1
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
2
|
Li G, Liu X, Du Q, Gao M, An J. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp Biol Med (Maywood) 2015; 240:1029-38. [PMID: 26283705 DOI: 10.1177/1535370215594583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Xujun Liu
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Qian Du
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Mei Gao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| |
Collapse
|
3
|
Ramesh B, Guhathakurta S. Large-scale in-vitro expansion of RBCs from hematopoietic stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2012; 41:42-51. [PMID: 22834784 DOI: 10.3109/10731199.2012.702315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The quest for RBCs in transfusion medicine has prompted scientists to explore the large-scale expansion of human RBCs from various sources. The successful production of RBCs in the laboratory depends on the selection of potential cell source, optimized culture, bio-physiological parameters, clinically applicable culture media that yields a scalable, contamination-free, non-reactive, non-tumorogenic, stable and functional end product. The expansion protocol considering the in vivo factors involved in homeostasis can generate a cost-effective and readily available cell source for transfusion. This review paper discusses several approaches used to expand RBCs from various sources of stem cells.
Collapse
Affiliation(s)
- Balasundari Ramesh
- Department of Stem Cells and Tissue Engineering, Frontier Life Line Pvt Ltd., Mugappair, Chennai, India
| | | |
Collapse
|
4
|
Mortera-Blanco T, Mantalaris A, Bismarck A, Aqel N, Panoskaltsis N. Long-term cytokine-free expansion of cord blood mononuclear cells in three-dimensional scaffolds. Biomaterials 2011; 32:9263-70. [DOI: 10.1016/j.biomaterials.2011.08.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
5
|
Kuzin I, Sun H, Moshkani S, Feng C, Mantalaris A, Wu JHD, Bottaro A. Long-term immunologically competent human peripheral lymphoid tissue cultures in a 3D bioreactor. Biotechnol Bioeng 2011; 108:1430-40. [PMID: 21309085 PMCID: PMC3076551 DOI: 10.1002/bit.23055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 01/18/2023]
Abstract
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo.
Collapse
Affiliation(s)
- Igor Kuzin
- Department of Medicine, University of Rochester School of Medicine and Dentistry, URMC 695, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Hongliang Sun
- Department of Chemical Engineering , University of Rochester, Rochester, NY
| | - Safiekhatoon Moshkani
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - JH David Wu
- Department of Chemical Engineering , University of Rochester, Rochester, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| | - Andrea Bottaro
- Department of Medicine, University of Rochester School of Medicine and Dentistry, URMC 695, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
6
|
Sun H, Tsai Y, Nowak I, Dertinger SD, David Wu JH, Chen Y. Response kinetics of radiation-induced micronucleated reticulocytes in human bone marrow culture. Mutat Res 2011; 718:38-43. [PMID: 21056116 PMCID: PMC3017721 DOI: 10.1016/j.mrgentox.2010.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/01/2022]
Abstract
The frequency of micronucleated reticulocytes (MN-RETs) in the bone marrow or peripheral blood is a sensitive indicator of cytogenetic damage. While the kinetics of MN-RET induction in rodent models following irradiation has been investigated and reported, information about MN-RET induction of human bone marrow after radiation exposure is sparse. In this report, we describe a human long-term bone marrow culture (LTBMC), established in three-dimensional (3D) bioreactors, which sustains long-term erythropoiesis. Using this system, we measured the kinetics of human bone marrow red blood cell (RBC) and reticulocyte (RET) production, as well as the kinetics of human MN-RET induction following radiation exposure up to 6Gy. Human bone marrow established in the 3D bioreactor demonstrated an average percentage of RBCs among total viable cells peaking at 21% on day 21. The average percentage of RETs among total viable cells reached a maximum of 11% on day 14, and remained above 5% by day 28, suggesting that terminal erythroid differentiation was still active. Time- and dose-dependent induction of MN-RET by gamma radiation was observed in the human 3D LTBMC, with peak values occurring at approximately 3 days following 1Gy irradiation. A trend towards delayed peak to 3-5 days post-radiation was observed with radiation doses ≥2Gy. Our data reveal valuable information on the kinetics of radiation-induced MN-RET of human bone marrow cultured in the 3D bioreactor, a synthetic bioculture system, and suggest that this model may serve as a promising tool for studying MN-RET formation in human bone marrow, thereby providing opportunities to study bone marrow genotoxicity testing, mitigating agent effects, and other conditions that are not ordinarily feasible to experimental manipulation in vivo.
Collapse
Affiliation(s)
- Hongliang Sun
- Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Ave, Box 647, Rochester, NY 14642-8647, United States
- Department of Chemical Engineering, University of Rochester, P.O. Box 270166, Rochester, NY 14627-0166, United States
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Ave, Box 647, Rochester, NY 14642-8647, United States
| | - Irena Nowak
- Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Ave, Box 647, Rochester, NY 14642-8647, United States
| | - Stephen D. Dertinger
- Litron Laboratories, 200 Canal View Blvd, Rochester, NY 14623-2850, United States
| | - J. H. David Wu
- Department of Chemical Engineering, University of Rochester, P.O. Box 270166, Rochester, NY 14627-0166, United States
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Ave, Box 647, Rochester, NY 14642-8647, United States
| |
Collapse
|
7
|
Sun H, Dertinger SD, Hyrien O, David Wu JH, Chen Y. Gamma-radiation induces micronucleated reticulocytes in 3D bone marrow bioreactors in vitro. Mutat Res 2009; 680:49-55. [PMID: 19786117 PMCID: PMC2843784 DOI: 10.1016/j.mrgentox.2009.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/12/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RETs). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th and 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 h and 32 h post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma-radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5-2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro.
Collapse
Affiliation(s)
- Hongliang Sun
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY
- Department of Chemical Engineering, University of Rochester, Rochester, NY
| | | | - Ollivier Hyrien
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY
| | - J. H. David Wu
- Department of Chemical Engineering, University of Rochester, Rochester, NY
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
8
|
Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DCL, Ma CYJ, Polak JM, Panoskaltsis N, Mantalaris A. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 2009; 6:209-32. [PMID: 19033137 PMCID: PMC2659585 DOI: 10.1098/rsif.2008.0442] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.
Collapse
Affiliation(s)
- Mark R Placzek
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grimandi G, Soueidan A, Anjrini AA, Badran Z, Pilet P, Daculsi G, Faucheux C, Bouler JM, Guicheux J. Quantitative and reliable in vitro method combining scanning electron microscopy and image analysis for the screening of osteotropic modulators. Microsc Res Tech 2006; 69:606-12. [PMID: 16718652 DOI: 10.1002/jemt.20326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The increased generation and up-regulated activity of bone resorbing cells (osteoclasts) play a part in the impairment of bone remodeling in many bone diseases. Numerous drugs (bisphosphonates, calcitonin, selective estrogen receptor modulators) have been proposed to inhibit this increased osteoclastic activity. In this report, we describe a pit resorption assay quantified by scanning electron microscopy coupled with image analysis. Total rabbit bone cells with large numbers of osteoclasts were cultured on dentin slices. The whole surface of the dentin slice was scanned and both the number of resorption pits and the total resorbed surface area were measured. Resorption pits appeared at 48 h and increased gradually up to 96 h. Despite the observation of a strong correlation between the total resorption area and the number of pits, we suggest that area measurement is the most relevant marker for osteoclastic activity. Osteotropic factors stimulating or inhibiting osteoclastic activity were used to test the variations in resorption activity as measured with our method. This reproducible and sensitive quantitative method is a valuable tool for screening for osteoclastic inhibitors and, more generally, for investigating bone modulators.
Collapse
Affiliation(s)
- Gaël Grimandi
- Inserm, UMRS 791, Laboratoire d'ingénierie Ostéo-articulaire et dentaire (LIOAD), Univ Nantes, Faculté de chirurgie dentaire, F-44042 Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Panoskaltsis N, Mantalaris A, Wu JHD. Engineering a mimicry of bone marrow tissue ex vivo. J Biosci Bioeng 2005; 100:28-35. [PMID: 16233847 DOI: 10.1263/jbb.100.28] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/30/2005] [Indexed: 11/17/2022]
Abstract
Hematopoietic stem cells reside in specific niches in the bone marrow and give rise to either more stem cells or maturing hematopoietic progeny depending on the signals provided in the bone marrow microenvironment. This microenvironment is comprised of cellular components as well as soluble constituents called cytokines. The use of cytokines alone for the ex vivo expansion of stem cells in flat, two-dimensional culture flasks, dishes or bags is inadequate and, given the three-dimensionality of the in vivo bone marrow microenvironment, inappropriate. Three-dimensional culture conditions can therefore provide an ex vivo mimicry of bone marrow, recapitulate the desired niche, and provide a suitable environment for stem cell expansion and differentiation. Choice of scaffold, manipulation and reproducibility of the scaffold properties and directed structuring of the niche, by choosing pore size and porosity may inform the resident stem cells of their fate in a directed fashion. The use of bioreactors for cultivation of hematopoietic cells will allow for culture control, optimization, standardization, scale-up, and a "hands-off" operation making the end-product dependable, predictable and free of contaminants, and therefore suitable for human use and therapeutic applications.
Collapse
Affiliation(s)
- Nicki Panoskaltsis
- Department of Haematology, Imperial College London, Northwick Park & St. Mark's Campus, Harrow HA1 3UJ, UK
| | | | | |
Collapse
|