the important reasons for TKI resistance. Although TKI drugs inhibit downstream signaling pathways of driver genes, key signaling pathways within tumor cells can still be persistently activated through bypass routes such as MET gene amplification, EGFR gene amplification, and AXL activation. This continuous activation maintains tumor cell growth and proliferation, leading to TKI resistance. The fundamental strategy to treat TKI resistance mediated by bypass activation involves simultaneously inhibiting the activated bypass signals and the original driver gene signaling pathways. Some clinical trials based on this combined treatment approach have yielded promising preliminary results, offering more treatment options for NSCLC patients with TKI resistance. Additionally, early identification of resistance mechanisms through liquid biopsy, personalized targeted therapy against these mechanisms, and preemptive targeting of drug-tolerant persistent cells may provide NSCLC patients with more sustained and effective treatment.
Collapse
Affiliation(s)
- Ziyang Jiang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihan Gu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Chengdu, China
- Institute of Disaster Medicine, Sichuan University, Chengdu, China
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Chengdu, China
| | - Tao Cheng
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bofu Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Alnajar M, Mora W, Abd-elgawad M. Comparing Dose-dependent Outcomes of Weekly and Daily Growth Hormone Therapy in Children with Growth Hormone Deficiency: A Systematic Review and Meta-analysis.. [DOI: 10.21203/rs.3.rs-3123741/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Growth hormone deficiency (GHD) is a condition impacting children and adults, leading to low height and other health issues. The primary treatment is daily injections of recombinant human growth hormone (rhGH), though they can be inconvenient and costly. These injections may also negatively impact treatment adherence and outcomes. This study aims to compare the efficacy and safety of once-weekly growth hormone treatment vs daily growth hormone therapy in children with growth hormone insufficiency.
Methods
To examine the efficacy and safety of once-weekly and once-daily growth hormone treatment for children with growth hormone insufficiency, this meta-analysis followed PRISMA and Cochrane standards. RCTs and prospective cohort studies with children aged 0–18 diagnosed with GHD were considered eligible. We used the risk of bias 2 and the certainty of evidence using the Cochrane tools. Two authors independently assessed papers for eligibility and extracted data after conducting a thorough search of electronic resources. Height velocity, height standard deviation score, insulin-like growth factor 1 levels, and the incidence of adverse events were the primary outcomes. The Revman software version 5.4 was used for data synthesis, and heterogeneity was determined by I-squares greater than 60%.
Results
This meta-analysis and comprehensive review includes 14 randomized clinical trials and one study was cohort, including 1,322 children with growth hormone insufficiency. Weekly growth hormone treatment at dosages ranging from 0.11 to 0.25 mg enhanced a variety of growth outcomes, including increased height velocity dose (SMD = 0.37, 95% CI, 0.23–0.51; P < 0.001), height standard deviation scores chronological age (SMD= -0.10, 95% CI, -0.13–0.07; P < 0.001), and insulin-like growth factor 1 standard deviation score (SMD = 0.41, 95% CI, 0.40–0.42; P < 0.001). The dosage range of 0.26 to 0.50 mg also improved insulin-like growth factor binding protein-3 significantly (SMD= -0.63, 95% CI, -0.90 – -0.37; P < 0.001). Nevertheless, there were no significant differences in the occurrence of adverse events through the dosage levels (OR = 0.71, 95% CI 0.36 to 1.40; P = 0.32).
Conclusions
In children with growth hormone deficit, weekly growth hormone treatment, particularly in the 0.11 to 0.25 mg dose range, can function as a viable alternative to daily growth hormone therapy.
Collapse
|
4
|
Nagao H, Cai W, Brandão BB, Wewer Albrechtsen NJ, Steger M, Gattu AK, Pan H, Dreyfuss JM, Wunderlich FT, Mann M, Kahn CR. Leucine-973 is a crucial residue differentiating insulin and IGF-1 receptor signaling. J Clin Invest 2023; 133:161472. [PMID: 36548088 PMCID: PMC9927934 DOI: 10.1172/jci161472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Insulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this led to decreased insulin sensitivity, a modest increase in growth, and decreased weight gain when mice were challenged with a high-fat diet. Thus, leucine-973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.
Collapse
Affiliation(s)
- Hirofumi Nagao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Bruna B Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,and.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin Steger
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arijeet K Gattu
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Endocrinology, Diabetes and Preventive Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne, and.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences,and
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jurgens SJ, Choi SH, Morrill VN, Chaffin M, Pirruccello JP, Halford JL, Weng LC, Nauffal V, Roselli C, Hall AW, Oetjens MT, Lagerman B, vanMaanen DP, Regeneron Genetics Center, Aragam KG, Lunetta KL, Haggerty CM, Lubitz SA, Ellinor PT. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet 2022; 54:240-250. [PMID: 35177841 PMCID: PMC8930703 DOI: 10.1038/s41588-021-01011-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic component, our understanding of these diseases remains incomplete. Here, we analyzed the contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based associations, with broad replication of novel signals in Geisinger MyCode. There was a striking risk associated with mutations in known Mendelian disease genes, including MYBPC3, LDLR, GCK, PKD1 and TTN. Many genes showed independent convergence of rare and common variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified several large effect associations for height and 18 unique genes associated with blood lipid or glucose levels. Finally, we found that between 1.0% and 2.4% of participants carried rare potentially pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at therapeutics and screening of these common disorders.
Collapse
Affiliation(s)
- Sean J. Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Valerie N. Morrill
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Halford
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amelia W. Hall
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Braxton Lagerman
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - David P. vanMaanen
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | | | - Krishna G. Aragam
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn L. Lunetta
- NHLBI and Boston University’s Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher M. Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA.,Heart Institute, Geisinger, Danville, PA, USA
| | - Steven A. Lubitz
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.,
| |
Collapse
|
6
|
Kawashima-Sonoyama Y, Hotsubo T, Hamajima T, Hamajima N, Fujimoto M, Namba N, Kanzaki S. Various phenotypes of short stature with heterozygous IGF-1 receptor ( IGF1R) mutations. Clin Pediatr Endocrinol 2022; 31:59-67. [PMID: 35431446 PMCID: PMC8981046 DOI: 10.1297/cpe.2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yuki Kawashima-Sonoyama
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | | | - Takashi Hamajima
- Department of Pediatric Endocrinology and Metabolism, Aichi Children’s Health and Medical Center, Obu, Japan
| | - Naoki Hamajima
- Department of Pediatrics, Nagoya City West Medical Center, Nagoya, Japan
| | - Masanobu Fujimoto
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Noriyuki Namba
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Susumu Kanzaki
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
7
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Scalco RC, Correa FA, Dantas NCB, Vasques GA, Jorge AAL. Hormone resistance and short stature: A journey through the pathways of hormone signaling. Mol Cell Endocrinol 2021; 536:111416. [PMID: 34333056 DOI: 10.1016/j.mce.2021.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Hormone resistances have been described in association with growth disorders, the majority involving the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis or hormones with specific paracrine-autocrine actions in the growth plate. Defects in hormone receptors or in proteins involved in intracellular signal transduction (post-receptor defects) are the main mechanisms of hormone resistance leading to short stature. The characteristic phenotypes of each of these hormonal resistances are very distinct and bring with them important insights into the role of each hormone and its signaling pathway. In this review, we discuss the molecular and clinical aspects of the main hormone resistances associated with short stature in humans.
Collapse
Affiliation(s)
- Renata C Scalco
- Disciplina de Endocrinologia, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Brazil
| | - Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM/42) do Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Brazil; Instituto do Cancer do Estado de Sao Paulo (ICESP) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Brazil
| | - Naiara C B Dantas
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM/42) do Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Brazil; Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular (LIM/25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Brazil
| | - Gabriela A Vasques
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular (LIM/25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular (LIM/25) do Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HC-FMUSP), Brazil.
| |
Collapse
|
9
|
Yamamoto R, Palmer M, Koski H, Curtis-Joseph N, Tatar M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 2021; 217:6064149. [PMID: 33724413 PMCID: PMC8045697 DOI: 10.1093/genetics/iyaa037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations of the Drosophila melanogaster insulin/IGF signaling system slow aging, while also affecting growth and reproduction. To understand this pleiotropy, we produced an allelic series of single codon substitutions in the Drosophila insulin receptor, InR. We generated InR substitutions using homologous recombination and related each to emerging models of receptor tyrosine kinase structure and function. Three mutations when combined as trans-heterozygotes extended lifespan while retarding growth and fecundity. These genotypes reduced insulin-stimulated Akt phosphorylation, suggesting they impede kinase catalytic domain function. Among these genotypes, longevity was negatively correlated with egg production, consistent with life-history trade-off theory. In contrast, one mutation (InR353) was located in the kinase insert domain, a poorly characterized element found in all receptor tyrosine kinases. Remarkably, wild-type heterozygotes with InR353 robustly extended lifespan without affecting growth or reproduction and retained capacity to fully phosphorylate Akt. The Drosophila insulin receptor kinase insert domain contains a previously unrecognized SH2 binding motif. We propose the kinase insert domain interacts with SH2-associated adapter proteins to affect aging through mechanisms that retain insulin sensitivity and are independent of reproduction.
Collapse
Affiliation(s)
- Rochele Yamamoto
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Michael Palmer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Helen Koski
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Noelle Curtis-Joseph
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Gonc EN, Ozon ZA, Oguz S, Kabacam S, Taskiran EZ, Kiper POS, Utine GE, Alikasifoglu A, Kandemir N, Boduroglu OK, Alikasifoglu M. Genetic IGF1R defects: new cases expand the spectrum of clinical features. J Endocrinol Invest 2020; 43:1739-1748. [PMID: 32356191 DOI: 10.1007/s40618-020-01264-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE We aimed to identify the phenotypic variability of IGF1R defects in a cohort of short children with normal GH secretion gathered through the last decade. PATIENTS AND METHODS Fifty children (25 girls) with short stature and a basal/stimulated growth hormone (GH) over 10 ng/ml having either a low birth weight or microcephaly were enrolled. MLPA and then Sanger sequence analysis were performed to detect IGF1R defects. The auxological and metabolic evaluation were carried out in index cases and their first degree family members whenever available. RESULTS A total of seven (14%) IGF1R defects were detected. Two IGF1R deletions and five heterozygous variants (one frameshift, four missense) were identified. Three (likely) pathogenic, one VUS and one likely benign were classified by using ACMG. All children with IGF1R defects had a height < - 2.5SDS, birth weight < - 1.4SDS, and head circumference < - 1.36SDS. IGF-1 ranged from - 2.44 to 2.13 SDS. One child with a 15q terminal deletion had a normal phenotype and intelligence, whereas low IQ is a finding in a case with missense variant. Two parents who carried IGF1R mutations had diabetes mellitus, hypertension and hyperlipidemia, one of whom also had hypergonadotropic hypogonadism. CONCLUSION We found a deletion or variant in IGF1R in 14% of short children. Birth weight, head circumference, intelligence, dysmorphic features, IGF-1 levels and even height are not consistent among patients. Additionally, metabolic and gonadal complications may appear during adulthood, suggesting that patients should be followed into adulthood to monitor for these late complications.
Collapse
Affiliation(s)
- E N Gonc
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| | - Z A Ozon
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - S Oguz
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - S Kabacam
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - E Z Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - P O S Kiper
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - G E Utine
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - A Alikasifoglu
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - N Kandemir
- Department of Pediatric Endocrinology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey
| | - O K Boduroglu
- Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Alikasifoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Shapiro MR, Foster TP, Perry DJ, Rosenfeld RG, Dauber A, McNichols JA, Muir A, Hwa V, Brusko TM, Jacobsen LM. A Novel Mutation in Insulin-Like Growth Factor 1 Receptor (c.641-2A>G) Is Associated with Impaired Growth, Hypoglycemia, and Modified Immune Phenotypes. Horm Res Paediatr 2020; 93:322-334. [PMID: 33113547 PMCID: PMC7726096 DOI: 10.1159/000510764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 1 receptor (IGF1R) mutations lead to systemic disturbances in growth and glucose homeostasis due to widespread IGF1R expression throughout the body. IGF1R is expressed by innate and adaptive immune cells, facilitating their development and exerting immunomodulatory roles in the periphery. CASE PRESENTATION We report on a family presenting with a novel heterozygous IGF1R mutation with characterization of the mutation, IGF1R expression, and immune phenotyping. Twin probands presented clinically with short stature and hypoglycemia. Variable phenotypic expression was seen in 2 other family members carrying the IGF1R mutation. The probands were treated with exogenous growth hormone therapy and dietary cornstarch, improving linear growth and reducing hypoglycemic events. IGF1R c.641-2A>G caused abnormal mRNA splicing and premature protein termination. Flow cytometric immunophenotyping demonstrated lower IGF1R on peripheral blood mononuclear cells from IGF1R c.641-2A>G subjects. This alteration was associated with reduced levels of T-helper 17 cells and a higher percentage of T-helper 1 cells compared to controls, suggesting decreased IGF1R expression may affect CD4+ Th-cell lineage commitment. DISCUSSION Collectively, these data suggest a novel loss-of-function mutation (c.641-2A>G) leads to aberrant mRNA splicing and IGF1R expression resulting in hypoglycemia, growth restriction, and altered immune phenotypes.
Collapse
Affiliation(s)
- Melanie R Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Timothy P Foster
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, District of Columbia, USA
| | - James A McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Vivian Hwa
- Division of Endocrinology, Department of Pediatrics, Cincinnati Center for Growth Disorders, Cincinnati Children's Hospital Medical Center, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Laura M Jacobsen
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA,
| |
Collapse
|
14
|
Gkourogianni A, Andrade AC, Jonsson B, Segerlund E, Werner‐Sperker A, Horemuzova E, Dahlgren J, Burstedt M, Nilsson O. Pre- and postnatal growth failure with microcephaly due to two novel heterozygous IGF1R mutations and response to growth hormone treatment. Acta Paediatr 2020; 109:2067-2074. [PMID: 32037650 DOI: 10.1111/apa.15218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
AIM To explore the phenotype and response to growth hormone in patients with heterozygous mutations in the insulin-like growth factor I receptor gene (IGF1R). METHODS Children with short stature, microcephaly, born SGA combined with biochemical sign of IGF-I insensitivity were analysed for IGF1R mutations or deletions using Sanger sequencing and Multiple ligation-dependent probe amplification analysis. RESULTS In two families, a novel heterozygous non-synonymous missense IGF1R variant was identified. In family 1, c.3364G > T, p.(Gly1122Cys) was found in the proband and co-segregated perfectly with the phenotype in three generations. In family 2, a de novo variant c.3530G > A, p.(Arg1177His) was detected. Both variants were rare, not present in the GnomAD database. Three individuals carrying IGF1R mutations have received rhGH treatment. The average gain in height SDS during treatment was 0.42 (range: 0.26-0.60) and 0.64 (range: 0.32-0.86) after 1 and 2 years of treatment, respectively. CONCLUSION Our study presents two heterozygous IGF1R mutations causing pre- and postnatal growth failure and microcephaly and also indicates that individuals with heterozygous IGF1R mutations can respond to rhGH treatment. The findings highlight that sequencing of the IGF1R should be considered in children with microcephaly and short stature due to pre- and postnatal growth failure.
Collapse
Affiliation(s)
- Alexandra Gkourogianni
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
| | - Anenisia C. Andrade
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
| | - Björn‐Anders Jonsson
- Department of Medical Biosciences Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Emma Segerlund
- Department of Pediatrics Sunderby Hospital Sunderby Sweden
| | | | - Eva Horemuzova
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
| | - Jovanna Dahlgren
- Göteborg Pediatric Growth Research Center Department of Pediatrics Institute of Clinical Sciences Sahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Magnus Burstedt
- Department of Medical Biosciences Medical and Clinical Genetics Umeå University Umeå Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology Department of Women’s and Children’s Health Karolinska Institutet and University Hospital Stockholm Sweden
- Center for Molecular Medicine Karolinska Institutet and University Hospital Stockholm Sweden
- School of Medical Sciences Örebro University and University Hospital Örebro Sweden
| |
Collapse
|
15
|
Polidori N, Castorani V, Mohn A, Chiarelli F. Deciphering short stature in children. Ann Pediatr Endocrinol Metab 2020; 25:69-79. [PMID: 32615685 PMCID: PMC7336267 DOI: 10.6065/apem.2040064.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/16/2020] [Indexed: 01/15/2023] Open
Abstract
Short stature is a common reason for referral to pediatric endocrinologists. Multiple factors, including genetic, prenatal, postnatal, and local environmental factors, can impair growth. The majority of children with short stature, which can be defined as a height less than 2 standard deviation score below the mean, are healthy. However, in some cases, they may have an underlying relevant disease; thus, the aim of clinical evaluation is to identify the subset of children with pathologic conditions, for example growth hormone deficiency or other hormonal abnormalities, Turner syndrome, inflammatory bowel disease, or celiac disease. Prompt identification and management of these children can prevent excessive short stature in adulthood. In addition, a thorough clinical assessment may allow evaluation of the severity of short stature and likely growth trajectory to identify the most effective interventions. Consequently, appropriate diagnosis of short stature should be performed as early as possible and personalized treatment should be started in a timely manner. An increase in knowledge and widespread availability of genetic and epigenetic testing in clinical practice in recent years has empowered the diagnostic process and appropriate treatment for short stature. Furthermore, novel treatment approaches that can be used both as diagnostic tools and as therapeutic agents have been developed. This article reviews the diagnostic approach to children with short stature, discusses the main causes of short stature in children, and reports current therapeutic approaches and possible future treatments.
Collapse
Affiliation(s)
- Nella Polidori
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | - Angelika Mohn
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy,Address for correspondence: Francesco Chiarelli, MD, PhD Department of Pediatrics, University of Chieti, Via dei Vestini, 5, I-66100 Chieti, Italy Tel: +39-0871-358015 Fax: +39-0871-574538 E-mail:
| |
Collapse
|
16
|
Göpel E, Rockstroh D, Pfäffle H, Schlicke M, Pozza SBD, Gannagé-Yared MH, Gucev Z, Mohn A, Harmel EM, Volkmann J, Weihrauch-Blüher S, Gausche R, Bogatsch H, Beger C, Klammt J, Pfäffle R. A Comprehensive Cohort Analysis Comparing Growth and GH Therapy Response in IGF1R Mutation Carriers and SGA Children. J Clin Endocrinol Metab 2020; 105:5611332. [PMID: 31680140 DOI: 10.1210/clinem/dgz165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/03/2019] [Indexed: 01/21/2023]
Abstract
CONTEXT IGF1 receptor mutations (IGF1RM) are rare; however, patients exhibit pronounced growth retardation without catch-up. Although several case reports exist, a comprehensive statistical analysis investigating growth profile and benefit of recombinant human growth hormone (rhGH) treatment is still missing. OBJECTIVE AND METHODS Here, we compared IGF1RM carriers (n = 23) retrospectively regarding birth parameters, growth response to rhGH therapy, near final height, and glucose/insulin homeostasis to treated children born small for gestational age (SGA) (n = 34). Additionally, health profiles of adult IGF1RM carriers were surveyed by a questionnaire. RESULTS IGF1RM carriers were significantly smaller at rhGH initiation and had a diminished first-year response compared to SGA children (Δ height standard deviation score: 0.29 vs. 0.65), resulting in a lower growth response under therapy. Interestingly, the number of poor therapy responders was three times higher for IGF1RM carriers than for SGA patients (53 % vs. 17 %). However, most IGF1RM good responders showed catch-up growth to the levels of SGA patients. Moreover, we observed no differences in homeostasis model assessment of insulin resistance before treatment, but during treatment insulin resistance was significantly increased in IGF1RM carriers compared to SGA children. Analyses in adult mutation carriers indicated no increased occurrence of comorbidities later in life compared to SGA controls. CONCLUSION In summary, IGF1RM carriers showed a more pronounced growth retardation and lower response to rhGH therapy compared to non-mutation carriers, with high individual variability. Therefore, a critical reevaluation of success should be performed periodically. In adulthood, we could not observe a significant influence of IGF1RM on metabolism and health of carriers.
Collapse
Affiliation(s)
- Eric Göpel
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Denise Rockstroh
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Heike Pfäffle
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Marina Schlicke
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | | | | | - Zoran Gucev
- University Clinic of Child Diseases, Faculty of Medicine, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of North Macedonia
| | - Angelika Mohn
- Department of Pediatrics Center of Excellence on Aging, "G. D'Annunzio" University Foundation, Chieti, Italy
| | - Eva-Maria Harmel
- Medical Center for Internal Medicine, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Julia Volkmann
- Pediatric Cardiology, Leipzig Heart Center, Leipzig, Germany
| | - Susann Weihrauch-Blüher
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Ruth Gausche
- Growth Network CrescNet, University of Leipzig, Leipzig, Germany
| | | | - Christoph Beger
- Growth Network CrescNet, University of Leipzig, Leipzig, Germany
| | - Jürgen Klammt
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
- MVZ Labor Dr. Reising-Ackermann und Kollegen GbR, Leipzig, Germany
| | - Roland Pfäffle
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Ocaranza P, Losekoot M, Walenkamp MJE, De Bruin C, Wit JM, Mericq V. Intrauterine Twin Discordancy and Partial Postnatal Catch-up Growth in a Girl with a Pathogenic IGF1R Mutation. J Clin Res Pediatr Endocrinol 2019; 11:293-300. [PMID: 30859796 PMCID: PMC6745462 DOI: 10.4274/jcrpe.galenos.2019.2018.0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Insulin like growth factors-1 (IGF-1) is essential for normal in utero and postnatal human growth. It mediates its effects through the IGF-1 receptor (IGF1R), a widely expressed cell surface tyrosine kinase receptor. The aim of the study was to analyze pre- and post-natal growth, clinical features and laboratory findings in a small for gestational age (SGA) girl in whom discordant postnatal growth persisted and her appropriate for gestational age (AGA) brother. METHODS A girl born with a low weight and length [-2.3 and -2.4 standard deviation (SD) score (SDS), respectively] but borderline low head circumference (-1.6 SD) presented with a height of -1.7 SDS, in contrast to a normal height twin brother (0.0 SDS). IGF-1 resistance was suspected because of elevated serum IGF-1 levels. RESULTS Sequencing revealed the presence of a previously described pathogenic heterozygous mutation (p.Glu1050Lys) in the SGA girl which was not present in the parents nor in the AGA twin brother. CONCLUSION The pathogenic IGF1R mutation in this girl led to intrauterine growth retardation followed by partial postnatal catch-up growth. Height in mid-childhood was in the lower half of the reference range, but still 1.7 SD shorter than her twin brother.
Collapse
Affiliation(s)
- Paula Ocaranza
- University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile
| | - Monique Losekoot
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Marie J. E. Walenkamp
- Emma Children’s Hospital, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Christiaan De Bruin
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| | - Jan M. Wit
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| | - Veronica Mericq
- University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile,* Address for Correspondence: University of Chile Faculty of Medicine, Institute of Maternal and Child Research, Santiago, Chile E-mail:
| |
Collapse
|
18
|
Walenkamp MJE, Robers JML, Wit JM, Zandwijken GRJ, van Duyvenvoorde HA, Oostdijk W, Hokken-Koelega ACS, Kant SG, Losekoot M. Phenotypic Features and Response to GH Treatment of Patients With a Molecular Defect of the IGF-1 Receptor. J Clin Endocrinol Metab 2019; 104:3157-3171. [PMID: 30848790 DOI: 10.1210/jc.2018-02065] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT The phenotype and response to GH treatment of children with an IGF1R defect is insufficiently known. OBJECTIVE To develop a clinical score for selecting children with short stature for genetic testing and evaluate the efficacy of treatment. DESIGN AND SETTING Case series with an IGF1R defect identified in a university genetic laboratory. PATIENTS AND INTERVENTIONS Of all patients with sufficient clinical data, 18 had (likely) pathogenic mutations (group 1) and 7 had 15q deletions including IGF1R (group 2); 19 patients were treated with GH. MAIN OUTCOME MEASURES Phenotype and response to GH treatment. RESULTS In groups 1 and 2, mean (range) birth weight, length, and head circumference (HC) SD scores (SDSs) were -2.1 (-3.7 to -0.4), -2.7 (-5.0 to -1.0), and -1.6 (-3.0 to 0.0), respectively. At presentation, height, HC, and serum IGF-1 SDSs were -3.0 (-5.5 to -1.7), -2.5 (-4.2 to -0.5), and +1.2 (-1.3 to 3.2), respectively. Feeding problems were reported in 15 of 19 patients. A clinical score with 76% sensitivity is proposed. After 3 years of GH treatment [1.1 (0.2) mg/m2/d] height gain in groups 1 (n = 12) and 2 (n = 7) was 0.9 SDS and 1.3 SDS (at a mean IGF-1 of 3.5 SDS), less than reported for small for gestational age (1.8 SDS). CONCLUSION A clinical score encompassing birth weight and/or length, short stature, microcephaly, and IGF-1 is useful for selecting patients for IGF1R analysis. Feeding problems are common and the growth response to GH treatment is moderate.
Collapse
Affiliation(s)
- Marie J E Walenkamp
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmijn M L Robers
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Wilma Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Mainzer C, Remoué N, Molinari J, Rousselle P, Barricchello C, Lago JC, Sommer P, Sigaudo-Roussel D, Debret R. In vitro epidermis model mimicking IGF-1-specific age-related decline. Exp Dermatol 2019; 27:537-543. [PMID: 29603432 DOI: 10.1111/exd.13547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
Ageing is a complex multifaceted process affecting skin functionality and structure. Several 3D organotypic skin culture models have reproduced ageing by inducing replicative senescence, glycation or oxidative stress. Yet, very few models have focused on hormonal ageing and especially the insulin-like growth factor 1 (IGF-1) signalling pathway, which has been associated with longevity in animal studies and is necessary for the early stages of skin development. In this study, we built an organotypic epidermis model with targeted IGF-1 receptor knockdown to reproduce some aspects of hormonal ageing on skin. Our model displayed morphological and functional features of aged epidermis, which were mostly attributed to a loss of function of the Stratum basale. IGF-1 receptor knockdown keratinocytes depicted an extended cell cycle, reduced proliferation potential and reduced adhesion capacities and greater sensitivity to oxidative stress than control cells. Altogether, this model represents an essential tool for further investigations into the mechanisms linked to some aspects of hormonal decline or when screening for potent anti-ageing compounds.
Collapse
Affiliation(s)
- Carine Mainzer
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - Noëlle Remoué
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - Jennifer Molinari
- Natura Inovação e Tecnologia de Produtos, Cajamar, São Paulo, Brasil
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | | | - Juliana C Lago
- Natura Inovação e Tecnologia de Produtos, Cajamar, São Paulo, Brasil
| | - Pascal Sommer
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - Dominique Sigaudo-Roussel
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| | - Romain Debret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/Université Lyon 1, Lyon, France
| |
Collapse
|
20
|
Novel mutation of type-1 insulin-like growth factor receptor (IGF-1R) gene in a severe short stature pedigree identified by targeted next-generation sequencing. J Genet 2019. [DOI: 10.1007/s12041-019-1067-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Collett-Solberg PF, Jorge AAL, Boguszewski MCS, Miller BS, Choong CSY, Cohen P, Hoffman AR, Luo X, Radovick S, Saenger P. Growth hormone therapy in children; research and practice - A review. Growth Horm IGF Res 2019; 44:20-32. [PMID: 30605792 DOI: 10.1016/j.ghir.2018.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 01/15/2023]
Abstract
Short stature remains the most common reason for referral to a pediatric Endocrinologist and its management remains a challenge. One of the main controversies is the diagnosis of idiopathic short stature and the role of new technologies for genetic investigation of children with inadequate growth. Complexities in management of children with short stature includes selection of who should receive interventions such as recombinant human growth hormone, and how should this agent dose be adjusted during treatment. Should anthropometrical data be the primary determinant or should biochemical and genetic data be used to improve growth response and safety? Furthermore, what is considered a suboptimal response to growth hormone therapy and how should this be managed? Treatment of children with short stature remains a "hot" topic and more data is needed in several areas. These issues are reviewed in this paper.
Collapse
Affiliation(s)
- Paulo Ferrez Collett-Solberg
- Pediatric Endocrinology, Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| | - Alexander A L Jorge
- Faculdade de Medicina, Universidade de São Paulo (FMUSP), the Endocrinology Division/Genetic Endocrinology Unit (LIM 25), Brazil.
| | | | - Bradley S Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, USA.
| | - Catherine Seut Yhoke Choong
- Division of Pediatrics School of Medicine, Perth Childrens Hospital, University of Western Australia, Australia.
| | - Pinchas Cohen
- Dean, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Andrew R Hoffman
- Senior Vice Chair for Academic Affairs, Department of Medicine, Stanford University, USA.
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sally Radovick
- Department of Pediatrics, Senior Associate Dean for Clinical and Translational Research, Robert Wood Johnson Medical School, USA.
| | - Paul Saenger
- New York University Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11201, USA.
| |
Collapse
|
22
|
Abstract
In this chapter, we want to give an overview on what we have learned from more than 30 years ago on the use of recombinant human growth hormone (rhGH) and later recombinant human IGF-1 which was introduced for the treatment of short children and what are the safety issues concerned with this treatment. However, rhGH is used not solely in conditions where short stature is the consequence of GH deficiency but also in various disorders without a proven GH deficiency. In clinical studies, growth responses to various forms of rhGH therapy were analyzed, adding to our concept about the physiology of growth. Most patients under rhGH treatment show a considerable short-term effect; however, the long-term gain of height in a child obtained by a year-long treatment until final height remains controversial in some of the growth disorders that have been treated with rhGH or IGF-1. Today the first studies on the long-term safety of rhGH treatment have been published and raising some questions whether this treatment is similarly safe for all the patient groups treated with rhGH. Although there is a long-standing safety record for these hormone replacement therapies, in the face of the considerable costs involved, the discussion about the risk to benefit ratio is continuing. Newer developments of rhGH treatment include long-term preparations, which have only to be injected once a week. Although some of these drugs already have proven their non-inferiority to conventional rhGH treatment, we have to await further results to see whether they show improvements in treatment adherence of the patients and prove their long-term safety.
Collapse
|
23
|
Argente J, Tatton-Brown K, Lehwalder D, Pfäffle R. Genetics of Growth Disorders-Which Patients Require Genetic Testing? Front Endocrinol (Lausanne) 2019; 10:602. [PMID: 31555216 PMCID: PMC6742727 DOI: 10.3389/fendo.2019.00602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
The second 360° European Meeting on Growth Hormone Disorders, held in Barcelona, Spain, in June 2017, included a session entitled Pragmatism vs. Curiosity in Genetic Diagnosis of Growth Disorders, which examined current concepts of genetics and growth in the clinical setting, in terms of both growth failure and overgrowth. For patients with short stature, multiple genes have been identified that result in GH deficiency, which may be isolated or associated with additional pituitary hormone deficiencies, or in growth hormone resistance, primary insulin-like growth factor (IGF) acid-labile subunit deficiency, IGF-I deficiency, IGF-II deficiency, IGF-I resistance, and primary PAPP-A2 deficiency. While genetic causes of short stature were previously thought to primarily be associated with the GH-IGF-I axis, it is now established that multiple genetic anomalies not associated with the GH-IGF-I axis can result in short stature. A number of genetic anomalies have also been shown to be associated with overgrowth, some of which involve the GH-IGF-I axis. In patients with overgrowth in combination with an intellectual disability, two predominant gene families, the epigenetic regulator genes, and PI3K/AKT pathway genes, have now been identified. Specific processes should be followed for decisions on which patients require genetic testing and which genes should be examined for anomalies. The decision to carry out genetic testing should be directed by the clinical process, not merely for research purposes. The intention of genetic testing should be to direct the clinical options for management of the growth disorder.
Collapse
Affiliation(s)
- Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III and IMDEA Institute, Madrid, Spain
- *Correspondence: Jesús Argente
| | - Katrina Tatton-Brown
- Institute of Cancer Research, St George's University Hospital NHS Foundation Trust, London and St George's University of London, London, United Kingdom
| | - Dagmar Lehwalder
- Global Medical Affairs, Merck Healthcare KGaA, Darmstadt, Germany
| | - Roland Pfäffle
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
- Roland Pfäffle
| |
Collapse
|
24
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
25
|
Janchevska A, Krstevska-Konstantinova M, Pfäffle H, Schlicke M, Laban N, Tasic V, Gucev Z, Mironska K, Dimovski A, Kratzsch J, Klammt J, Pfäffle R. IGF1R Gene Alterations in Children Born Small for Gestitional Age (SGA). Open Access Maced J Med Sci 2018; 6:2040-2044. [PMID: 30559857 PMCID: PMC6290431 DOI: 10.3889/oamjms.2018.416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND: Small for gestational age (SGA)-born children are a heterogeneous group with few genetic causes reported. Genetic alterations in the IGF1 receptor (IGF1R) are found in some SGA children. AIM: To investigate whether alterations in IGF1R gene are present in SGA born children. PATIENTS AND METHODS: We analysed 64 children born SGA who stayed short (mean -3.25 ± 0.9 SDS) within the first 4 years of age, and 36 SGA children who caught up growth (0.20 ± 1.1 SDS). PCR products of all coding IGF1R exons were screened by dHPLC followed by direct sequencing of conspicuous fragments to identify small nucleotide variants. The presence of IGF1R gene copy number alterations was determined by Multiplex Ligation-dependent Probe Amplification (MLPA). RESULTS: The cohort of short SGA born children revealed a heterozygous, synonymous variant c.3453C > T in one patient and a novel heterozygous 3 bp in-frame deletion (c.3234_3236delCAT) resulting in one amino acid deletion (p.Ile1078del) in another patient. The first patient had normal serum levels of IGF1. The second patient had unusually low IGF1 serum concentrations (-1.57 SD), which contrasts previously published data where IGF1 levels rarely are found below the age-adjusted mean. CONCLUSIONS: IGF1R gene alterations were present in 2 of 64 short SGA children. The patients did not have any dysmorphic features or developmental delay. It is remarkable that one of them had significantly decreased serum concentrations of IGF1. Growth response to GH treatment in one of the patients was favourable, while the second one discontinued the treatment, but with catch-up growth.
Collapse
Affiliation(s)
- Aleksandra Janchevska
- Medical Faculty, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | | | | | | | - Nevenka Laban
- Medical Faculty, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Velibor Tasic
- Medical Faculty, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Zoran Gucev
- Medical Faculty, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Kristina Mironska
- Medical Faculty, Ss. Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | | | | | | | | |
Collapse
|
26
|
Homma TK, Krepischi ACV, Furuya TK, Honjo RS, Malaquias AC, Bertola DR, Costa SS, Canton AP, Roela RA, Freire BL, Kim CA, Rosenberg C, Jorge AAL. Recurrent Copy Number Variants Associated with Syndromic Short Stature of Unknown Cause. Horm Res Paediatr 2018; 89:13-21. [PMID: 29130988 DOI: 10.1159/000481777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Genetic imbalances are responsible for many cases of short stature of unknown etiology. This study aims to identify recurrent pathogenic copy number variants (CNVs) in patients with syndromic short stature of unknown cause. METHODS We selected 229 children with short stature and dysmorphic features, developmental delay, and/or intellectual disability, but without a recognized syndrome. All patients were evaluated by chromosomal microarray (array-based comparative genomic hybridization/single nucleotide polymorphism array). Additionally, we searched databases and previous studies to recover recurrent pathogenic CNVs associated with short stature. RESULTS We identified 32 pathogenic/probably pathogenic CNVs in 229 patients. By reviewing the literature, we selected 4 previous studies which evaluated CNVs in cohorts of patients with short stature. Taken together, there were 671 patients with short stature of unknown cause evaluated by chromosomal microarray. Pathogenic/probably pathogenic CNVs were identified in 87 patients (13%). Seven recurrent CNVs, 22q11.21, 15q26, 1p36.33, Xp22.33, 17p13.3, 1q21.1, 2q24.2, were observed. They are responsible for about 40% of all pathogenic/probably pathogenic genomic imbalances found in short stature patients of unknown cause. CONCLUSION CNVs seem to play a significant role in patients with short stature. Chromosomal microarray should be used as a diagnostic tool for evaluation of growth disorders, especially for syndromic short stature of unknown cause.
Collapse
Affiliation(s)
- Thais K Homma
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil.,Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM42, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (IB-USP), Sao Paulo, Brazil
| | - Tatiane K Furuya
- Laboratorio de Oncologia Experimental LIM24, Departamento de Radiologia e Oncologia, Centro de Investigação Translacional em Oncologia do Instituto do Cancer do Estado de Sao Paulo (CTO/ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rachel S Honjo
- Unidade de Genetica do Instituto da Criança, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Alexsandra C Malaquias
- Unidade de Endocrinologia Pediatrica, Departamento de Pediatria, Irmandade da Santa Casa de Misericórdia de São Paulo, Faculdade de Ciências Médicas da Santa Casa de São Paulo, Sao Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genetica do Instituto da Criança, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Silvia S Costa
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (IB-USP), Sao Paulo, Brazil
| | - Ana P Canton
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Rosimeire A Roela
- Laboratorio de Oncologia Experimental LIM24, Departamento de Radiologia e Oncologia, Centro de Investigação Translacional em Oncologia do Instituto do Cancer do Estado de Sao Paulo (CTO/ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Bruna L Freire
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM42, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Chong A Kim
- Unidade de Genetica do Instituto da Criança, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo (IB-USP), Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil.,Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM42, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
27
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
28
|
Murray PG, Clayton PE, Chernausek SD. A genetic approach to evaluation of short stature of undetermined cause. Lancet Diabetes Endocrinol 2018; 6:564-574. [PMID: 29397377 DOI: 10.1016/s2213-8587(18)30034-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/22/2017] [Accepted: 12/02/2017] [Indexed: 12/15/2022]
Abstract
Short stature is a common presentation to paediatric endocrinologists. After exclusion of major endocrine or systemic disease, most children with short stature are diagnosed based on a description of their growth pattern and the height of their parents (eg, familial short stature). Height is a polygenic trait and genome-wide association studies have identified many of the associated genetic loci. Here we review the application of genetic studies, including copy number variant analysis, targeted gene panels, and whole-exome sequencing in children with idiopathic short stature. We estimate 25-40% of children diagnosed with idiopathic short stature could receive a molecular diagnosis using these technologies. A molecular diagnosis for short stature is important for affected individuals and their families and might inform treatment decisions surrounding use of growth hormone or insulin-like growth factor 1 therapy.
Collapse
Affiliation(s)
- Philip G Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Peter E Clayton
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Steven D Chernausek
- Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61:T115-T137. [PMID: 29626053 PMCID: PMC5966339 DOI: 10.1530/jme-17-0298] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily among endocrinologists who study growth and metabolism. The advancement of molecular endocrinology over the past four decades enables investigators to re-examine and refine the established somatomedin hypothesis. Specifically, gene deletions, transgene overexpression or more recently, cell-specific gene-ablations, have enabled investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate. IGFs affect radial bone growth and regulate cortical and trabecular bone properties via their effects on osteoblast, osteocyte and osteoclast function. Interactions of the IGFs with sex steroid hormones and the parathyroid hormone demonstrate the significance and complexity of the IGF axis in the skeleton. Finally, IGFs have been implicated in skeletal aging. Decreases in serum IGFs during aging have been correlated with reductions in bone mineral density and increased fracture risk. This review highlights many of the most relevant studies in the IGF research landscape, focusing in particular on IGFs effects on the skeleton.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| |
Collapse
|
30
|
Blum WF, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E, Savage MO. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Connect 2018; 7:R212-R222. [PMID: 29724795 PMCID: PMC5987361 DOI: 10.1530/ec-18-0099] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 01/11/2023]
Abstract
The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.
Collapse
Affiliation(s)
| | | | - Afaf Alsagheir
- King Faisal Specialist Hospital and Research CenterRiyadh, Saudi Arabia
| | - Ahmed El Awwa
- Department of Pediatric Endocrinology & DiabetesHamad Medical Center, Doha, Qatar
| | | | | | - Martin O Savage
- William Harvey Research InstituteBarts and the London School of Medicine & Dentistry, London, UK
| |
Collapse
|
31
|
Domené HM, Fierro-Carrión G. Genetic disorders of GH action pathway. Growth Horm IGF Res 2018; 38:19-23. [PMID: 29249625 DOI: 10.1016/j.ghir.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 11/24/2022]
Abstract
While insensitivity to GH (GHI) is characterized by low IGF-I levels, normal or elevated GH levels, and lack of IGF-I response to GH treatment, IGF-I resistance is characterized by elevated IGF-I levels with normal/high GH levels. Several genetic defects are responsible for impairment of GH and IGF-I actions resulting in short stature that could affect intrauterine growth or be present in the postnatal period. The genetic defects affecting GH and/or IGF-I action can be divided into five different groups: GH insensitivity by defects affecting the GH receptor (GHR), the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1), the synthesis of insulin-like growth factors (IGF1, IGF2), the transport/bioavailability of IGFs (IGFALS, PAPPA2), and defects affecting IGF-I sensitivity (IGF1R). Complete GH insensitivity (GHI) was first reported by Zvi Laron and his colleagues in patients with classical appearance of GH deficiency, but presenting elevated levels of GH. The association of GH insensitivity with several clinical sings of immune-dysfunction and autoimmune dysregulation are characteristic of molecular defects in the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1). Gene mutations in the IGF1 and IGF2 genes have been described in patients presenting intrauterine growth retardation and postnatal short stature. Molecular defects have also been reported in the IGFALS gene, that encodes the acid-labile subunit (ALS), responsible to stabilize circulating IGF-I in ternary complexes, and more recently in the PAPPA2 gen that encodes the pregnancy-associated plasma protein-A2, a protease that specifically cleaves IGFBP-3 and IGFBP-5 regulating the accessibility of IGFs to their target tissues. Mutations in the IGF1R gene resulted in IGF-I insensitivity in patients with impaired intrauterine and postnatal growth. These studies have revealed novel molecular mechanisms of GH insensitivity/primary IGF-I deficiency beyond the GH receptor gene. In addition, they have also underlined the importance of several players of the GH-IGF axis in the complex system that promotes human growth.
Collapse
Affiliation(s)
- Horacio M Domené
- Centro de Investigaciones Endocrinológicas (CEDIE-CONICET), "Dr. César Bergadá", División de Endocrinología, Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina.
| | - Gustavo Fierro-Carrión
- Escuela de Medicina, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
32
|
Zanelli SA, Rogol AD. Short children born small for gestational age outcomes in the era of growth hormone therapy. Growth Horm IGF Res 2018; 38:8-13. [PMID: 29291885 DOI: 10.1016/j.ghir.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/31/2023]
Abstract
Small-for-gestational age (SGA) infants are at risk for short and long term medical and metabolic complications. Most SGA infants (85-90%) demonstrate spontaneous catch-up growth, typically in the first year after birth. Although catch-up growth (CUG) is a desired goal, it is important to note if CUG is too rapid the infants are at increased risk for insulin resistance and type 2 diabetes mellitus as they become adults. On the flip side, infants who do not exhibit CUG are also at increased risk of adverse adult outcomes including those for cardiovascular disease, insulin resistance and type 2 diabetes mellitus, neurodevelopmental and cognitive impairments, in addition to adult short stature. Treatment with growth hormone is safe and effective not only in increasing adult height, but also in improving body composition and decreasing metabolic complications. The aims of this review are to summarize the current knowledge on what constitutes "healthy" catch-up growth in children born SGA as well as provide an update on the role of growth hormone treatment for short children born SGA.
Collapse
Affiliation(s)
- Santina A Zanelli
- Department of Pediatrics, University of Virginia Health Center, Charlottesville, VA, USA.
| | - Alan D Rogol
- Department of Pediatrics, University of Virginia Health Center, Charlottesville, VA, USA.
| |
Collapse
|
33
|
Hawkes CP, Murray DM, Kenny LC, Kiely M, Hourihane JO, Irvine AD, Wu Z, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Correlation of Insulin-Like Growth Factor-I and -II Concentrations at Birth Measured by Mass Spectrometry and Growth from Birth to Two Months. Horm Res Paediatr 2018; 89:122-131. [PMID: 29402777 PMCID: PMC7183787 DOI: 10.1159/000486035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/05/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunoassays used to measure insulin-like growth factor (IGF)-I and -II concentrations are susceptible to interference from IGF-binding proteins. The aim of this study was to investigate the association of IGF-I and -II concentrations at birth with neonatal anthropometry using a liquid chromatography/mass spectrometry (LCMS) assay. METHODS LCMS was used to measure IGF-I and -II concentrations in umbilical cord blood of term, healthy infants enrolled in the Cork BASELINE Birth Cohort Study. Weight, length, and occipitofrontal head circumference (OFC) were measured at birth and 2 months. RESULTS Cord blood IGF-I and -II concentrations were measured in 1,100 infants. Mean (SD) IGF-I and -II concentrations were 52.5 (23.9) ng/mL and 424.3 (98.2) ng/mL, respectively. IGF-I and -II concentrations at birth were associated (p < 0.05) with weight (R2 = 0.19, R2 = 0.01), length (R2 = 0.07, R2 = 0.004), and OFC (R2 = 0.03, R2 = 0.04) at birth. Low IGF-I concentrations at birth were associated with increases in weight (p < 0.001) and OFC (p < 0.01) Z-scores in the first 2 months. CONCLUSION Using an LCMS assay, we have shown that anthropometric parameters at birth are associated with IGF-I and weakly with IGF-II concentrations. This indicates that, at the time of birth, IGF-I is the more important growth factor for regulating infant growth.
Collapse
Affiliation(s)
- Colin P. Hawkes
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA;,The National Children’s Research Centre, Dublin, Ireland;,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M. Murray
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland;,The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland;,Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland
| | - Mairead Kiely
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland;,School of Food and Nutritional Science, University College Cork, Cork, Ireland
| | - Jonathan O’B Hourihane
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland;,The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland
| | - Alan D. Irvine
- The National Children’s Research Centre, Dublin, Ireland;,Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Zengru Wu
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard E. Reitz
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, USA
| | | | - Adda Grimberg
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
35
|
Uchimura T, Hollander JM, Nakamura DS, Liu Z, Rosen CJ, Georgakoudi I, Zeng L. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth. Development 2017; 144:3533-3546. [PMID: 28974642 DOI: 10.1242/dev.155598] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Clifford J Rosen
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
36
|
Meyer R, Soellner L, Begemann M, Dicks S, Fekete G, Rahner N, Zerres K, Elbracht M, Eggermann T. Targeted Next Generation Sequencing Approach in Patients Referred for Silver-Russell Syndrome Testing Increases the Mutation Detection Rate and Provides Decisive Information for Clinical Management. J Pediatr 2017; 187:206-212.e1. [PMID: 28529015 DOI: 10.1016/j.jpeds.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the contribution of differential diagnoses to the mutation spectrum of patients referred for Silver-Russell syndrome (SRS) testing. STUDY DESIGN Forty-seven patients referred for molecular testing for SRS were examined after exclusion of one of the SRS-associated alterations. After clinical classification, a targeted next generation sequencing approach comprising 25 genes associated with other diagnoses or postulated as SRS candidate genes was performed. RESULTS By applying the Netchine-Harbinson clinical scoring system, indication for molecular testing for SRS was confirmed in 15 out of 47 patients. In 4 out of these 15 patients, disease-causing variants were found in genes associated with other diagnoses. These patients carried mutations associated with Bloom syndrome, Mulibrey nanism, KBG syndrome, or IGF1R-associated short stature. We could not detect any pathogenic mutation in patients with a negative clinical score. CONCLUSIONS Some of the differential diagnoses detected in the cohort presented here have a major impact on clinical management. Therefore, we emphasize that the molecular defects associated with these clinical pictures should be excluded before the clinical diagnosis "SRS" is made. Finally, we could show that a broad molecular approach including the differential diagnoses of SRS increases the detection rate.
Collapse
Affiliation(s)
- Robert Meyer
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Lukas Soellner
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Severin Dicks
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - György Fekete
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nils Rahner
- University Clinic Düsseldorf, Institute of Human Genetics, Düsseldorf, Germany
| | - Klaus Zerres
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (Rheinisch-Westfälische Technische Hochschule), Aachen, Germany.
| |
Collapse
|
37
|
Solomon-Zemler R, Basel-Vanagaite L, Steier D, Yakar S, Mel E, Phillip M, Bazak L, Bercovich D, Werner H, de Vries L. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia. Endocr Connect 2017; 6. [PMID: 28649085 PMCID: PMC5551424 DOI: 10.1530/ec-17-0038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutation in the insulin-like growth factor-1 receptor (IGF1R) gene is a rare cause for intrauterine and postnatal growth disorders. Patients identified with IGF1R mutations present with either normal or impaired glucose tolerance. None of the cases described so far showed hypoglycemia. We aimed to identify the genetic basis for small for gestational age, short stature and hypoglycemia over three generations in one family. The proband, a 9-year-old male, presented in infancy with recurrent hypoglycemic episodes, symmetric intrauterine growth retardation and postnatal growth retardation. Blood DNA samples from the patient, his parents, a maternal sister and maternal grandmother underwent Sanger sequencing of the IGF1R gene. Primary skin fibroblast cultures of the patient, his mother and age- and sex-matched control donors were used for gene expression and receptor functional analyses. We found a novel heterozygous mutation (c.94 + 1g > a, D1105E) affecting the splicing site of the IGF1R mRNA in the patient, his mother and his grandmother. Primary fibroblast cultures derived from the patient and his mother showed reduced proliferation and impaired activation of the IGF1R, evident by reduced IGF1R and AKT phosphorylation upon ligand binding. In conclusion, the newly identified heterozygous missense mutation in exon 1 of IGF1R (D1105E) results in impaired IGF1R function and is associated with small for gestational age, microcephaly and abnormal glucose metabolism. Further studies are required to understand the mechanisms by which this mutation leads to hypoglycemia.
Collapse
Affiliation(s)
- R Solomon-Zemler
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
| | - L Basel-Vanagaite
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic InstituteRabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
- Felsenstein Medical Research CenterPetach Tikva, Israel
- Pediatric GeneticsSchneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - D Steier
- Day Hospitalization DepartmentSchneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Yakar
- David B. Kriser Dental CenterDepartment of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - E Mel
- Jesse Z. and Sara Lea Shafer Institute for Endocrinology and DiabetesSchneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - M Phillip
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
- Jesse Z. and Sara Lea Shafer Institute for Endocrinology and DiabetesSchneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - L Bazak
- Raphael Recanati Genetic InstituteRabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | | | - H Werner
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
- Shalom and VardaYoran Institute for Human Genome ResearchTel Aviv University, Tel Aviv, Israel
| | - L de Vries
- Sackler Faculty of MedicineTel Aviv University, Tel Aviv, Israel
- Jesse Z. and Sara Lea Shafer Institute for Endocrinology and DiabetesSchneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
38
|
Işık E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, Wit JM. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol 2017; 176:657-667. [PMID: 28249955 DOI: 10.1530/eje-16-0999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Acid-labile subunit (ALS) deficiency (ACLSD), caused by homozygous or compound heterozygous IGFALS mutations, is associated with moderate short stature, delayed puberty, low serum IGF-I and ALS and extremely low serum IGFBP-3. Its effect on birth weight, head circumference, bone mineral density (BMD), serum IGF-II and IGFBP-2 is uncertain, as well as the phenotype of heterozygous carriers of IGFALS mutations (partial ACLSD). DESIGN From all available members of five Turkish families, carrying three mutations in exon 2 of IGFALS (c.1462G > A, p.Asp488Asn (families A, B, E); c.251A > G, p.Asn84Ser (families C and E) and c.1477del, p.Arg493fs (family D)), clinical, laboratory and BMD data were collected. METHODS Auxological and biochemical findings were expressed as SDS for age and gender. Ternary complex formation in serum was investigated by size-exclusion chromatography. BMD using DXA bone densitometry was adjusted for height and age (Ha-BMD z-score). RESULTS In ACLSD (n = 24), mean ± s.d. height SDS (-2.7 ± 1.2), head circumference SDS (-2.3 ± 0.5) and body mass index (BMI) (-0.6 ± 1.0 SDS) were lower than those in partial ACLSD (n = 26, P ≤ 0.01) and birth weight SDS (n = 7) tended to be lower (-2.2 ± 1.1 vs -0.6 ± 0.3 in partial ACLSD (P = 0.07)). Serum IGF-I was -3.7 ± 1.4 vs -1.0 ± 1.0, IGF-II: -5.6 ± 0.7 vs -1.3 ± 0.7, ALS: <-4.4 ± 1.2 vs -2.1 ± 0.9 and IGFBP-3: -9.0 ± 1.9 vs -1.6 ± 0.8 SDS respectively (P < 0.001). Ha-BMD z-score was similar and normal in both groups. CONCLUSIONS To the known phenotype of ACLSD (i.e. short stature, reduced serum levels of IGF-I and ALS, extremely low serum IGFBP-3 and disturbed ternary complex formation), we add reduced birth weight, head circumference and serum IGF-II.
Collapse
Affiliation(s)
- Emregül Işık
- Department of Pediatric EndocrinologyGaziantep Children's Hospital, Gaziantep, Turkey
| | - Belma Haliloglu
- Department of Pediatric EndocrinologyYeditepe University School of Medicine, İstanbul, Turkey
| | - Jaap van Doorn
- Department of GeneticsUniversity Medical Center Utrecht, The Netherlands
| | - Hüseyin Demirbilek
- Department of Pediatric EndocrinologyHacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | - Jan M Wit
- Departments of PediatricsLeiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Thakur S, Garg N, Zhang N, Hussey SE, Musi N, Adamo ML. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome. Biochem Biophys Res Commun 2017; 486:937-944. [DOI: 10.1016/j.bbrc.2017.03.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
|
40
|
Kammoun M, Slimani W, Hannachi H, Bibi M, Saad A, Mougou-Zerelli S. Array Characterization of Prenatally Diagnosed 15q26 Microdeletion and 2q37.1 Duplication: Report of a New Case with Multicystic Kidneys and Review of the Literature. J Pediatr Genet 2017; 6:215-221. [PMID: 29142763 DOI: 10.1055/s-0037-1602696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
We report on a molecular cytogenetic characterization of 15q26 deletion and 2q37.1 duplication in a fetus presenting with intrauterine growth restriction (IUGR), diaphragmatic hernia, multicystic kidneys, left kidney pyelectasis, and clubfeet. A terminal 15q26 deletion and a terminal 2q duplication of at least 10 and 9 Mb, respectively, derived from a maternal translocation, were found. The 15q26 deletion represents a contiguous gene deletion syndrome mainly characterized by IUGR, congenital diaphragmatic hernia, and less frequently kidney defects. This deletion encompasses the IGF1R and COUPTF2 genes, known to lead to fetal growth retardation syndrome. However, kidney malformations are less well known in such conditions, and to the best of our knowledge, no candidate gene has been proposed to date. Here, we review the literature of the 15q26 deletion syndrome and suggest that hypoplastic and multicystic kidneys, the most commonly observed anomalies in this condition, should be considered in the prenatal diagnosis setting. Based on COUPTF2 protein function, we hypothesize that its haploinsufficiency might be responsible for the renal pathology.
Collapse
Affiliation(s)
- Molka Kammoun
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Wafa Slimani
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Hanene Hannachi
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Mohamed Bibi
- Department of Obstetrics and Gynecology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Soumaya Mougou-Zerelli
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| |
Collapse
|
41
|
Rotwein P. Large-scale analysis of variation in the insulin-like growth factor family in humans reveals rare disease links and common polymorphisms. J Biol Chem 2017; 292:9252-9261. [PMID: 28389567 DOI: 10.1074/jbc.m117.783639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/06/2017] [Indexed: 01/07/2023] Open
Abstract
The insulin-like growth factors IGF1 and IGF2 are closely related proteins that are essential for normal growth and development in humans and other species and play critical roles in many physiological and pathophysiological processes. IGF actions are mediated by transmembrane receptors and modulated by IGF-binding proteins. The importance of IGF actions in human physiology is strengthened by the rarity of inactivating mutations in their genes and by the devastating impact caused by such mutations on normal development and somatic growth. Large-scale genome sequencing has the potential to provide new insights into human variation and disease susceptibility. Toward this end, the availability of DNA sequence data from 60,706 people through the Exome Aggregation Consortium has prompted the analyses presented here. Results reveal a broad range of potential missense and other alterations in the coding regions of every IGF family gene, but the vast majority of predicted changes were uncommon. The total number of different alleles detected per gene in the population varied over an ∼15-fold range, from 57 for IGF1 to 872 for IGF2R, although when corrected for protein length the rate ranged from 0.22 to 0.59 changes/codon among the 11 genes evaluated. Previously characterized disease-causing mutations in IGF2, IGF1R, IGF2R, or IGFALS all were found in the general population but with allele frequencies of <1:30,000. A few new highly prevalent amino acid polymorphisms were also identified. Collectively, these data provide a wealth of opportunities to understand the intricacies of IGF signaling and action in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
42
|
Elzein AOM, Ali AA, Hamdan HZ, Elhassan EM, Shrif NEMA, Adam I. Materno-foetal leptin and insulin-like growth factor in low birth weight neonates. J OBSTET GYNAECOL 2017; 36:31-3. [PMID: 26367191 DOI: 10.3109/01443615.2015.1030607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Low birth weight (LBW) is a health concern in developing countries. Leptin and insulin-like growth factor-I (IGF-I) are factors that influence LBW. A case-control study was conducted at Medani hospital, Sudan. Cases were women who had LBW deliveries ( 2,500 g) and controls were women with normal-weight babies ( 2.500 – 4,000 g). Sociodemographic and obstetrical characteristics were gathered from both groups and leptin and IGF-I levels were measured by ELISA. Cases and controls (45 in each arm) were matched in their basic data. The median (interquartile) of maternal leptin levels [9.9 (1.9 – 21.8) vs. 16.0 (9.6 – 20.8), ng/ml; P0.001] and IGF-I [1.6 (0.7 – 20.0) vs. 6.1 (4.3 – 7.1) ng/ml ; P 0.001] were significantly lower in cases than in controls. Likewise, cord serum leptin [5.8 (2.1 – 12.6) vs. 20.0 (5.1 – 37.8) ng/ml; P0.001] and cord serum IGF-I [1.7 (1.3 – 2.0) vs. 6.9 (5.9 – 7.4) ng/ml; P0.001] levels were significantly lower in cases than in controls. Significant positive correlation was found between birth weight and cord leptin ( r0.398), maternal ( r0.795) and cord ( r0.863) IGF-I levels. Maternal and cord leptin and IGF-I levels were significantly lower in LBW babies.
Collapse
Affiliation(s)
- A O M Elzein
- Department of Clinical Chemistry, Faculty of Medical Laboratory Science, Al-Zaeim Al-azhary University, Khartoum, Sudan
| | | | | | | | | | | |
Collapse
|
43
|
Ocaranza P, Golekoh MC, Andrew SF, Guo MH, Kaplowitz P, Saal H, Rosenfeld RG, Dauber A, Cassorla F, Backeljauw PF, Hwa V. Expanding Genetic and Functional Diagnoses of IGF1R Haploinsufficiencies. Horm Res Paediatr 2017; 87:412-422. [PMID: 28395282 PMCID: PMC5509495 DOI: 10.1159/000464143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The growth-promoting effects of IGF-I is mediated through the IGF-I receptor (IGF1R), a widely expressed cell-surface tyrosine kinase receptor. IGF1R copy number variants (CNV) can cause pre- and postnatal growth restriction or overgrowth. METHODS Whole exome sequence (WES), chromosomal microarray, and targeted IGF1R gene analyses were performed on 3 unrelated children who share features of small for gestational age, short stature, and elevated serum IGF-I, but otherwise had clinical heterogeneity. Fluorescence-activated cell sorting (FACS) analysis of cell-surface IGF1R was performed on live primary cells derived from the patients. RESULTS Two novel IGF1R CNV and a heterozygous IGF1R nonsense variant were identified in the 3 patients. One CNV (4.492 Mb) was successfully called from WES, utilizing eXome-Hidden Markov Model (XHMM) analysis. FACS analysis of cell-surface IGF1R on live primary cells derived from the patients demonstrated a ∼50% reduction in IGF1R availability associated with the haploinsufficiency state. CONCLUSION In addition to conventional methods, IGF1R CNV can be identified from WES data. FACS analysis of live primary cells is a promising method for efficiently evaluating and screening for IGF1R haploinsufficiency. Further investigations are necessary to delineate how comparable IGF1R availability leads to the wide spectrum of clinical phenotypes and variable responsiveness to rhGH therapy.
Collapse
Affiliation(s)
- Paula Ocaranza
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Shayne F. Andrew
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Michael H. Guo
- Division of Endocrinology, Boston Children’s Hospital and Department of Genetics, Harvard Medical School, Boston, MA
| | - Paul Kaplowitz
- Division of Pediatric Endocrinology and Diabetes, Children’s National Health System, Washington, DC
| | - Howard Saal
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ron G. Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Fernando Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Philippe F. Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH,Corresponding author: Vivian Hwa, Ph.D., EPSE member 267115, Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, Ph: 513-803-7337, Fax: 513-803-1174,
| |
Collapse
|
44
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
45
|
Qie D, Yang F. [Efficacy of different doses of recombinant human growth hormone in the treatment of short stature in children born small for gestational age]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:247-253. [PMID: 26975824 PMCID: PMC7389993 DOI: 10.7499/j.issn.1008-8830.2016.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the efficacy and safety of different doses of recombinant human growth hormone (rhGH) in the treatment of short stature in children born small for gestational age (SGA). METHODS A total of 37 children with short stature born SGA were enrolled, and based on the dose of rhGH treatment, they were divided into low-dose rhGH group (0.1-0.15 IU/kg daily) and high-dose rhGH group (0.16-0.2 IU/kg daily). The changes in height standard deviation score (ΔHtSDS), height velocity (HV), serum levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3), and fasting blood glucose at 3, 6, 9, 12, and 24 months after treatment were compared between the two groups. RESULTS ΔHtSDS and HV both increased after the treatment with high- and low-dose rhGH, but ΔHtSDS and HV in the high-dose rhGH group were significantly higher than in the low-dose rhGH group 9, 12 and 24 months after treatment (P<0.05). Both high- and low-dose rhGH treatment increased serum levels of IGF-1 and IGFBP-3. Serum levels of IGF-1 and IGFBP-3 were positively correlated with HtSDS in both groups. One child each in the high- and low-dose rhGH groups experienced transient slight increase in fasting blood glucose (6.1 mmol/L). There were no cases of abnormal thyroid function. CONCLUSIONS rhGH has good efficacy in the treatment of short stature in children born SGA, with few adverse events, and high-dose rhGH has some advantages over low-dose rhGH.
Collapse
Affiliation(s)
- Di Qie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | |
Collapse
|
46
|
Fujimoto M, Kawashima Sonoyama Y, Hamajima N, Hamajima T, Kumura Y, Miyahara N, Nishimura R, Adachi K, Nanba E, Hanaki K, Kanzaki S. Heterozygous nonsense mutations near the C-terminal region of IGF1R in two patients with small-for-gestational-age-related short stature. Clin Endocrinol (Oxf) 2015; 83:834-41. [PMID: 25866162 DOI: 10.1111/cen.12791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/14/2015] [Accepted: 04/04/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The type I insulin-like growth factor I receptor (IGF1R) plays an important role in growth. We aimed to evaluate the detailed mechanism underlying the effect of IGF1R on human growth. PATIENTS AND METHODS We have performed sequence analysis of IGF1R in 55 patients with SGA short stature in Japan, since 2004, and identified novel heterozygous nonsense mutations in 2 patients: an 8-year-old Japanese boy (case 1), with a birthweight of 2228 g (-3·3 SDS) and height of 46 cm (-2·1 SDS), and a 3-year-old Japanese girl (case 2), with a birthweight of 2110 g (-3·0 SDS) and height of 44·3 cm (-2·8 SDS). Both patients had a short stature (-3·2 SDS, -3·1 SDS). We determined the protein expression of mutated IGF1R, assessed the effect of the endoplasmic reticulum-associated degradation (ERAD) pathway on mutated IGF1R, assessed the dominant-negative effect of IGF1R and performed quantitative RT-PCR analysis of IGF1R mRNA expression in whole blood cells. RESULTS Two novel heterozygous nonsense mutations (case 1: p.Q1250X and case 2: p.W1249X) were identified. Although these mutations did not affect blood IGF1R mRNA levels, they significantly decreased the expression of IGF1R protein in transiently transfected cells. Treatment with the proteasome inhibitor MG132 showed significantly increased IGF1R protein. CONCLUSIONS Heterozygous nonsense mutations affecting the C-terminal region (p.Q1250X, p.W1249X) of IGF1R decreased the expression of IGF1R through the ERAD pathway. Our study revealed the importance of the C-terminal region and the dosage of this receptor for growth.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yuki Kawashima Sonoyama
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Naoki Hamajima
- Department of Pediatrics, Nagoya City West Medical Center, Nagoya, Japan
| | - Takashi Hamajima
- Department of Pediatric Endocrinology and Metabolism, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yumiko Kumura
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Naoki Miyahara
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Rei Nishimura
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kaori Adachi
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Eiji Nanba
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Keiichi Hanaki
- Department of Women's & Children's Family Nursing, Tottori University Faculty of Medicine, Yonago, Japan
| | - Susumu Kanzaki
- Division of Pediatrics & Perinatology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
47
|
Begemann M, Zirn B, Santen G, Wirthgen E, Soellner L, Büttel HM, Schweizer R, van Workum W, Binder G, Eggermann T. Paternally Inherited IGF2 Mutation and Growth Restriction. N Engl J Med 2015; 373:349-56. [PMID: 26154720 DOI: 10.1056/nejmoa1415227] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In humans, mutations in IGF1 or IGF1R cause intrauterine and postnatal growth restriction; however, data on mutations in IGF2, encoding insulin-like growth factor (IGF) II, are lacking. We report an IGF2 variant (c.191C→A, p.Ser64Ter) with evidence of pathogenicity in a multigenerational family with four members who have growth restriction. The phenotype affects only family members who have inherited the variant through paternal transmission, a finding that is consistent with the maternal imprinting status of IGF2. The severe growth restriction in affected family members suggests that IGF-II affects postnatal growth in addition to prenatal growth. Furthermore, the dysmorphic features of affected family members are consistent with a role of deficient IGF-II levels in the cause of the Silver-Russell syndrome. (Funded by Bundesministerium für Bildung und Forschung and the European Union.).
Collapse
Affiliation(s)
- Matthias Begemann
- From the Institute of Human Genetics, University Hospital, Rhine-Westphalia Institute of Technology (RWTH) Aachen, Aachen (M.B., L.S., T.E.), Department of Pediatrics and Neuropediatrics, University Medicine, Göttingen, and Genetikum, Genetic Counseling and Diagnostics, Stuttgart (B.Z.), Ligandis, Gülzow-Prüzen (E.W.), Department of Pediatrics and Neuropediatrics, SLK-Kliniken, Heilbronn (H.-M.B.), and Pediatric Endocrinology Section, University Children's Hospital, University of Tübingen, Tübingen (R.S., G.B.) - all in Germany; and the Department of Clinical Genetics, Leiden University Medical Center (G.S.), GenomeScan (G.S., W.W.), and ServiceXS (W.W.) - all in Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Recombinant human GH (rhGH) has been available since 1985. This article gives an overview, what has been achieved over the past 30 years in respect to optimization of rhGH treatment for the individual child with GH deficiency and what are the safety issues concerned with this treatment. In the last twenty years significant scientific progress has been made in the diagnosis of GH deficiency, the genetic disorders that are associated with pituitary GH deficiency and the genetics that influence growth in general. On the other hand rhGH is not only used in states of GH deficiency but also various conditions without a proven GH deficiency by classical standards. Clinical studies that investigated both the genetics of growth and the individual responses to rhGH therapy in these patient populations were able to refine our concept about the physiology of normal growth. In most patients under rhGH treatment there is a considerable short-term effect, however the overall gain in growth obtained by a long-term treatment until final height still remains a matter of debate in some of the conditions treated. Also first studies on the long-term safety risks of rhGH treatment have raised the question whether this treatment is similarly safe for all the patient groups eligible for such a treatment. Therefore even in the face of a longstanding safety record of this drug replacement therapy the discussion about the right cost and risk to benefit ratio is continuing. Consequently there is still a need for carefully conducted long-term studies that use modern anthropometric, genetic, and laboratory techniques in order to provide the necessary information for clinicians to select the patients that will benefit best from this valuable treatment without any long term risk.
Collapse
Affiliation(s)
- Roland Pfäffle
- University Children's Hospital Leipzig, Liebigstr. 20a, 0413 Leipzig, Germany.
| |
Collapse
|
49
|
Juanes M, Guercio G, Marino R, Berensztein E, Warman DM, Ciaccio M, Gil S, Bailez M, Rivarola MA, Belgorosky A. Three novel IGF1R mutations in microcephalic patients with prenatal and postnatal growth impairment. Clin Endocrinol (Oxf) 2015; 82:704-11. [PMID: 25040157 DOI: 10.1111/cen.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/09/2014] [Accepted: 07/11/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND IGF1R gene mutations have been associated with varying degrees of intrauterine and postnatal growth retardation, and microcephaly. OBJECTIVE To identify and characterize IGF1R gene variations in a cohort of 28 Argentinean children suspected of having IGF-1 insensitivity, who were selected on the basis of the association of pre/postnatal growth failure and microcephaly. METHODS The coding sequence and flanking intronic regions of IGF1R gene were amplified and directly sequenced. Functional characterization was performed by two in vitro assays: 1) [Methyl-(3) H] thymidine incorporation into DNA in fibroblast cell primary cultures from patients and controls treated with IGF-1 for 16-24 h. 2) PI3K/Akt pathway was evaluated with phospho-Akt (Ser473) STAR ELISA Kit (Millipore) in fibroblast cultures from patients and controls stimulated with IGF-1 for 10 min. Prepubertal clinical and GH-IGF-1 axis evaluation was followed up. RESULTS We identified three novel heterozygous missense mutations in three unrelated patients, de novo p.Arg1256Ser, de novo p.Asn359Tyr and p.Tyr865Cys. In control cells, proliferation assay showed that IGF-1 significantly induced DNA synthesis at 20 h and Akt phosphorylation assay that it significantly stimulated phosphorylation after 10 min (P < 0·05 by anova and Bonferroni Tests). However, no significant increase was observed in any of the three patient fibroblasts in both functional studies. GH therapy growth response in two patients was inconsistent. CONCLUSION These variations led to failure of the IGF1R function causing pre- and postnatal growth retardation and microcephaly. Microcephaly should be considered in the evaluation of SGA patients, because it seems to favour the frequency of detection of IGF1R mutations.
Collapse
Affiliation(s)
- Matias Juanes
- Endocrinology Service, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Storr HL, Dunkel L, Kowalczyk J, Savage MO, Metherell LA. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation. Eur J Endocrinol 2015; 172:151-61. [PMID: 25411237 DOI: 10.1530/eje-14-0541] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE AND DESIGN GH insensitivity (GHI) encompasses growth failure, low serum IGF1 and normal/elevated serum GH. By contrast, IGF1 insensitivity results in pre- and postnatal growth failure associated with relatively high IGF1 levels. From 2008 to 2013, 72 patients from 68 families (45M), mean age 7.1 years (0.4-17.0) with short stature (mean height SDS -3.9; range -9.4 to -1.5), were referred for sequencing. METHODS As a genetics referral centre, we have sequenced appropriate candidate genes (GHR, including its pseudoexon (6Ψ), STAT5B, IGFALS, IGF1, IGF1R, OBSL1, CUL7 and CCDC8) in subjects referred with suspected GHI (n=69) or IGF1 insensitivity (n=3). RESULTS Mean serum IGF1 SDS was -2.7 (range -0.9 to -8.2) in GHI patients and 2.0, 3.7 and 4.4 in patients with suspected IGF1 insensitivity. Out of 69 GHI patients, 16 (23%) (19% families) had mutations in GH-IGF1 axis genes: homozygous GHR (n=13; 6 6Ψ, two novel IVS5ds+1 G to A) and homozygous IGFALS (n=3; one novel c.1291delT). In the GHI groups, two homozygous OBSL1 mutations were also identified (height SDS -4.9 and -5.7) and two patients had hypomethylation in imprinting control region 1 in 11p15 or mUPD7 consistent with Silver-Russell syndrome (SRS) (height SDS -3.7 and -4.3). A novel heterozygous IGF1R (c.112G>A) mutation was identified in one out of three (33%) IGF1-insensitive subjects. CONCLUSION Genotyping contributed to the diagnosis of children with suspected GHI and IGF1 insensitivity, particularly in the GHI subjects with low serum IGF1 SDS (<-2.0) and height SDS (<-2.5). Diagnoses with similar phenotypes included SRS and 3-M syndrome. In 71% patients, no diagnosis was defined justifying further genetic investigation.
Collapse
Affiliation(s)
- Helen L Storr
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, London, UK
| | - Leo Dunkel
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, London, UK
| | - Julia Kowalczyk
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, London, UK
| | - Martin O Savage
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, London, UK
| | - Louise A Metherell
- Barts and the London School of Medicine and DentistryWilliam Harvey Research Institute, Centre for Endocrinology, Queen Mary University of London, London, UK
| |
Collapse
|