1
|
Khandelwal P, Lounder DT, Bartlett A, Haberman Y, Jegga AG, Ghandikota S, Koo J, Luebbering N, Leino D, Abdullah S, Loveless M, Minar P, Lake K, Litts B, Karns R, Nelson AS, Denson LA, Davies SM. Transcriptome analysis in acute gastrointestinal graft- versus host disease reveals a unique signature in children and shared biology with pediatric inflammatory bowel disease. Haematologica 2023; 108:1803-1816. [PMID: 36727399 PMCID: PMC10316272 DOI: 10.3324/haematol.2022.282035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
We performed transcriptomic analyses on freshly frozen (n=21) and paraffin-embedded (n=35) gastrointestinal (GI) biopsies from children with and without acute acute GI graft-versus-host disease (GvHD) to study differential gene expressions. We identified 164 significant genes, 141 upregulated and 23 downregulated, in acute GvHD from freshy frozen biopsies. CHI3L1 was the top differentially expressed gene in acute GvHD, involved in macrophage recruitment and bacterial adhesion. Mitochondrial genes were among the top downregulated genes. Immune deconvolution identified a macrophage cellular signature. Weighted gene co-expression network analysis showed enrichment of genes in the ERK1/2 cascade. Transcriptome data from 206 ulcerative colitis (UC) patients were included to uncover genes and pathways shared between GvHD and UC. Comparison with the UC transcriptome showed both shared and distinct pathways. Both UC and GvHD transcriptomes shared an innate antimicrobial signature and FCγ1RA/CD64 was upregulated in both acute GvHD (log-fold increase 1.7, P=0.001) and UC. Upregulation of the ERK1/2 cascade pathway was specific to GvHD. We performed additional experiments to confirm transcriptomics. Firstly, we examined phosphorylation of ERK (pERK) by immunohistochemistry on GI biopsies (acute GvHD n=10, no GvHD n=10). pERK staining was increased in acute GvHD biopsies compared to biopsies without acute GvHD (P=0.001). Secondly, plasma CD64, measured by enzyme-linked immunsorbant assay (n=85) was elevated in acute GI GvHD (P<0.001) compared with those without and was elevated in GVHD compared with inflammatory bowel disease (n=47) (P<0.001), confirming the upregulated expression seen in the transcriptome.
Collapse
Affiliation(s)
- Pooja Khandelwal
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229.
| | - Dana T Lounder
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Allison Bartlett
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Yael Haberman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Sheba Medical Center, Hashomer, affiliated with the Aviv University, Israel 52620
| | - Anil G Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sudhir Ghandikota
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jane Koo
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Nathan Luebbering
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Daniel Leino
- Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sheyar Abdullah
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Michaela Loveless
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Phillip Minar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Kelly Lake
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Bridget Litts
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rebekah Karns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Adam S Nelson
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Lee A Denson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229; Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
2
|
Post-Transplant Cyclophosphamide and Tacrolimus-Mycophenolate Mofetil Combination Governs GVHD and Immunosuppression Need, Reducing Late Toxicities in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors. J Clin Med 2021; 10:jcm10061173. [PMID: 33799685 PMCID: PMC7998305 DOI: 10.3390/jcm10061173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/10/2023] Open
Abstract
Combined direct antineoplastic activity and the long-lasting immunological effects of allogeneic hematopoietic cell transplant (HCT) can cure many hematological malignancies, but broad adoption requires non-relapse mortality (NRM) rates and graft-versus-host disease (GVHD) control. Recently, posttransplant cyclophosphamide (PTCy) given after a bone marrow transplant significantly reduced GVHD-incidence, while PTCy given with tacrolimus/mofetil mycophenolate (T/MMF) showed activity following allogeneic peripheral blood stem cell transplantation (alloPBSCT). Here, we report the experience of a larger cohort (85 consecutive patients) and expanded follow-up period (03/2011-12/2019) with high-risk hematological malignancies who received alloPBSCT from Human-Leukocyte-Antigens HLA-matched unrelated/related donors. GVHD-prophylaxis was PTCy 50 mg/kg (days+3 and +4) combined with T/MMF (day+5 forward). All patients stopped MMF on day+28 with day+110 = median tacrolimus discontinuation. Cumulative incidences were 12% for acute and 7% for chronic GVHD- and no GVHD-attributed deaths. For surviving patients, the 12, 24, and 36-month probabilities of being off immunosuppression were 92, 96, and 96%, respectively. After a 36-month median follow-up, NRM was 4%; median event-free survival (EFS) and overall survival (OS) had yet to occur. One- and two-year chronic GVHD-EFS results were 57% (95% CI, 46-68%) and 53% (95% CI, 45-61%), respectively, with limited late infections and long-term organ toxicities. Disease relapse caused the most treatment failures (38% at 2 years), but low transplant toxicity allowed many patients (14/37, 38%) to receive donor lymphocyte infusions as a post-relapse strategy. We confirmed that PTCy+T/MMF treatment effectively prevented acute and chronic GVHD and limited NRM to unprecedented low rates without loss of disease control efficacy in an expanded patient cohort. This trial is registered at U.S. National Library of Medicine as #NCT02300571.
Collapse
|
3
|
Abstract
Mesenchymal stromal cells (MSC) are multipotent precursor cells that can be derived from a variety of tissue sources, with a working definition based on immunophenotyping and cell differentiation capacity. Despite historical roots in the field of tissue engineering, they have generated great interest as cell therapies for their immune regulatory function, which has led to numerous clinical trials for a range of inflammatory and autoimmune conditions. Importantly, due to the lack of traditional MHC expression and their expression of other immune regulatory proteins, they can be used from third party donors without generating a dangerous alloreactivity. After 20 years of clinical trials, they have earned themselves an excellent safety record but are currently only approved for use in Canada, New Zealand, Japan, South Korea and Europe due to a lack of consistent efficacy data. In the United States, the indication that has seen the most progress is steroid refractory acute graft-versus-host disease (SR-aGVHD). Issues with early clinical trials can be attributed to both challenges with defining optimal patient populations and trial design as well as limitations related to commercial manufacturing. Earlier this year, the encouraging data for a repeat Phase III trial in pediatric patients with SR-aGVHD was published. This review provides information on the proposed mechanism of action of MSCs, clinical utilization of MSCs with focus on SR-aGVHD and potential modalities that can improve the efficacy of MSCs.
Collapse
Affiliation(s)
- Holly Wobma
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Follistatin and Soluble Endoglin Predict 1-Year Nonrelapse Mortality after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:606-611. [PMID: 31715306 DOI: 10.1016/j.bbmt.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/21/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Abstract
Damage-associated angiogenic factors (AFs), including follistatin (FS) and soluble endoglin (sEng), are elevated in circulation at the onset of acute graft-versus-host disease (GVHD). We hypothesized that regimen-related tissue injury also might be associated with aberrant AF levels and sought to determine the relevance of these AF on nonrelapse mortality (NRM) in patients with acute GVHD and those without acute GVHD. To test our hypothesis, we analyzed circulating levels of FS, sEng, angiopoietin-2 (Ang2), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) A and B, placental growth factor (PlGF), and soluble VEGF receptor (sVEGFR)-1 and -2, in plasma samples from patients enrolled on Blood and Marrow Transplant Clinical Trials Network (BMT CTN) 0402 (n = 221), which tested GVHD prophylaxis after myeloablative hematopoietic stem cell transplantation (HCT). We found that the interaction between FS and sEng had an additive effect in their association with 1-year NRM. In multivariate analysis, patients with the highest levels of day +28 FS and sEng had a 14.9-fold greater hazard ratio (HR) of NRM (95% confidence interval, 3.2 to 69.4; P < .01) when compared with low levels of FS and sEng. We validated these findings using an external cohort of patients (n = 106). Pre-HCT measurements of FS and sEng were not associated with NRM, suggesting that elevations in these factors early post-HCT may be consequences of early regimen-related toxicity. Determining the mechanisms responsible for patient-specific vulnerability to treatment toxicities and endothelial damage associated with specific AF elevation may guide interventions to reduce NRM post-HCT.
Collapse
|
5
|
Kean LS. Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 2018; 131:2630-2639. [PMID: 29728399 PMCID: PMC6032897 DOI: 10.1182/blood-2018-02-785881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular therapies play a major and expanding role in the treatment of hematologic diseases. For each of these therapies, a narrow therapeutic window exists, where efficacy is maximized and toxicities minimized. This review focuses on one of the most established cellular therapies, hematopoietic stem cell transplant, and one of the newest cellular therapies, chimeric antigen receptor-T cells. In this review, I will discuss the current state of the field for clinical end point analysis with each of these therapeutics, including their critical toxicities, and focus on the major elements of success for each of these complex treatments for hematologic disease.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA; Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Metafuni E, Giammarco S, De Ritis DG, Rossi M, Corrente F, Piccirillo N, Bacigalupo AP, Sica S, Chiusolo P. Changes in protein serum levels during stem cell transplantation. Eur J Clin Invest 2017; 47:711-718. [PMID: 28796281 DOI: 10.1111/eci.12796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND GvHD is one of the major complication after stem cell transplantation affecting transplant-related mortality. Throughout the last years, many serum proteins were been proposed as possible biomarkers for GvHD. AIMS We studied the trend of five of the most studied serum proteins to evaluate whether a correlation exists between proteins concentration and post-HSCT outcomes. MATERIALS AND METHODS We measured serum concentration of REG3α, ST2, B-cell activating factor (BAFF), CXCL9 and elafin in a cohort of 77 patients submitted to Hematopoietic allogeneic stem cell transplantation (HSCT) in our department. Blood samples were been collected at baseline, day +30, GvHD onset and GvHD resolution. RESULTS REG3α levels showed an association only with acute GvHD. Elafin and ST2 levels varied according to both acute and chronic GvHD occurrence. BAFF concentration showed an inverse association with acute GvHD development. Interestingly, baseline BAFF and ST2 levels predicted post-HSCT survival. No associations were found for CXCL9. CONCLUSIONS Except for CXCL9, the protein levels seem to change according to GvHD development, independently from organ involvement and grading. Pretransplant ST2 and BAFF appeared to be predictors for survival after HSCT.
Collapse
Affiliation(s)
| | - Sabrina Giammarco
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | | | - Monica Rossi
- Molecular Biology and HLA Typing Laboratory, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Francesco Corrente
- Molecular Biology and HLA Typing Laboratory, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Nicola Piccirillo
- Apheresis and Transfusional Medicine Division, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | | | - Simona Sica
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| |
Collapse
|
7
|
Ranjan S, Goihl A, Kohli S, Gadi I, Pierau M, Shahzad K, Gupta D, Bock F, Wang H, Shaikh H, Kähne T, Reinhold D, Bank U, Zenclussen AC, Niemz J, Schnöder TM, Brunner-Weinzierl M, Fischer T, Kalinski T, Schraven B, Luft T, Huehn J, Naumann M, Heidel FH, Isermann B. Activated protein C protects from GvHD via PAR2/PAR3 signalling in regulatory T-cells. Nat Commun 2017; 8:311. [PMID: 28827518 PMCID: PMC5566392 DOI: 10.1038/s41467-017-00169-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2017] [Indexed: 01/23/2023] Open
Abstract
Graft-vs.-host disease (GvHD) is a major complication of allogenic hematopoietic stem-cell(HSC) transplantation. GvHD is associated with loss of endothelial thrombomodulin, but the relevance of this for the adaptive immune response to transplanted HSCs remains unknown. Here we show that the protease-activated protein C (aPC), which is generated by thrombomodulin, ameliorates GvHD aPC restricts allogenic T-cell activation via the protease activated receptor (PAR)2/PAR3 heterodimer on regulatory T-cells (Tregs, CD4+FOXP3+). Preincubation of pan T-cells with aPC prior to transplantation increases the frequency of Tregs and protects from GvHD. Preincubation of human T-cells (HLA-DR4-CD4+) with aPC prior to transplantation into humanized (NSG-AB°DR4) mice ameliorates graft-vs.-host disease. The protective effect of aPC on GvHD does not compromise the graft vs. leukaemia effect in two independent tumor cell models. Ex vivo preincubation of T-cells with aPC, aPC-based therapies, or targeting PAR2/PAR3 on T-cells may provide a safe and effective approach to mitigate GvHD.Graft-vs.-host disease is a complication of allogenic hematopoietic stem cell transplantation, and is associated with endothelial dysfunction. Here the authors show that activated protein C signals via PAR2/PAR3 to expand Treg cells, mitigating the disease in mice.
Collapse
MESH Headings
- Animals
- Graft vs Host Disease/etiology
- Graft vs Host Disease/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/methods
- Humans
- Kaplan-Meier Estimate
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Protein C/immunology
- Protein C/metabolism
- Protein Multimerization
- Receptor, PAR-2/chemistry
- Receptor, PAR-2/immunology
- Receptor, PAR-2/metabolism
- Receptors, Proteinase-Activated/chemistry
- Receptors, Proteinase-Activated/immunology
- Receptors, Proteinase-Activated/metabolism
- Receptors, Thrombin/chemistry
- Receptors, Thrombin/immunology
- Receptors, Thrombin/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Alexander Goihl
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, 40100, Pakistan
| | - Dheerendra Gupta
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Fabian Bock
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Hongjie Wang
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Haroon Shaikh
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Center of Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39108, Germany
| | - Jana Niemz
- Department of Experimental Immunology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Tina M Schnöder
- Internal Medicine II, Hematology and Oncology, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute, 07745, Jena, Germany
- Department of Hematology and Oncology, Center of Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Center of Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Thomas Kalinski
- Institute for Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Experimental Immunology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Thomas Luft
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, 69120, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Center of Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Florian H Heidel
- Internal Medicine II, Hematology and Oncology, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute, 07745, Jena, Germany
- Department of Hematology and Oncology, Center of Internal Medicine, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke- University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
8
|
Gimondi S, Dugo M, Vendramin A, Bermema A, Biancon G, Cavané A, Corradini P, Carniti C. Circulating miRNA panel for prediction of acute graft-versus-host disease in lymphoma patients undergoing matched unrelated hematopoietic stem cell transplantation. Exp Hematol 2016; 44:624-634.e1. [DOI: 10.1016/j.exphem.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023]
|
9
|
Zhang W, Gu Y, Hao Y, Sun Q, Konior K, Wang H, Zilberberg J, Lee WY. Well plate-based perfusion culture device for tissue and tumor microenvironment replication. LAB ON A CHIP 2015; 15:2854-2863. [PMID: 26021852 PMCID: PMC4470735 DOI: 10.1039/c5lc00341e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There are significant challenges in developing in vitro human tissue and tumor models that can be used to support new drug development and evaluate personalized therapeutics. The challenges include: (1) working with primary cells which are often difficult to maintain ex vivo, (2) mimicking native microenvironments from which primary cells are harvested, and (3) the lack of culture devices that can support these microenvironments to evaluate drug responses in a high-throughput manner. Here we report a versatile well plate-based perfusion culture device that was designed, fabricated and used to: (1) ascertain the role of perfusion in facilitating the expansion of human multiple myeloma cells and evaluate drug response of the cells, (2) preserve the physiological phenotype of primary murine osteocytes by reconstructing the 3D cellular network of osteocytes, and (3) circulate primary murine T cells through a layer of primary murine intestine epithelial cells to recapitulate the interaction of the immune cells with the epithelial cells. Through these diverse case studies, we demonstrate the device's design features to support: (1) the convenient and spatiotemporal placement of cells and biomaterials into the culture wells of the device; (2) the replication of tissues and tumor microenvironments using perfusion, stromal cells, and/or biomaterials; (3) the circulation of non-adherent cells through the culture chambers; and (4) conventional tissue and cell characterization by plate reading, histology, and flow cytometry. Future challenges are identified and discussed from the perspective of manufacturing the device and making its operation for routine and wide use.
Collapse
Affiliation(s)
- W Zhang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Y Gu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Y Hao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Q Sun
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - K Konior
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - H Wang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - J Zilberberg
- Research Department, Hackensack University Medical Center, 40 Prospect Ave, Hackensack, NJ, 07601, USA
- John Theurer Cancer Center, Hackensack University Medical Center
| | - W Y Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
10
|
Vertès AA. The potential of cytotherapeutics in hematologic reconstitution and in the treatment and prophylaxis of graft-versus-host disease. Chapter II: emerging transformational cytotherapies. Regen Med 2015; 10:345-73. [DOI: 10.2217/rme.15.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a life-saving treatment for inherited anemias, immunodeficiencies or hematologic malignancies. A major complication of allo-HSCT associated with high transplant-related mortality rates is graft-versus-host disease (GvHD). Current and future clinical benefits in HSCT enabled by advances in hematopoietic stem cells, mesenchymal stem cells, Tregs and natural killer cells technologies are reviewed here and discussed. Among these evolutions, based on the need for mesenchymal stem cells to be recruited by an inflammatory environment, the development and use of novel GvHD biomarkers could be explored further to deliver the right pharmaceutical to the right patient at the right time. The successful commercialization of cytotherapeutics to efficiently manage GvHD will create a virtuous ‘halo’ effect for regenerative medicine.
Collapse
Affiliation(s)
- Alain A Vertès
- Sloan Fellow, London Business School, London, UK
- NxR Biotechnologies GmbH, Basel, Switzerland
| |
Collapse
|