1
|
Kardelen AD, Darendeliler F. The Role of the Intrauterine Environment in Shaping Childhood and Adolescence Metabolic Outcomes. Metabolites 2025; 15:252. [PMID: 40278381 PMCID: PMC12029342 DOI: 10.3390/metabo15040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging research suggests that the intrauterine environment plays a critical role in predisposing individuals to metabolic syndrome (MetS), a constellation of conditions that heightens the risk for heart disease, stroke, and diabetes. Traditionally linked to lifestyle, the risk for MetS is now understood to be also influenced by fetal exposures. The environment in which a child lives offers abundant potential sources that can contribute to an increased risk of developing various diseases, and in some cases, these factors can be avoided. This review integrates findings from both epidemiological and experimental research to underscore the impact of prenatal factors, including maternal nutrition, obesity, gestational diabetes (GDM), and birth size, on the subsequent development of metabolic derangements in offspring, particularly during puberty. The progression of genetic and epigenetic studies has enlightened the pathophysiology of these conditions starting in the intrauterine period and continuing into early life. By examining data and studies, this article elucidates the prenatal influences and underlying mechanisms that contribute to the pathogenesis of MetS. The updated understanding of the link between the intrauterine environment and future health comorbidities will draw attention to intrauterine care and maternal health and contribute to the prevention of serious diseases in adulthood.
Collapse
Affiliation(s)
- Asli Derya Kardelen
- Division of Pediatric Endocrinology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye;
- Department of Genetics, Institute of Graduate Studies in Health Science, Istanbul University, Istanbul 34093, Türkiye
| | - Feyza Darendeliler
- Division of Pediatric Endocrinology, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye;
| |
Collapse
|
2
|
Perge K, Capel E, Senée V, Julier C, Vigouroux C, Nicolino M. Ciliopathies are responsible for short stature and insulin resistance: A systematic review of this clinical association regarding SOFT syndrome. Rev Endocr Metab Disord 2024; 25:827-838. [PMID: 39017987 PMCID: PMC11470920 DOI: 10.1007/s11154-024-09894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.
- Claude Bernard University, Lyon 1, Lyon, France.
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France.
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Senée
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Cécile Julier
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
- Claude Bernard University, Lyon 1, Lyon, France
| |
Collapse
|
3
|
Tsinopoulou VR, Kotanidou EP, Athanasiadis N, Bacopoulou F, Stefanaki C, Fidani L, Galli-Tsinopoulou A, Christoforidis A. Earlier Menarche in Greek Girls Born by Caesarean Section: A Case-Control Study. J Clin Med 2024; 13:3452. [PMID: 38929980 PMCID: PMC11204395 DOI: 10.3390/jcm13123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Objectives: The purpose of this study was to report on the menarcheal age in girls of Greek origin and assess its potential associations with their demographic and perinatal data, as well as their maternal menarcheal age. Methods: In this case-control study, adolescent girls were recruited between September 2021 and September 2022 from two Pediatric Endocrinology Units, Aristotle University of Thessaloniki, Greece. Eligible participants included Greek girls up to the age of 18 years, with menarche and the absence of chronic disease or chronic medication use. Participants were divided into two groups, the early menarche group and the control group (menarche before or after 11 years of age, respectively). Data included participants' maternal menarcheal age, their chronological age, place of residence, anthropometric data (at recruitment) and perinatal data (birth order, gestational age, type of delivery, birth weight/length). Results: A total of 100 girls aged 7-17 years (mean age ± SD 12.51 ± 2.59 years) were included in this study. The mean ± SD menarcheal age of the total sample was 11.47 ± 1.55 years (median 11.20 years; range 7.50-16.25 years); 43% had early menarche (median menarcheal age 10.50 years; range 7.50-10.91 years), and 57% had menarche after age 11 (median menarcheal age 12.08 years; range 11.00-16.25 years). The caesarean section rate was significantly (p < 0.001) higher in girls with early menarche (83.7%) than controls, whereas other variables did not differ significantly between groups. Conclusions: This Greek sample demonstrated a relatively young age at menarche with a significant proportion of girls with early menarche; in the latter group, the rate of caesarian sections was significantly higher than controls.
Collapse
Affiliation(s)
- Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, 54636 Thessaloniki, Greece
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54636 Thessaloniki, Greece
| | - Eleni P. Kotanidou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, 54636 Thessaloniki, Greece
| | - Nikolaos Athanasiadis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54636 Thessaloniki, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece
| | - Charikleia Stefanaki
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece
| | - Liana Fidani
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, 54636 Thessaloniki, Greece
- Laboratory of Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University General Hospital AHEPA, 54636 Thessaloniki, Greece
| | - Athanasios Christoforidis
- 1st Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Ippokratio General Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
4
|
Li H, Chen C, Liu S, Shi Y, Kuang X, Song X, Li D, Li K. Differential Effects of n-3 and n-6 Polyunsaturated Fatty Acids on Placental and Embryonic Growth and Development in Diabetic Pregnant Mice. Nutrients 2024; 16:1182. [PMID: 38674874 PMCID: PMC11054179 DOI: 10.3390/nu16081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to investigate the differential effects of n-3 and n-6 polyunsaturated fatty acids (PUFAs) on placental and embryonic development. Pregnant mice were assigned to five groups: healthy control (HC), diabetes mellitus control (DMC), diabetes + low-dose n-3 PUFA (Ln-3), diabetes + high-dose n-3 PUFA (Hn-3), and diabetes + n-6 PUFA (n-6). On E12.5d, the Hn-3 group, but not the n-6 group, had a higher placenta weight. The weight ratio of embryo to placenta in the n-6 group was significantly lower than in the Hn-3 group but higher than in the DMC group. The Hn-3 group had significantly higher protein levels of VEGF, IGF-1, and IGFBP3, while the n-6 group had lower VEGF than the DMC group. Compared with the DMC group, embryonic Cer-16:0 was significantly higher in the Hn-3 group, while embryonic PC (36:6), PC (38:7), and PE (40:7) were significantly lower in the n-6 group. The embryo and placenta weights were positively correlated with placental VEGF, IGFBP3, and embryonic Cer-16:0, and they were negatively correlated with embryonic PC (36:6) and PE (40:7). The weight ratio of embryo to placenta was negatively correlated with embryonic PC (36:6). In addition, embryonic Cer-16:0 was positively correlated with placental VEGF and IGFBP3. In conclusion, n-3 PUFA and n-6 PUFA improved placental and embryonic growth through different mechanisms.
Collapse
Affiliation(s)
- Huiying Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Chuanjing Chen
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Yan Shi
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.L.); (S.L.); (Y.S.); (X.K.); (X.S.); (D.L.)
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
5
|
Darneau D, Giabicani E, Netchine I, Pham A. Perinatal features of children with Silver-Russell syndrome due to 11p15 loss of methylation. Front Pediatr 2024; 12:1367433. [PMID: 38638586 PMCID: PMC11024461 DOI: 10.3389/fped.2024.1367433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Background A diagnosis of Silver-Russell syndrome (SRS), a rare imprinting disorder responsible for foetal growth restriction, is considered for patients presenting at least four criteria of the Netchine-Harbison clinical scoring system (NH-CSS). Certain items of the NH-CSS are not assessable until the age of 2 years. The objective was to determine perinatal characteristics of children with SRS to allow an early diagnosis. Methods We retrospectively compared the perinatal characteristics of children with SRS (n = 17) with those of newborns small for gestational age (SGA) due to placental insufficiency (PI) (n = 21). Results Children with SRS showed earlier and more severely altered foetal biometry than SGA newborns due to PI. Twenty-three percent of patients with SRS showed uterine artery Doppler anomalies. SRS children were significantly smaller at birth (birth length <-3 SDS in 77% of cases in the SRS group vs. 15% in the PI group, p = 0.0001). Conclusion The diagnosis of SRS must be evoked in the neonatal period for SGA newborns with a growth delay present from the second trimester of pregnancy, a birth length <-3 SDS and a relative macrocephaly. Doppler anomalies, classically used to orient the cause of SGA towards PI, did not rule out the diagnosis of SRS.
Collapse
Affiliation(s)
- Diane Darneau
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d’Empreinte, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d’Empreinte, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d’Empreinte, Paris, France
| | - Aurélie Pham
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Service de Néonatologie, Paris, France
| |
Collapse
|
6
|
Lee TK, Kim YM, Lim HH. Comparison of anthropometric, metabolic, and body compositional abnormalities in Korean children and adolescents born small, appropriate, and large for gestational age: a population-based study from KNHANES V (2010-2011). Ann Pediatr Endocrinol Metab 2024; 29:29-37. [PMID: 38461803 PMCID: PMC10925778 DOI: 10.6065/apem.2346044.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 03/12/2024] Open
Abstract
PURPOSE The impacts of growth restriction and programming in the fetal stage on metabolic and bone health in children and adolescents are poorly understood. Moreover, there is insufficient evidence for the relationship between current growth status and metabolic components. Herein, we compared the growth status, metabolic and body compositions, and bone mineral density in Korean children and adolescents based on birth weight at gestational age. METHODS We studied 1,748 subjects (272 small for gestational age [SGA], 1,286 appropriate for gestational age [AGA], and 190 large for gestational age [LGA]; 931 men and 817 women) aged 10-18 years from the Korean National Health and Nutrition Examination Survey (KNHANES) V (2010-2011). Anthropometric measurements, fasting blood biochemistry, and body composition data were analyzed according to birth weight and gestational age. RESULTS The prevalence of low birth weight (14.7% vs. 1.2% in AGA and 3.2% in LGA, p<0.001) and current short stature (2.237 [1.296-3.861] compared to AGA, p=0.004) in SGA subjects was greater than that in other groups; however, the prevalence of overweight and obesity risks, metabolic syndrome (MetS), and MetS component abnormalities was not. Moreover, no significant differences were found in age- and sex-adjusted lean mass ratio, fat mass ratio, truncal fat ratio, bone mineral content, or bone density among the SGA, AGA, and LGA groups in Korean children and adolescents. CONCLUSION Our data demonstrate that birth weight alone may not be a determining factor for body composition and bone mass in Korean children and adolescents. Further prospective and longitudinal studies in adults are necessary to confirm the impact of SGA on metabolic components and bone health.
Collapse
Affiliation(s)
- Tae Kwan Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Yoo Mi Kim
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Han Hyuk Lim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
7
|
Aerts P, Mielke F, Vanden Hole C, Van Gorp MJW, Van Ginneken C. Early Development of Locomotion in the Term Piglet Model: Does Size Matter? Integr Comp Biol 2023; 63:610-624. [PMID: 37309027 PMCID: PMC10503477 DOI: 10.1093/icb/icad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/14/2023] Open
Abstract
Intrauterine undernutrition in humans typically results in low birth weight ([small for gestational age] SGA) and delayed postnatal neuromotor maturation. Since SGA and intrauterine growth retardation are also common in domestic pigs, piglets are premised as models to study delayed motor development. Applied to the locomotor paradigm, however, questions emerge: (i) how to map the developmental time scale of the precocial model onto the altricial target species and (ii) how to distinguish size from maturation effects? Gait data were collected at self-selected voluntary walking speed during early development (0-96 hours postpartum; pp) for SGA- and normal ([appropriate for gestational age] AGA) piglets. Dimensionless spatiotemporal gait characteristics (according to dynamic similarity) become invariant already after 4 hours pp, suggesting rapid postnatal neuromotor maturation. Moreover, dimensionless gait data are largely identical for SGA- and AGA-siblings, indicating that primarily size effects explain absolute locomotor differences. This is further supported by (i) normalized force-generating capacity of limb muscles, (ii) joint kinematics (<10 hours pp), and (iii) normalized ground reaction forces (<5 days pp) being indifferent between SGA- and AGA- piglets. Furthermore, predictive modeling based on limb joint kinematics is unable to discern the majority of SGA- from AGA-piglets (<10 hours pp). All this leads to the conclusion that, although smaller than the AGA piglets in absolute terms, SGA-piglets mature (neuromechanically speaking) just like, and equally fast as their AGA littermates. Yet, it remains a fact that early SGA piglets are reported to be less mobile, less vital, and less competitive than their AGA siblings (even often die before day 3 pp). This conspicuous difference likely results from the energy level (blood glucose and glycogen) and its mobilization being considerably different between the piglet categories during early development.
Collapse
Affiliation(s)
- Peter Aerts
- Laboratory of Functional Morphology, Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Movement and Sports Sciences, University of Ghent, Watersportlaan 2, Belgium
| | - Falk Mielke
- Laboratory of Functional Morphology, Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Laboratory of Comparative Perinatal development, Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Charlotte Vanden Hole
- Laboratory of Comparative Perinatal development, Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Merel J W Van Gorp
- Laboratory of Functional Morphology, Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chris Van Ginneken
- Laboratory of Comparative Perinatal development, Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
8
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Peretz R, Halevy T, Gafner M, Fried S, Revesz Y, Mayer A, Katorza E. Volumetric Brain MRI Study in Fetuses with Intrauterine Growth Restriction Using a Semiautomated Method. AJNR Am J Neuroradiol 2022; 43:1674-1679. [PMID: 36202548 PMCID: PMC9731260 DOI: 10.3174/ajnr.a7665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE According to the medical literature, it is known that intrauterine growth restriction is associated with abnormal fetal brain findings. The aim of this study was to assess the volume of fetal brain structures in fetuses with intrauterine growth restriction compared with the control group and to examine the effect of intrauterine growth restriction on birth weight in relation to the effect on the volumes of these structures. MATERIALS AND METHODS This historical cohort study included 26 fetuses diagnosed with intrauterine growth restriction due to placental insufficiency. The control group included 66 fetuses with MR imaging scans demonstrating normal brain structures. The volumes of the supratentorial brain, left and right hemispheres, and the cerebellum were measured using a semiautomatic method. In addition, the cerebellum and supratentorial brain ratio was calculated. The measurements of each brain structure were then converted to percentiles according to growth curves. RESULTS The absolute volumes and percentiles of all brain structures examined were smaller in the intrauterine growth restriction group. All examined brain structures showed results that were statistically significant (P < .015). There was no statistically significant difference in the cerebellum/supratentorial brain ratio (P > .39). The difference in brain volume percentiles was statistically smaller than the difference in birth weight and birth weight percentiles (Dolberg growth curves) between the groups. CONCLUSIONS Intrauterine growth restriction affects the volume of brain structures, as measured by quantitative MR imaging. Compared with healthy controls, the effect on birth weight was more prominent than the effect on brain structures, possibly due to the "brain-preserving" capability.
Collapse
Affiliation(s)
- R Peretz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - T Halevy
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - M Gafner
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics B (M.G.), Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Fried
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
| | - Y Revesz
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Sheba Medical Center (T.H., Y.R.), Tel-Hashomer, Israel
| | - A Mayer
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Diagnostic Radiology (A.M.), Sheba Medical Center, Tel-Hashomer, Israel
| | - E Katorza
- From the Sackler School of Medicine (R.P., M.G., S.F., Y.R., A.M., E.K.), Tel Aviv University, Tel Aviv, Israel
- Department of Obstetrics and Gynecology (E.K.), Gertner Institute for Epidemiology
- Health Policy Research (E.K.)
| |
Collapse
|
10
|
Cosmi E, Visentin S. Commentary on Special Issue "Fetal Growth: What Is New in the Clinical Research?". J Clin Med 2022; 11:5795. [PMID: 36233662 PMCID: PMC9570976 DOI: 10.3390/jcm11195795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy (3-10%) and has been associated with a variety of adverse perinatal outcomes [...].
Collapse
Affiliation(s)
- Erich Cosmi
- Department of Woman’s and Child’s Health, Padova University, 35100 Padua, Italy
| | | |
Collapse
|
11
|
Qin R, Ding Y, Lu Q, Jiang Y, Du J, Song C, Lv H, Lv S, Tao S, Huang L, Xu X, Liu C, Jiang T, Wang Z, Ma H, Jin G, Xia Y, Hu Z, Zhang F, Lin Y. Associations of maternal dietary patterns during pregnancy and fetal intrauterine development. Front Nutr 2022; 9:985665. [PMID: 36185689 PMCID: PMC9520705 DOI: 10.3389/fnut.2022.985665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary pattern is excellent in reflecting an individual's eating conditions. Longitudinal data on fetal growth can reflect the process of intrauterine growth. We aimed to evaluate the associations between maternal dietary patterns and intrauterine parameters in middle and late pregnancy. The present study was conducted within Jiangsu Birth Cohort (JBC) study. Dietary information was assessed with a food frequency questionnaire (FFQ) in the second and third trimester of gestation. B-ultrasound scans were performed to obtain fetal intrauterine parameters, including head circumference (HC), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW). Exploratory factor analysis was used to extract dietary patterns. Multiple linear regression and linear mixed-effects model (LMM) were used to investigate the association between maternal dietary patterns and fetal growth. A total of 1,936 pregnant women were eligible for the study. We observed inverse associations of maternal "Vegetables and fish" and "Snack and less eggs" patterns during mid-pregnancy with fetal HC Z-score, respectively ("Vegetables and fish": β = -0.09, 95% CI -0.12, -0.06; "Snack and less eggs": β = -0.05, 95% CI -0.08, -0.02). On the contrary, "Animal internal organs, thallophyte and shellfish" pattern in the second trimester was associated with increased HC Z-scores (β = 0.04, 95% CI 0.02, 0.06). Consistently, score increase in "Vegetables and fish" pattern in the third trimester was inversely associated with the Z-scores of HC (β = -0.05, 95% CI -0.09, -0.02), while "Meat and less nuts" pattern was positively correlated with the Z-scores of HC (β = 0.04, 95% CI 0.02, 0.07). As compared to the fetus whose mothers at the lowest tertile of "Snack and less eggs" pattern in both trimesters, those whose mothers at the highest tertile demonstrated 1.08 fold (RR = 2.10, 95% CI 1.34-3.28) increased risk of small HC for gestational age (GA). No correlation was observed between maternal dietary patterns and other intrauterine parameters. Our results suggested the effects of maternal dietary patterns on fetal growth, particularly HC. These findings highlighted the adverse impact of unhealthy dietary pattern on fetal growth, might provide evidence for strategies to prevent intrauterine dysplasia and dietary guidelines during pregnancy.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ci Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Siyuan Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology and Nutritional Science, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Feng Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Obstetrics and Gynecology Hospital, National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
12
|
Pham A, Mitanchez D, Forhan A, Perin L, Le Bouc Y, Brioude F, Sobrier ML, Heude B, Netchine I. Low Maternal DLK1 Levels at 26 Weeks Is Associated With Small for Gestational Age at Birth. Front Endocrinol (Lausanne) 2022; 13:836731. [PMID: 35295988 PMCID: PMC8919710 DOI: 10.3389/fendo.2022.836731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Detecting SGA (small for gestational age) during pregnancy improves the fetal and neonatal prognosis. To date, there is no valid antenatal biomarker of SGA used in clinical practice. Maternal circulating DLK1 (delta-like non-canonical notch ligand 1) levels have been shown to be significantly lower in pregnant women at 36 weeks of gestation (WG) who delivered a SGA newborn than in controls. Data in the literature are contradictory on the association between maternal circulating DLK1 levels and placental vascular dysfunction. The objective was to determine if maternal DLK1 levels in the second trimester of pregnancy are predictive of SGA, and to assess whether the measurement of DLK1 levels in maternal blood could be a means to distinguish SGA with placental vascular dysfunction from that due to other causes. We conducted a nested cased-control study within the EDEN mother-child cohort. 193 SGA (birth weight < 10th percentile) and 370 mother-child control (birth weight between the 25th and 75th percentile) matched pairs were identified in the EDEN cohort. Maternal circulating DLK1 levels at 26 WG were significantly lower for children born SGA than for controls (27.7 ± 8.7 ng/mL vs 30.4 ± 10.6 ng/mL, p = 0.001). Maternal blood DLK1 levels in the first quartile (DLK1 < 22.85 ng/mL) were associated with an odds ratio for SGA of 1.98 [1.15 - 3.37]. DLK1 was less predictive of SGA than ultrasound, with an area under the curve of 0.578. Maternal circulating DLK1 levels were not significantly different in cases of SGA with signs of placental vascular dysfunction (n = 63, 27.1 ± 9.2 ng/mL) than in those without placental dysfunction (n = 129, 28.0 ± 8.5 ng/mL, p = 0.53). The level of circulating DLK1 is reduced in the second trimester of pregnancy in cases of SGA at birth, independently of signs of placental vascular dysfunction. However, DLK1 alone cannot predict the risk of SGA.
Collapse
Affiliation(s)
- Aurelie Pham
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Service de Néonatologie, Paris, France
| | - Delphine Mitanchez
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, Paris, France
- Centre Hospitalier Régional Universitaire (CHRU) de Tours, Hôpital Bretonneau, Service de Néonatologie, Tours, France
| | - Anne Forhan
- Université de Paris Cité, INSERM, INRAE, Centre of Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Laurence Perin
- Sorbonne Université, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Endocrinologie Moléculaire et Pathologies d’Empreinte, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, Paris, France
| | - Frederic Brioude
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, Paris, France
| | - Barbara Heude
- Université de Paris Cité, INSERM, INRAE, Centre of Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
- *Correspondence: Irene Netchine,
| |
Collapse
|
13
|
Pham A, Sobrier ML, Giabicani E, Le Jules Fernandes M, Mitanchez D, Brioude F, Netchine I. Screening of patients born small for gestational age with the Silver-Russell syndrome phenotype for DLK1 variants. Eur J Hum Genet 2021; 29:1756-1761. [PMID: 34276055 DOI: 10.1038/s41431-021-00927-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell syndrome (SRS) is a rare imprinting disorder associated with prenatal and postnatal growth retardation. Loss of methylation (LOM) on chromosome 11p15 is observed in 40 to 60% of patients and maternal uniparental disomy (mUPD) for chromosome 7 (upd(7)mat) in ~5 to 10%. Patients with LOM or mUPD 14q32 can present clinically as SRS. Delta like non-canonical Notch ligand 1 (DLK1) is one of the imprinted genes expressed from chromosome 14q32. Dlk1-null mice display fetal growth restriction (FGR) but no genetic defects of DLK1 have been described in human patients born small for gestational age (SGA). We screened a cohort of SGA patients with a SRS phenotype for DLK1 variants using a next-generation sequencing (NGS) approach to search for new molecular defects responsible for SRS. Patients born SGA with a clinical suspicion of SRS and normal methylation by molecular testing at the 11p15 or 14q32 loci and upd(7)mat were screened for DLK1 variants using targeted NGS. Among 132 patients, only two rare variants of DLK1 were identified (NM_003836.6:c.103 G > C (p.(Gly35Arg) and NM_003836.6: c.194 A > G p.(His65Arg)). Both variants were inherited from the mother of the patients, which does not favor a role in pathogenicity, as the mono-allelic expression of DLK1 is from the paternal-inherited allele. We did not identify any pathogenic variants in DLK1 in a large cohort of SGA patients with a SRS phenotype. DLK1 variants are not a common cause of SGA.
Collapse
Affiliation(s)
- Aurélie Pham
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, AP-HP, Hôpital Armand Trousseau, service de néonatologie, Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | | | - Delphine Mitanchez
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Fréderic Brioude
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France.
| |
Collapse
|
14
|
Liu Z, Wang J, Gao Y, Guo Y, Zhu Y, Sun Y, Yang H. USP22 regulates the formation and function of placental vasculature during the development of fetal growth restriction. Placenta 2021; 111:19-25. [PMID: 34130183 DOI: 10.1016/j.placenta.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a common obstetric complication that can lead to a variety of adverse perinatal outcomes and is associated with chronic diseases in adulthood. Since ubiquitin-specific protease 22 (USP22) is closely related to cell growth, differentiation and proliferation, we aimed to investigate the role of USP22 in FGR development. METHODS USP22 expression was detected in the placentas of eight normal and eight pregnant women with FGR. To observe changes in the formation and function of placental vasculature, USP22 expression was downregulated in human umbilical vein endothelial cells (HUVECs) using CRISPR/Cas9 and siRNAs. In addition, HUVECs with low and normal USP22 expression were analysed using RNA-seq. RESULTS We found that USP22 expression was significantly lower in the placentas of pregnant women with FGR than in normal pregnant women and that HUVECs were unable to survive after USP22 had been knocked out. Moreover, USP22 down-regulation in HUVECs led to decreased proliferation, angiogenesis, vasodilation, apoptosis, and systolic function. RNA-seq identified 3730 differentially expressed genes that were enriched in multiple signalling pathways, including cell cycle regulation, apoptotic signalling, and PI3K/Akt. DISCUSSION Together, the findings of this study demonstrate for the first time that abnormal USP22 expression may affect HUVEC proliferation and apoptosis, as well as essential angiogenesis and vasomotor functions during the development of FGR.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jingxue Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yongbing Guo
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yuchun Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
15
|
Netchine I, van der Steen M, López-Bermejo A, Koledova E, Maghnie M. New Horizons in Short Children Born Small for Gestational Age. Front Pediatr 2021; 9:655931. [PMID: 34055692 PMCID: PMC8155308 DOI: 10.3389/fped.2021.655931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Children born small for gestational age (SGA) comprise a heterogeneous group due to the varied nature of the cause. Approximately 85-90% have catch-up growth within the first 4 postnatal years, while the remainder remain short. In later life, children born SGA have an increased risk to develop metabolic abnormalities, including visceral adiposity, insulin resistance, and cardiovascular problems, and may have impaired pubertal onset and growth. The third "360° European Meeting on Growth and Endocrine Disorders" in Rome, Italy, in February 2018, funded by Merck KGaA, Germany, included a session that examined aspects of short children born SGA, with three presentations followed by a discussion period, on which this report is based. Children born SGA who remain short are eligible for GH treatment, which is an approved indication. GH treatment increases linear growth and can also improve some metabolic abnormalities. After stopping GH at near-adult height, metabolic parameters normalize, but pharmacological effects on lean body mass and fat mass are lost; continued monitoring of body composition and metabolic changes may be necessary. Guidelines have been published on diagnosis and management of children with Silver-Russell syndrome, who comprise a specific group of those born SGA; these children rarely have catch-up growth and GH treatment initiation as early as possible is recommended. Early and moderate pubertal growth spurt can occur in children born SGA, including those with Silver-Russell syndrome, and reduce adult height. Treatments that delay puberty, specifically metformin and gonadotropin releasing hormone analogs in combination with GH, have been proposed, but are used off-label, currently lack replication of data, and require further studies of efficacy and safety.
Collapse
Affiliation(s)
- Irène Netchine
- Sorbonne Université, INSERM, UMR_S938 Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Manouk van der Steen
- Department of Paediatrics, Subdivision of Endocrinology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Abel López-Bermejo
- Girona Biomedical Research Institute, Dr. Josep Trueta Hospital, Girona, Spain
| | | | - Mohamad Maghnie
- Department of Pediatrics, Institute for Research, Hospitalization and Health Care (IRCCS) Children's Hospital Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
16
|
Garcia Flores J, Mogra R, Sadowski M, Hyett J. Prediction of Birth Weight and Neonatal Adiposity Using Ultrasound Assessment of Soft Tissue Parameters in Addition to Two-Dimensional Conventional Biometry. Fetal Diagn Ther 2021; 48:201-208. [PMID: 33657569 DOI: 10.1159/000510637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We aim to evaluate the supplementary predictive value of soft tissue markers, including fetal limb volumes, for fetal birth weight and fat tissue weight. METHODS This is a prospective study of 60 patients undergoing term induction of labor. Ultrasound was performed 48 h before birth, and 2D sonographic measurements, subcutaneous tissue thickness, and 3D fetal limb volumes were taken. Birth weight and neonatal fat weight were assessed by plethysmography. Clinical data were collected. The relation between ultrasound and neonatal outcomes was assessed by univariate and multivariate predictive models. The estimated and actual birth weights were compared applying different published formulas, and systematic and random error were collected and compared. RESULTS 3D fetal limb volumes showed a strong relation to birth weight, absolute weight, and relative fat weight. The Lee 6 formula performed better than either Hadlock 3 or Lee 3 with the lowest random error. Fractional limb volumes involve a highly reproducible technique, with excellent correlation (intra-class coefficient >0.90) for both inter- and intra-observer reliability. The prevalence of estimated EFW measures within 10% error from the actual birth weight was 71.7% with the Hadlock 3 model and 95.0% with the Lee 6 model (p = 0.09). CONCLUSION Late assessment of 3D fetal limb volume in upper and lower extremities is not only useful for accurately predicting birth weight but is a useful marker for prediction of birth fat tissue weight.
Collapse
Affiliation(s)
- Jose Garcia Flores
- Sydney Institute for Women, Children and Their Families, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ritu Mogra
- Sydney Institute for Women, Children and Their Families, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia, .,Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia,
| | - Monica Sadowski
- Sydney Institute for Women, Children and Their Families, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Jon Hyett
- Sydney Institute for Women, Children and Their Families, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Discipline of Obstetrics, Gynaecology and Neonatology, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Matjuda EN, Engwa GA, Sewani-Rusike CR, Nkeh-Chungag BN. An Overview of Vascular Dysfunction and Determinants: The Case of Children of African Ancestry. Front Pediatr 2021; 9:769589. [PMID: 34956981 PMCID: PMC8709476 DOI: 10.3389/fped.2021.769589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The balance between dilatory and constrictive factors is important as it keeps blood vessels in a homeostatic state. However, altered physiological processes as a result of obesity, hypertension, oxidative stress, and other cardiovascular risk factors may lead to vascular damage, causing an imbalance of vasoactive factors. Over time, the sustained imbalance of these vasoactive factors may lead to vascular dysfunction, which can be assessed by non-invasive methods, such as flow-mediated dilation, pulse wave velocity, flow-mediated slowing, retinal vessel analysis, peripheral vascular reactivity, and carotid intima-media thickness assessment. Although there is increasing prevalence of cardiovascular risk factors (obesity and hypertension) in children in sub-Saharan Africa, little is known about how this may affect vascular function. This review focuses on vasoactive factors implicated in vascular (dys)function, highlighting the determinants and consequences of vascular dysfunction. It further describes the non-invasive methods used for vascular (dys)function assessments and, last, describes the impact of cardiovascular risk factors on vascular dysfunction in children of African ancestry.
Collapse
Affiliation(s)
- Edna N Matjuda
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| |
Collapse
|
18
|
Felicioni F, Santos TG, Paula TDMDE, Chiarini-Garcia H, de Almeida FRCL. Intrauterine growth restriction: screening and diagnosis using animal models. Anim Reprod 2020; 16:66-71. [PMID: 33299479 PMCID: PMC7720938 DOI: 10.21451/1984-3143-ar2018-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious condition of multifactorial origin, mainly caused by maternal malnutrition, multiple gestation associated with nutrient competition, abuse of nocive substances and infections. The diagnosis of such syndrome is complex, as its own manifestations can mask its occurrence, requiring a thorough assessment of body weight and size. Moreover, it is not responsive to any kind of treatment. There is evidence that IUGR may predispose the individual to several pathologies, such as diabetes, hypertension and metabolic syndrome in adulthood, and it has also been linked to thrifty phenotype hypothesis. Thus, a healthy lifestyle is needed to better prevent those pathologies. Given the world high prevalence and importance of IUGR, mainly in developing countries, this review is focused on discussing how different animal models contribute to the biological screening and diagnosis of this condition.
Collapse
Affiliation(s)
- Fernando Felicioni
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís Garcia Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Hélio Chiarini-Garcia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
19
|
Izquierdo Renau M, Aldecoa-Bilbao V, Balcells Esponera C, del Rey Hurtado de Mendoza B, Iriondo Sanz M, Iglesias-Platas I. Applying Methods for Postnatal Growth Assessment in the Clinical Setting: Evaluation in a Longitudinal Cohort of Very Preterm Infants. Nutrients 2019; 11:nu11112772. [PMID: 31739632 PMCID: PMC6893690 DOI: 10.3390/nu11112772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
AIM To analyze different methods to assess postnatal growth in a cohort of very premature infants (VPI) in a clinical setting and identify potential early markers of growth failure. METHODS Study of growth determinants in VPI (≤32 weeks) during hospital stay. Nutritional intakes and clinical evolution were recorded. Growth velocity (GV: g/kg/day), extrauterine growth restriction (%) (EUGR: weight < 10th centile, z-score < -1.28) and postnatal growth failure (PGF: fall in z-score > 1.34) at 36 weeks postmenstrual age (PMA) were calculated. Associations between growth and clinical or nutritional variables were explored (linear and logistic regression). RESULTS Sample: 197 VPI. GV in IUGR patients was higher than in non-IUGRs (28 days of life and discharge). At 36 weeks PMA 66.0% of VPIs, including all but one of the IUGR patients, were EUGR. Prevalence of PGF at the same time was 67.4% (IUGR patients: 48.1%; non-IUGRs: 70.5% (p = 0.022)). Variables related to PGF at 36 weeks PMA were initial weight loss (%), need for oxygen and lower parenteral lipids in the first week. CONCLUSIONS The analysis of z-scores was better suited to identify postnatal growth faltering. PGF could be reduced by minimising initial weight loss and assuring adequate nutrition in patients at risk.
Collapse
Affiliation(s)
- Montserrat Izquierdo Renau
- Neonatology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Universidad de Barcelona, BCNatal, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.B.E.); (B.d.R.H.d.M.); (M.I.S.); (I.I.-P.)
- Correspondence: ; Tel.: +34-9328-04000 (ext. 72564)
| | - Victoria Aldecoa-Bilbao
- Neonatology Department, Hospital Clinic, Universidad de Barcelona, BCNatal, 08028 Barcelona, Spain;
| | - Carla Balcells Esponera
- Neonatology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Universidad de Barcelona, BCNatal, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.B.E.); (B.d.R.H.d.M.); (M.I.S.); (I.I.-P.)
| | - Beatriz del Rey Hurtado de Mendoza
- Neonatology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Universidad de Barcelona, BCNatal, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.B.E.); (B.d.R.H.d.M.); (M.I.S.); (I.I.-P.)
| | - Martin Iriondo Sanz
- Neonatology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Universidad de Barcelona, BCNatal, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.B.E.); (B.d.R.H.d.M.); (M.I.S.); (I.I.-P.)
| | - Isabel Iglesias-Platas
- Neonatology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Universidad de Barcelona, BCNatal, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.B.E.); (B.d.R.H.d.M.); (M.I.S.); (I.I.-P.)
| |
Collapse
|
20
|
Priante E, Verlato G, Giordano G, Stocchero M, Visentin S, Mardegan V, Baraldi E. Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites 2019; 9:metabo9110267. [PMID: 31698738 PMCID: PMC6918259 DOI: 10.3390/metabo9110267] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Recognizing intrauterine growth restriction (IUGR) is a matter of great concern because this condition can significantly affect the newborn's short- and long-term health. Ever since the first suggestion of the "thrifty phenotype hypothesis" in the last decade of the 20th century, a number of studies have confirmed the association between low birth weight and cardiometabolic syndrome later in life. During intrauterine life, the growth-restricted fetus makes a number of hemodynamic, metabolic, and hormonal adjustments to cope with the adverse uterine environment, and these changes may become permanent and irreversible. Despite advances in our knowledge of IUGR newborns, biomarkers capable of identifying this condition early on, and stratifying its severity both pre- and postnatally, are still lacking. We are also still unsure about these babies' trajectory of postnatal growth and their specific nutritional requirements with a view to preventing, or at least limiting, long-term complications. In this setting, untargeted metabolomics-a relatively new field of '-omics' research-can be a good way to investigate the metabolic perturbations typically associated with IUGR. The aim of this narrative review is to provide a general overview of the pathophysiological and clinical aspects of IUGR, focusing on evidence emerging from metabolomic studies. Though still only preliminary, the reports emerging so far suggest an "early" pattern of glucose intolerance, insulin resistance, catabolite accumulation, and altered amino acid metabolism in IUGR neonates. Further, larger studies are needed to confirm these results and judge their applicability to clinical practice.
Collapse
Affiliation(s)
- Elena Priante
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.V.); (V.M.); (E.B.)
- Correspondence: ; Tel.: +39-049-8213545
| | - Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.V.); (V.M.); (E.B.)
| | - Giuseppe Giordano
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.G.); (M.S.)
- Institute of Pediatric Research, “Città della Speranza” Foundation, 35129 Padua, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.G.); (M.S.)
| | - Silvia Visentin
- Gynecology and Obstetrics Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy;
| | - Veronica Mardegan
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.V.); (V.M.); (E.B.)
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy; (G.V.); (V.M.); (E.B.)
- Institute of Pediatric Research, “Città della Speranza” Foundation, 35129 Padua, Italy
| |
Collapse
|
21
|
Liu H, Wang Y, Liu J, Fu W. Proteomics analysis of fetal growth restriction and taurine‑treated fetal growth restriction rat brain tissue by 2D DIGE and MALDI‑TOF/TOF MS analysis. Int J Mol Med 2019; 44:207-217. [PMID: 31115483 PMCID: PMC6559329 DOI: 10.3892/ijmm.2019.4182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Fetal growth restriction (FGR) is caused by placental insufficiency and can lead to short and long‑term neurodevelopmental delays. Taurine, one of the most abundant amino acids in the brain, is critical for the normal growth and development of the nervous system; however, the mechanistic role of taurine in neural growth and development remains unknown. The present study investigated the role of taurine in FGR. Specifically, we explored the proteomic profiles of fetal rats at 6 h postpartum by two‑dimensional difference gel electrophoresis combined with matrix assisted laser desorption ionization‑time‑of‑flight (TOF)/TOF tandem mass spectrometry; the findings were verified via reverse transcription‑quantitative polymerase chain reaction. A total of 31 differentially expressed protein spots were selected. Among these, 31 were matched, including dihydropyrimidinase‑related protein 2 and , CRK and peroxiredoxin 2. Functional analysis using the Gene Ontology database and Ingenuity Pathway Analysis demonstrated that the differentially expressed proteins were mainly associated with neuronal differentiation, 'metabolic process', 'biological regulation' and developmental processes. The present study identified several proteins that were differentially expressed in rats with FGR in the presence or absence of taurine administration. The results of the present study suggest a potential role for taurine in the treatment and prevention of FGR.
Collapse
Affiliation(s)
- Haifeng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology, The First People's Hospital of Chenzhou, Chenzhou, Hunan 423000
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Yan Wang
- NICU of Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Jing Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515
- Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of The Chinese PLA, Beijing 100700
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing 100101
| |
Collapse
|
22
|
Konečná B, Tóthová Ľ, Repiská G. Exosomes-Associated DNA-New Marker in Pregnancy Complications? Int J Mol Sci 2019; 20:ijms20122890. [PMID: 31200554 PMCID: PMC6627934 DOI: 10.3390/ijms20122890] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a large number of studies, the etiology of pregnancy complications remains unknown. The involvement of cell-free DNA or fetal cell-free DNA in the pathogenesis of pregnancy complications is currently being hypothesized. Cell-free DNA occurs in different forms-free; part of neutrophil extracellular traps; or as recently discovered, carried by extracellular vesicles. Cell-free DNA is believed to activate an inflammatory pathway, which could possibly cause pregnancy complications. It could be hypothesized that DNA in its free form could be easily degraded by nucleases to prevent the inflammatory activation. However, recently, there has been a growing interest in the role of exosomes, potential protectors of cell-free DNA, in pregnancy complications. Most of the interest from recent years is directed towards the micro RNA carried by exosomes. However, exosome-associated DNA in relation to pregnancy complications has not been truly studied yet. DNA, as an important cargo of exosomes, has been so far studied mostly in cancer research. This review collects all the known information on the topic of not only exosome-associated DNA but also some information on vesicles-associated DNA and the studies regarding the role of exosomes in pregnancy complications from recent years. It also suggests possible analysis of exosome-associated DNA in pregnancy from plasma and emphasizes the importance of such analysis for future investigations of pregnancy complications. A major obstacle to the advancement in this field is the proper uniformed technique for exosomes isolation. Similarly, the sensitivity of methods analyzing a small fraction of DNA, potentially fetal DNA, carried by exosomes is variable.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia.
| |
Collapse
|
23
|
Apparent Diffusion Coefficient of the Placenta and Fetal Organs in Intrauterine Growth Restriction. J Comput Assist Tomogr 2019; 43:507-512. [PMID: 30762655 DOI: 10.1097/rct.0000000000000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to assess apparent diffusion coefficient (ADC) of the placenta and fetal organs in intrauterine growth restriction (IUGR). MATERIALS AND METHODS A prospective study of 30 consecutive pregnant women (aged 21-38 years with mean age of 31.5 years and a mean gestational week of 35 ± 2.3) with IUGR and 15 age-matched pregnant women was conducted. All patients and controls underwent diffusion-weighted magnetic resonance imaging. The ADCs of the placenta and fetal brain, kidney, and lung were calculated and correlated with neonates needing intensive care unit (ICU) admission. RESULTS There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney (P = 0.001, 0.001, 0.04, and 0.04, respectively) between the patients and the controls. The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to detect IUGR were 1.45, 1.15, 1.80, and 1.40 × 10 mm/s, respectively, with areas under the curve (AUCs) of 0.865, 0.858, 0.812, and 0.650, respectively, and accuracy values of 75%, 72.5%, 72.5%, and 70%, respectively. Combined ADC of the placenta and fetal organs used to detect IUGR revealed an AUC of 1.00 and an accuracy of 100%. There was a significant difference in ADC of the placenta and fetal brain, lung, and kidney between neonates needing admission and those not needing ICU admission (P = 0.001, 0.001, 0.002, and 0.002, respectively). The cutoff ADCs of the placenta and fetal brain, lung, and kidney used to define neonates needing ICU were 1.35, 1.25, 1.95, and 1.15 × 10 mm/s with AUCs of 0.955, 0.880, 0.884, and 0.793, respectively, and accuracy values of 86.7%, 46.7%, 76.7%, and 70%, respectively. Combined placental and fetal brain ADC used to define neonates needing ICU revealed an AUC of 0.968 and an accuracy of 93.3%. CONCLUSION Combined ADC of the placenta and fetal organs can detect IUGR, and combined ADC of the placenta and fetal brain can define fetuses needing ICU.
Collapse
|
24
|
Darendeliler F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pract Res Clin Endocrinol Metab 2019; 33:101260. [PMID: 30709755 DOI: 10.1016/j.beem.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The children with intrauterine growth restriction (IUGR) especially if they make a catch-up growth in early life have a higher risk for long term problems including short stature and also developing metabolic syndrome, Type 2 diabetes, insulin resistance and cardiovascular diseases. The studies also support that these children may have abnormalities in pubertal timing, adrenarche and reproductive function. The aim of this review was to summarize the published reports mainly on puberty and reproductive functions in children born IUGR at older ages in association with metabolic problems that they encounter. Possible mechanisms explaining these outcomes are discussed. Lastly strategies that may be taken for the prevention of IUGR related morbidities at later life are shortly presented.
Collapse
Affiliation(s)
- Feyza Darendeliler
- İstanbul University, Istanbul Faculty of Medicine, Pediatric Endocrinology Unit, İstanbul, Turkey.
| |
Collapse
|