1
|
U-Din M, de Mello VD, Tuomainen M, Raiko J, Niemi T, Fromme T, Klåvus A, Gautier N, Haimilahti K, Lehtonen M, Kristiansen K, Newman JW, Pietiläinen KH, Pihlajamäki J, Amri EZ, Klingenspor M, Nuutila P, Pirinen E, Hanhineva K, Virtanen KA. Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans. Cell Rep 2023; 42:113131. [PMID: 37708023 DOI: 10.1016/j.celrep.2023.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
Collapse
Affiliation(s)
- Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Vanessa D de Mello
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjo Tuomainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Juho Raiko
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anton Klåvus
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Marko Lehtonen
- Department of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - John W Newman
- Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Du K, Bai X, Chen L, Shi Y, Wang HD, Cai MC, Sun WQ, Wang J, Chen SY, Jia XB, Lai SJ. Integrated analysis of microRNAs, circular RNAs, long non-coding RNAs, and mRNAs revealed competing endogenous RNA networks involved in brown adipose tissue whitening in rabbits. BMC Genomics 2022; 23:779. [PMID: 36443655 PMCID: PMC9703717 DOI: 10.1186/s12864-022-09025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The brown adipose tissue (BAT) is a target for treating obesity. BAT losses thermogenic capacity and gains a "white adipose tissue-like" phenotype ("BAT whitening") under thermoneutral environments, which is a potential factor causing a low curative effect in BAT-related obesity treatments. Circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNA) to mRNAs and function in various processes by sponging shared microRNAs (miRNAs). However, the roles of circRNA- and lncRNA-related ceRNA networks in regulating BAT whitening remain litter known. RESULTS In this study, BATs were collected from rabbits at day0 (D0), D15, D85, and 2 years (Y2). MiRNA-seq was performed to investigate miRNA changes during BAT whitening. Then, a combined analysis of circRNA-seq and whole-transcriptome sequencing was used for circRNA assembly and quantification during BAT whitening. Our data showed that 1187 miRNAs and 6204 circRNAs were expressed in the samples, and many of which were identified as significantly changed during BAT whitening. Target prediction showed that D0-selective miRNAs were significantly enriched in the Ras, MAPK, and PI3K-Akt signaling pathways, and Y2-selective miRNAs were predicted to be involved in cell proliferation. The cyclization of several circRNAs could form novel response elements of key thermogenesis miRNAs at the back-splicing junction (BSJ) sites, and in combination with a dual-luciferase reporter assay confirmed the binding between the BSJ site of novel_circ_0013792 and ocu-miR-378-5p. CircRNAs and lncRNAs have high cooperativity in sponging miRNAs during BAT whitening. Both circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA triple networks were significantly involved in immune response-associated biological processes. The D15-selective circRNA might promote BAT whitening by increasing the expression of IDH2. The Y2-selective circRNA-related ceRNA network and lncRNA-related ceRNA network might regulate the formation of the WAT-like phenotype of BAT via MAPK and Ras signaling pathways, respectively. CONCLUSIONS Our work systematically revealed ceRNA networks during BAT whitening in rabbits and might provide new insight into BAT-based obesity treatments.
Collapse
Affiliation(s)
- Kun Du
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Xue Bai
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Li Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Yu Shi
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Hao-ding Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Ming-cheng Cai
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wen-qiang Sun
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Jie Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Shi-yi Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Xian-bo Jia
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Song-jia Lai
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| |
Collapse
|
3
|
Kulterer OC, Herz CT, Prager M, Schmöltzer C, Langer FB, Prager G, Marculescu R, Kautzky-Willer A, Hacker M, Haug AR, Kiefer FW. Brown Adipose Tissue Prevalence Is Lower in Obesity but Its Metabolic Activity Is Intact. Front Endocrinol (Lausanne) 2022; 13:858417. [PMID: 35432192 PMCID: PMC9009254 DOI: 10.3389/fendo.2022.858417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Due to its high metabolic activity, brown adipose tissue (BAT) has become a promising target for the development of novel treatment concepts for metabolic disease. Despite several reports of a negative association between the presence of active BAT and obesity, very little is known about the quantitative and qualitative differences of BAT in lean and obese individuals. Systematic studies directly comparing cold-induced BAT activity in leanness and obesity are currently lacking. Here we studied BAT mass and function in 31 lean and 64 obese men and women. After a standardized cooling protocol using a water-perfused vest, 18F-FDG-positron emission tomography/computed tomography scans were performed, and BAT was delineated using lean body-mass adjusted standardized uptake value (SUV) thresholds in anatomic regions with fat radiodensity. Cold-induced thermogenesis (CIT), a functional readout of BAT activity, was quantified by indirect calorimetry. Active BAT was present in a significantly higher proportion of lean than obese individuals (58% vs. 33%, p=0.019). In these participants with active BAT, however, BAT volume and activity did not differ between leanness and obesity. Accordingly, CIT was similar in both weight groups. BAT metrics were not related to adiposity or total fat mass per se. However, in obese participants a strong negative correlation existed between visceral adipose tissue and BAT volume, 18F-FDG uptake and CIT. In summary, despite a significantly lower prevalence of BAT, the metabolic activity and thermogenic capacity of BAT appears to be still intact in obesity and is inversely associated with visceral fat mass.
Collapse
Affiliation(s)
- Oana C. Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T. Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Schmöltzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B. Langer
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R. Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian W. Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian W. Kiefer,
| |
Collapse
|
4
|
Peres Valgas da Silva C, Calmasini F, Alexandre EC, Raposo HF, Delbin MA, Monica FZ, Zanesco A. The effects of mirabegron on obesity-induced inflammation and insulin resistance are associated with brown adipose tissue activation but not beiging in the subcutaneous white adipose tissue. Clin Exp Pharmacol Physiol 2021; 48:1477-1487. [PMID: 34343353 DOI: 10.1111/1440-1681.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023]
Abstract
Mirabegron is a selective β₃-adrenergic receptors agonist, which has been recently shown to improve metabolic health in rodents and humans. In this study, we investigated the effects of 2-week mirabegron treatment on the metabolic parameters of mice with a diet-induced obesity (DIO). C57BL/6JUnib mice were divided into control (CTR) and obese (OB) groups treated with vehicle, and an OB group treated with mirabegron (OB + MIRA). The obese groups were fed a high-fat diet for 12 weeks. Mirabegron (10 mg/kg/day) was administrated orally by gavage from weeks 10-12. After 2 weeks of mirabegron treatment, the energy expenditure was assessed with indirect calorimetry. Blood glucose, insulin, glycerol, free fatty acids (FFA), thiobarbituric acid reactive substance (TBAR), and tumour necrosis factor (TNF)-α levels were also assessed, and the HOMA index was determined. Liver tissue, brown adipose tissue (BAT), and inguinal white adipose tissue (iWAT) samples were collected for histological examination. The protein expressions of uncoupling protein 1 (UCP1) and mitochondrial transcription factor A (TFAM) were assessed using western blotting of the BAT and iWAT samples. In this study, mirabegron increased the energy expenditure and decreased adiposity in OB + MIRA. Increased UCP1 expression in BAT without changes in iWAT was also found. Mirabegron decreased circulating levels of FFA, glycerol, insulin, TNF-α, TBARS and HOMA index. DIO significantly increased the lipid deposits in the liver and BAT, but mirabegron partially reversed this change. Our findings indicate that treatment with mirabegron decreased inflammation and improved metabolism in obese mice. This effect was associated with increased BAT-mediated energy expenditure, but not iWAT beiging, which suggests that mirabegron might be useful for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Fabiano Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Helena Fonseca Raposo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Andreia Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- Medical School, Graduate Program in Environmental Health, Metropolitan University of Santos, Santos, Brazil
| |
Collapse
|
5
|
Schlein C, Fischer AW, Sass F, Worthmann A, Tödter K, Jaeckstein MY, Behrens J, Lynes MD, Kiebish MA, Narain NR, Bussberg V, Darkwah A, Jespersen NZ, Nielsen S, Scheele C, Schweizer M, Braren I, Bartelt A, Tseng YH, Heeren J, Scheja L. Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Rep 2021; 34:108624. [PMID: 33440156 PMCID: PMC8240962 DOI: 10.1016/j.celrep.2020.108624] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Thermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic. Using metabolic and lipidomic approaches, we show that endogenous fatty acid synthesis, regulated by carbohydrate-response element-binding protein (ChREBP), is the central regulator of BAT involution. By transcriptional control of lipogenesis-related enzymes, ChREBP determines the abundance and composition of both storage and membrane lipids known to regulate organelle turnover and function. Notably, ChREBP deficiency and pharmacological inhibition of lipogenesis during thermoneutral adaptation preserved mitochondrial mass and thermogenic capacity of BAT independently of mitochondrial biogenesis. In conclusion, we establish lipogenesis as a potential therapeutic target to prevent loss of BAT thermogenic capacity as seen in adult humans. Schlein et al. show that carbohydrate-response element-binding protein (ChREBP) controls de novo lipogenesis (DNL) in brown adipose tissue (BAT) and determines BAT whitening in response to thermoneutral housing. ChREBP deficiency prevents enrichment of DNL-derived lipids and mitophagy during BAT involution, which is associated with higher thermogenic capacity.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Nielsen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Bartelt
- Department of Molecular Metabolism & Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 81377 Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Are the Levels of Lipid Parameters Associated with Biometeorological Conditions? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234636. [PMID: 31766531 PMCID: PMC6926572 DOI: 10.3390/ijerph16234636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Lipid disorders, especially hypercholesterolemia, are one of the most thoroughly investigated cardiovascular risk factors. Their correlation with biometeorological conditions has been reported, with authors stressing seasonal increases of total cholesterol (TC) levels, mostly occurring in winter. This study aims at determining the correlation between the level of lipid parameters (LP) and meteorological conditions, analyzing seasonal variations in LP levels, and attempting to answer the following questions: do changes in LP levels result from the organism’s response to cold or heat stress, or are they secondary to seasonal dietary variations? An observational study comprised ambulatory patients from the city of Olsztyn (Poland), for whom laboratory test were performed in 2016–2018, with 106,325 records of TC, high-density lipoprotein (HDL), and triglycerides (TG). LP levels were matched with atmospheric conditions on the day when the test was conducted and expressed by the universal thermal climate index (UTCI). We demonstrated seasonal increases of TC in cold stress (in wintertime) and of TG in heat stress (summer). The analysis of LP levels in specific periods revealed the increase of TC levels after holidays (i.e., Christmas and Easter) in men by 4.56%, and the increase of TG levels in women by 13.46% in the same period. Our results suggest the secondary, diet-dependent underlying cause of the observed changes. This work contributes to the discussion concerning the impact of biometeorological factors on LP levels and may be of significance when planning population-dedicated preventive activities.
Collapse
|
7
|
LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun 2018; 9:3622. [PMID: 30190464 PMCID: PMC6127097 DOI: 10.1038/s41467-018-05933-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/31/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing brown adipose tissue (BAT) thermogenesis in mice and humans improves metabolic health and understanding BAT function is of interest for novel approaches to counteract obesity. The role of long noncoding RNAs (lncRNAs) in these processes remains elusive. We observed maternally expressed, imprinted lncRNA H19 increased upon cold-activation and decreased in obesity in BAT. Inverse correlations of H19 with BMI were also observed in humans. H19 overexpression promoted, while silencing of H19 impaired adipogenesis, oxidative metabolism and mitochondrial respiration in brown but not white adipocytes. In vivo, H19 overexpression protected against DIO, improved insulin sensitivity and mitochondrial biogenesis, whereas fat H19 loss sensitized towards HFD weight gains. Strikingly, paternally expressed genes (PEG) were largely absent from BAT and we demonstrated that H19 recruits PEG-inactivating H19-MBD1 complexes and acts as BAT-selective PEG gatekeeper. This has implications for our understanding how monoallelic gene expression affects metabolism in rodents and, potentially, humans. Brown adipose tissue (BAT) thermogenesis counteracts obesity and promotes metabolic health. The role of long non-coding RNAs (lncRNAs) in the regulation of this process is not well understood. Here the authors identify a maternally expressed lncRNA, H19, that increases BAT oxidative metabolism and energy expenditure.
Collapse
|
8
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018; 19:ijms19020632. [PMID: 29473878 PMCID: PMC5855854 DOI: 10.3390/ijms19020632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.
Collapse
|
10
|
Hydrogen Sulfide in the Adipose Tissue-Physiology, Pathology and a Target for Pharmacotherapy. Molecules 2016; 22:molecules22010063. [PMID: 28042862 PMCID: PMC6155731 DOI: 10.3390/molecules22010063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H₂S) is synthesized in the adipose tissue mainly by cystathionine γ-lyase (CSE). Several studies have demonstrated that H₂S is involved in adipogenesis, that is the differentiation of preadipocytes to adipocytes, most likely by inhibiting phosphodiesterases and increasing cyclic AMP concentration. The effect of H₂S on adipose tissue insulin sensitivity and glucose uptake is controversial. Some studies suggest that H₂S inhibits insulin-induced glucose uptake and that excess of H₂S contributes to adipose tissue insulin resistance in metabolic syndrome. In contrast, other studies have demonstrated that H₂S stimulates glucose uptake and its deficiency contributes to insulin resistance. Similarly, the effect of H₂S on adipose tissue lipolysis is controversial. H₂S produced by perivascular adipose tissue decreases vascular tone by activating ATP-sensitive and/or voltage-gated potassium channels in smooth muscle cells. Experimental obesity induced by high calorie diet has a time dependent effect on H₂S in perivascular adipose tissue; short and long-term obesity increase and decrease H₂S production, respectively. Hyperglycemia has been consistently demonstrated to suppress CSE-H₂S pathway in various adipose tissue depots. Finally, H₂S deficiency may contribute to adipose tissue inflammation associated with obesity/metabolic syndrome.
Collapse
|