1
|
Puvvula J, Song LC, Zalewska KJ, Alexander A, Manz KE, Braun JM, Pennell KD, DeFranco EA, Ho SM, Leung YK, Huang S, Vuong AM, Kim SS, Percy Z, Bhashyam P, Lee R, Jones DP, Tran V, Kim DV, Calafat AM, Botelho JC, Chen A. Global metabolomic alterations associated with endocrine-disrupting chemicals among pregnant individuals and newborns. Metabolomics 2025; 21:20. [PMID: 39863779 PMCID: PMC11762426 DOI: 10.1007/s11306-024-02219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery. METHODS This study included 75 pregnant individuals who delivered at the University of Cincinnati Hospital from 2014 to 2017. We measured maternal urinary biomarkers of paraben/phenol (12), phthalate (13), and phthalate replacements (4) from the samples collected during the delivery visit. Global serum metabolome profiles were analyzed from maternal blood (n = 72) and newborn (n = 63) cord blood samples collected at delivery. Fifteen of the 29 urinary biomarkers were excluded due to low detection frequency or potential exposures during hospital stay. We assessed metabolome-wide associations between 14 maternal urinary biomarkers and maternal/newborn metabolome profiles. Additionally, performed enrichment analysis to identify potential alterations in metabolic pathways. RESULTS We observed metabolome-wide associations between maternal urinary concentrations of phthalate metabolites (mono-isobutyl phthalate), phthalate replacements (mono-2-ethyl-5-carboxypentyl terephthalate, mono-2-ethyl-5-hydroxyhexyl terephthalate) and phenols (bisphenol-A, bisphenol-S) and maternal serum metabolome, using q-value < 0.2 as a threshold. Additionally, associations of phthalate metabolites (mono-n-butyl phthalate, monobenzyl phthalate) and phenols (2,5-dichlorophenol, BPA) with the newborn metabolome were noted. Enrichment analyses revealed associations (p-gamma < 0.05) with amino acid, carbohydrate, lipid, glycan, vitamin, and other cofactor metabolism pathways. CONCLUSION Maternal paraben, phenol, phthalate, and phthalate replacement biomarker concentrations at delivery were associated with maternal and newborn serum global metabolome.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Lucie C Song
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Kathrine E Manz
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Emily A DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shouxiong Huang
- Pathogen-Host Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Stephani S Kim
- Health Research, Battelle Memorial Institute, Columbus, OH, USA
| | - Zana Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Priyanka Bhashyam
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymund Lee
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Vilinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dasom V Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonia M Calafat
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne C Botelho
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Ding Q, Hao T, Gao Y, Jiang S, Zhu Y, Huang Y, Liang Y. Associations of Co-Exposure to Polycyclic Aromatic Hydrocarbons and Heavy Metals with Sex Steroid Hormones among Children Aged 6-19 Years. Horm Res Paediatr 2024:1-11. [PMID: 39396497 DOI: 10.1159/000541875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are endocrine-disrupting chemicals (EDCs) that may have a combined effect on sex hormone levels in children. This study investigated the correlations between co-exposure to PAHs and HMs and levels of sex steroid hormones in children. METHODS We employed the data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016, including 1,167 participants aged 6-19 years. Sex hormone indicators include testosterone (TT), estradiol (E2), sex hormone-binding globulin (SHBG), free androgen index (FAI), and the TT/E2 ratio. Weighted multivariate linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to analyze the associations between co-exposure to PAHs and HMs and sex steroid hormone levels. RESULTS Co-exposure to PAHs and HMs was associated with a 16.2% reduction (95% CI [-0.321, -0.004]) in SHBG level among prepubertal males and a 16% reduction (95% CI [-0.30, -0.03]) in E2 level among pubertal males by the WQS regression, and cadmium (Cd) and mercury (Hg) contributed the highest weight, respectively. In the Bayesian kernel machine regression (BKMR) model, co-exposure to PAHs and HMs was positively associated with TT/E2 in pubertal males and negatively correlated with FAI in pubertal females, and 1-hydroxypyrene (1-PYR) and Cd were the most important components, respectively. CONCLUSIONS Co-exposure to PAHs and HMs was associated with sex hormone levels in children. These findings highlight the necessity for preventing the effects of these chemicals on sex hormones.
Collapse
Affiliation(s)
- Qi Ding
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Tingting Hao
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yuan Gao
- School of Public Health, Wannan Medical College, Wuhu, China
| | | | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Yali Liang
- School of Public Health, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
4
|
Jiang Q, Wan Y, Zhu K, Wang H, Feng Y, Xiang Z, Liu R, Zhao S, Zhu Y, Song R. Association of exposure to phthalates and phthalate alternatives with dyslexia in Chinese primary school children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28392-28403. [PMID: 38538993 DOI: 10.1007/s11356-024-32871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
Previous studies have shown associations between children's exposure to phthalates and neurodevelopmental disorders. Whereas the impact of exposure to phthalate alternatives is understudied. This study aimed to evaluate the association of exposure to phthalates/their alternatives with the risk of dyslexia. We recruited 745 children (355 dyslexia and 390 non-dyslexia) via the Tongji Reading Environment and Dyslexia Research Project, and their urine samples were collected. A total of 26 metabolites of phthalates/their alternatives were measured. Multivariate logistic regression and quantile-based g-computation were used to estimate the associations of exposure to the phthalates/their alternatives with dyslexia. More than 80% of the children had 17 related metabolites detected in their urine samples. After adjustment, the association between mono-2-(propyl-6-hydroxy-heptyl) phthalate (OH-MPHP) with the risk of dyslexia was observed. Compared with the lowest quartile of OH-MPHP levels, the odds of dyslexia for the third quartile was 1.93 (95% CI 1.06, 3.57). Regarding mixture analyses, it was found that OH-MPHP contributed the most to the association. Further analyses stratified by sex revealed that this association was only observed in boys. Our results suggested a significantly adverse association of di-2-propylheptyl phthalate exposure with children's language abilities. It highlights the necessity to prioritize the protection of children's neurodevelopment by minimizing their exposure to endocrine-disrupting chemicals like di-2-propylheptyl phthalate.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) the Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Mahdavi V, Heidari A, Mousavi Khaneghah A. Probabilistic risk assessment of endocrine disrupting pesticides in Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1355-1369. [PMID: 37017094 DOI: 10.1080/09603123.2023.2199193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The chronic dietary risk assessment for 34 pesticides suspected of acting as endocrine disrupters in Iran was assessed by comparing TMDI with the Acceptable Daily Intakes (ADI). Of 34 investigated endocrine-disrupting pesticides (EDPs), 6 had TMDI > ADI. In addition, potential non-carcinogenic and carcinogenic health risk assessments were evaluated using Monte Carlo simulation. HQ in wheat was 17.40 and 20.29 in adults and children, respectively. Due to dimethoate residue in wheat, HQ was 2.78, and for fenitrothion residue, 3.22. HI was 21.22 for adults and 24.76 for children in wheat, more than 1. Total Carcinogenic risk (TCR) due to EDPs residues was 6.40 × 10-5 in apples, in citrus fruits 5.97 × 10-5, 3.33 × 10-5 in cucumber, 5.30 × 10-5 in lettuce, in potato was 2.36 × 10-5, in rice was 1.61 × 10-5, 1.78 × 10-5 in tomato, and due to epoxiconazole residues in wheat was 3.18 × 10-5, more than acceptable limit 1.0 × 10-6. Therefore, consumers were at significant risk of carcinogenesis.Abbreviations: PCBs: polychlorinated biphenyls; BPA: Bisphenol A; ED: Endocrine Disrupting; EDCs: Endocrine Disrupting Chemicals; EDPs: Endocrine Disrupting Pesticides; ADI: Acceptable Daily Intake; TMDI: Theoretical Maximum Daily Intake; FAO: Food and Agriculture Organization; WHO: World Health Organization; MRL: Maximum Residue Limit; HQ: Hazard Quotient; HI: Hazard Index; CR: Cancer Risk; TCR: Total Cancer Risk; PPP: plant protection products.
Collapse
Affiliation(s)
- Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Ahmad Heidari
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
6
|
Bhattacharya S, Sahay R, Afsana F, Sheikh A, Widanage NM, Maskey R, Naseri MW, Murad M, Harikumar KVS, Selim S, Aamir AH, Muthukuda D, Parajuli N, Baheer MD, Latheef A, Nagendra L, Mondal S, Kamrul-Hasan ABM, Raza SA, Somasundaram N, Shrestha D, Anne B, Ramakrishnan S, Kalra S. Global Warming and Endocrinology: The Hyderabad Declaration of the South Asian Federation of Endocrine Societies. Indian J Endocrinol Metab 2024; 28:129-136. [PMID: 38911103 PMCID: PMC11189284 DOI: 10.4103/ijem.ijem_473_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 06/25/2024] Open
Abstract
Global warming and endocrine disorders are intertwined issues posing significant challenges. Greenhouse gases emanating from human activities drive global warming, leading to temperature rise and altered weather patterns. South Asia has experienced a noticeable temperature surge over the past century. The sizable population residing in the region heightens the susceptibility to the impact of global warming. In addition to affecting agriculture, water resources, and livelihood, environmental changes interfere with endocrine functioning. Resulting lifestyle changes increase the risk of metabolic and endocrine disorders. Individuals with diabetes face heightened vulnerability to extreme weather due to impaired thermoregulation. A high ambient temperature predisposes to heat-related illnesses, infertility, and nephropathy. Additionally, essential endocrine drugs and medical devices are susceptible to temperature fluctuations. The South Asian Federation of Endocrine Societies (SAFES) calls for collaboration among stakeholders to combat climate change and promote healthy living. Comprehensive approaches, including the establishment of sustainable food systems, promotion of physical activity, and raising awareness about environmental impacts, are imperative. SAFES recommends strategies such as prioritizing plant-based diets, reducing meat consumption, optimizing medical device usage, and enhancing accessibility to endocrine care. Raising awareness and educating caregivers and people living with diabetes on necessary precautions during extreme weather conditions are paramount. The heat sensitivity of insulin, blood glucose monitoring devices, and insulin pumps necessitates proper storage and consideration of environmental conditions for optimal efficacy. The inter-connectedness of global warming and endocrine disorders underscores the necessity of international collaboration guided by national endocrine societies. SAFES urges all stakeholders to actively implement sustainable practices to improve endocrine health in the face of climate change.
Collapse
Affiliation(s)
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Faria Afsana
- Department of Endocrinology, Bangladesh Institute of Research and Rehabilitation in Diabetes (BIRDEM), Dhaka, Bangladesh
| | - Aisha Sheikh
- Department of Endocrinology, Agha Khan University Hospital and MIDEM, Karachi, Pakistan
| | | | - Robin Maskey
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Moosa Murad
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Male, Maldives
| | - K. V. S. Harikumar
- Department of Endocrinology, Magna Centres for Obesity Diabetes and Endocrinology, Hyderabad, Telangana, India
| | - Shahjada Selim
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Azizul Hasan Aamir
- Department of Diabetes, Endocrine and Metabolic diseases. Khyber Girls Medical College, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Dimuthu Muthukuda
- Endocrine and Diabetes Center, Sri Jayawardenepura General Hospital, Nugegoda, Sri Lanka
| | - Naresh Parajuli
- Department of Endocrinology, Institute of Medicine, Kathmandu, Nepal
| | - Mohammed Daud Baheer
- Department of Endocrinology, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Ali Latheef
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Male, Maldives
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sunetra Mondal
- Department of Endocrinology, Nil Ratan Sarkar Medical College, Kolkata, West Bengal, India
| | | | - Syed Abbas Raza
- Department of Medicine, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
| | - Noel Somasundaram
- Department of Endocrinology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Dina Shrestha
- Department of Endocrinology, Norvic International Hospital, Kathmandu, Nepal
| | - Beatrice Anne
- Department of Endocrinology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Santosh Ramakrishnan
- Department of Endocrinology, Magna Centres for Obesity, Diabetes and Endocrinology, Hyderabad, Telangana, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
7
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Park S, Chung C. How do mothers with young children perceive endocrine-disrupting chemicals?: an exploratory qualitative study. KOREAN JOURNAL OF WOMEN HEALTH NURSING 2023; 29:337-347. [PMID: 38204393 PMCID: PMC10788387 DOI: 10.4069/kjwhn.2023.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE Despite the health impacts of endocrine-disrupting chemicals (EDCs) beginning in the early stages of life, there is little research on the perception of EDCs among Korean mothers, who are primarily responsible for protecting children. This study aimed to explore how mothers with young children perceived EDCs for their concerns, the issues they faced, and the way they dealt with them. METHODS An exploratory qualitative design was utilized. Twelve mothers who were recruited from snowball sampling participated in voluntary interviews. Individual in-depth interviews lasting approximately 47 to 60 minutes were recorded and transcribed verbatim. The data were analyzed using qualitative content analysis as suggested by Graneheim and Lundman. RESULTS Four categories, 10 subcategories, and 25 condensed meaning units were identified by interpreting mothers' underlying meanings. The four categories were 'Knowledgeable yet contrasting ideas regarding EDCs,' 'Negative health impact, but more so for children,' 'Inaction or trying to minimize exposure,' and 'Need for early, reliable resources and social change.' Mothers were knowledgeable about EDCs and actively needed further education and support. While they tended to focus more on the health impact of EDCs on their children and were optimistic about their health risks, paying less attention to their preventive behaviors. CONCLUSION Healthcare professionals must consider mothers' perceptions of EDCs in future education and interventions regarding EDCs impact on women's life stages such as puberty, pregnancy, and childrearing. Also preventive strategies that can be applied to their daily lives are needed.
Collapse
Affiliation(s)
- SoMi Park
- Wonju College of Nursing, Yonsei University, Wonju, Korea
| | - ChaeWeon Chung
- College of Nursing, Research Institute of Nursing Science, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Kumari S, Das S. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79676-79705. [PMID: 37330441 DOI: 10.1007/s11356-023-28130-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
10
|
De Silva S, Carson P, Indrapala DV, Warwick B, Reichman SM. Land application of industrial wastes: impacts on soil quality, biota, and human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67974-67996. [PMID: 37138131 DOI: 10.1007/s11356-023-26893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Globally, waste disposal options such as landfill, incineration, and discharge to water, are not preferred long-term solutions due to their social, environmental, political, and economic implications. However, there is potential for increasing the sustainability of industrial processes by considering land application of industrial wastes. Applying waste to land can have beneficial outcomes including reducing waste sent to landfill and providing alternative nutrient sources for agriculture and other primary production. However, there are also potential hazards, including environmental contamination. This article reviewed the literature on industrial waste applications to soils and assessed the associated hazards and benefits. The review investigated wastes in relation to soil characteristics, dynamics between soils and waste constituents, and possible impacts on plants, animals, and humans. The current body of literature demonstrates the potential for the application of industrial waste into agricultural soils. The main challenge for applying industrial wastes to land is the presence of contaminants in some wastes and managing these to enhance positive effects and reduce negative outcomes to within acceptable limits. Examination of the literature also revealed several gaps in the research and opportunities for further investigation: specifically, a lack of long-term experiments and mass balance assessments, variable waste composition, and negative public opinion.
Collapse
Affiliation(s)
- Shamali De Silva
- Environment Protection Authority Victoria, EPA Science, Macleod, VIC, 3085, Australia
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Peter Carson
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | | | - Barry Warwick
- Environment Protection Authority Victoria, EPA Science, Macleod, VIC, 3085, Australia
| | - Suzie M Reichman
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville, 3010, Australia.
- School of Biosciences, University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
11
|
Gan H, Zhu B, Zhou F, Ding Z, Liu J, Ye X. Perinatal exposure to low doses of cypermethrin induce the puberty-related hormones and decrease the time to puberty in the female offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2665-2675. [PMID: 35931855 DOI: 10.1007/s11356-022-22328-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid insecticides are ubiquitously detected in environmental media, food, and urine samples. Our previous epidemiological study reported a correlation between increased pyrethroid exposure and delayed pubertal development in Chinese girls. In this study, we further investigated the effects of perinatal exposure to low doses of cypermethrin (CP) on pubertal onset and hypothalamic-pituitary-ovarian axis in the female mice offspring. The treatment of CP with 60 μg/kg/day from gestation day 6 (GD6) to postnatal day 21 (PND21) significantly decreased the time to puberty in the female offspring. Exposure of CP increased the serum levels of gonadotropin-releasing hormone (GnRH) and the expression of GnRH genes in a dose-dependent manner in the female offspring. CP also induced the serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the expression of gonadotropin subunit genes [LHβ, FSHβ, and chorionic gonadotropin α (Cgα)]. Furthermore, CP induced serum estradiol (E2) levels and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in the ovary. In accordance with the in vivo tests, administration of CP (6.7, 20, and 60 μg/L) stimulated a dose-dependent increase in the synthesis and secretion of the puberty-related hormones in the explants of hypothalamus, pituitary, and ovary. The interference with calcium channels in the ovary may be responsible for CP-induced pubertal onset. Our study provided evidence that perinatal exposure to low doses of CP induced puberty-related hormones and decreased the time to puberty in the female offspring.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
12
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
13
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
14
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
Huang P, Yao L, Chang Q, Sha Y, Jiang G, Zhang S, Li Z. Room-temperature preparation of highly efficient NH 2-MIL-101(Fe) catalyst: The important role of -NH 2 in accelerating Fe(III)/Fe(II) cycling. CHEMOSPHERE 2022; 291:133026. [PMID: 34822869 DOI: 10.1016/j.chemosphere.2021.133026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
The slow redox rate of Fe(III)/Fe(II) couples is a rate-limiting step for Fenton-like performance of Fe-MOFs. In this study, a series of catalysts (MIL-101) with various p-phthalic acid/2-aminoterephthalic acid (H2BDC/NH2-H2BDC) molar ratios were prepared using a simple and mild chemical method and applied for catalyzed degradation of bisphenol A (BPA). Interestingly, the -NH2 modified MIL-101(Fe) can adjust Fe-Oxo node by increasing the electron density of Fe(III) in the presence of -NH2 group with high electron density, thus forming Fe(II) in situ in MOFs. Meanwhile, the -NH2 groups used as electron-donors can promote electron transfer, resulting in faster Fe(III)→Fe(II) half-reaction and active H2O2 to continuously generate •OH radical. The BPA degradation and rate constant of Fe-BDC-NH2/H2O2 system are 15.4-fold and 86.8-fold higher than that of Fe-BDC/H2O2 system, respectively. The density functional theory (DFT) calculations showed that Fe-BDC-NH2 possesses higher Fermi level energy (-4.88 eV) and lower activation energy barriers (0.32 eV) compared with Fe-BDC. Moreover, Fe-BDC-NH2 showed good reusability and stability. This work offers a highly efficient and stable MOFs-based Fenton-like catalyst to rapidly degrade organic pollutants over a wide pH range for potential applications in wastewater treatment.
Collapse
Affiliation(s)
- Peipei Huang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Lili Yao
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qing Chang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| | - Yunhan Sha
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guodong Jiang
- College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan, 430074, Hubei, China.
| | - Shenghua Zhang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Zhe Li
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| |
Collapse
|
16
|
Tabasso C, Frossard MP, Ducret C, Chehade H, Mauduit C, Benahmed M, Simeoni U, Siddeek B. Transient Post-Natal Exposure to Xenoestrogens Induces Long-Term Alterations in Cardiac Calcium Signaling. TOXICS 2022; 10:toxics10030102. [PMID: 35324727 PMCID: PMC8954167 DOI: 10.3390/toxics10030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Today, non-communicable disorders are widespread worldwide. Among them, cardiovascular diseases represent the main cause of death. At the origin of these diseases, exposure to challenges during developmental windows of vulnerability (peri-conception, in utero, and early infancy periods) have been incriminated. Among the challenges that have been described, endocrine disruptors are of high concern because of their omnipresence in the environment. Worrisomely, since birth, children are exposed to a significant number of endocrine disruptors. However, the role of such early exposure on long-term cardiac health is poorly described. In this context, based on a model of rats exposed postnatally and transiently to an estrogenic compound prototype (estradiol benzoate, EB), we aimed to delineate the effects on the adult heart of such transient early exposure to endocrine disruptors and identify the underlying mechanisms involved in the potential pathogenesis. We found that this transient post-natal exposure to EB induced cardiac hypertrophy in adulthood, with increased cardiomyocyte size. The evaluation of cardiac calcium signaling, through immunoblot approaches, highlighted decreased expression of the sarcoplasmic reticulum calcium ATPase 2 (SERCA2) and decreased Nuclear Factor of Activated T Cells (NFAT3) phosphorylation as a potential underlying mechanism of cardiac hypertrophy. Furthermore, the treatment of cardiomyocytes with EB in vitro induced a decrease in SERCA2 protein levels. Overall, our study demonstrates that early transient exposure to EB induces permanent cardiac alterations. Together, our data highlight SERCA2 down-regulation as a potential mechanism involved in the cardiac pathogenesis induced by EB. These results suggest programming of adult heart dysfunctions such as arrhythmia and heart failures by early exposure to endocrine disruptors and could open new perspectives for treatment and prevention.
Collapse
Affiliation(s)
- Cassandra Tabasso
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Marie-Pauline Frossard
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Camille Ducret
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Claire Mauduit
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, 06204 Nice, France; (C.M.); (M.B.)
| | - Mohamed Benahmed
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10, 06204 Nice, France; (C.M.); (M.B.)
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, Developmental Origins of Health and Disease (DOHaD) Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland; (C.T.); (M.-P.F.); (C.D.); (H.C.); (U.S.)
- Correspondence: ; Tel.: +41-21-3143-212
| |
Collapse
|
17
|
Fetal programming: could intrauterin life affect health status in adulthood? Obstet Gynecol Sci 2021; 64:473-483. [PMID: 34670066 PMCID: PMC8595045 DOI: 10.5468/ogs.21154] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023] Open
Abstract
Intrauterine life is one of the most important periods of life. As the development of the fetus continues, the mechanisms that affect adult health also begin to mature. With the hypothesis denoted "fetal programming," it is thought that the presence of endocrinological disorders, toxins, infectious agents, the nutritional status of a mother, and nutrients related to placental functionality all have an effect on future life. Therefore, the fetus must adapt to the environment for survival. These adaptations may be involved the redistribution of metabolic, hormonal, or cardiac outputs in an effort to protect the brain, which is one of the important organs, as well as the slowing of growth to meet nutritional requirements. Unlike lifestyle changes or treatments received in adult life, the early developmental period tends to have a lasting effect on the structure and functionality of the body. In this review, fetal programming and the effects of fetal programming are discussed.
Collapse
|