1
|
Furlan JM, Centenaro GS, Bittencourt Fagundes M, Borges Filho C, Batista I, Bandarra N. Thraustochytrium sp. and Aurantiochytrium sp.: Sustainable Alternatives for Squalene Production. Mar Drugs 2025; 23:132. [PMID: 40137318 PMCID: PMC11944157 DOI: 10.3390/md23030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated a sustainable alternative to squalene production utilizing Thraustochytrium sp. and Aurantiochytrium sp., thereby reducing dependence on critically endangered sharks exploited for this compound. By optimizing fed-batch cultivation, a technique prevalent in industrial biotechnology, we have enhanced squalene yields and have demonstrated, through sensitivity analysis, the significance of this shift in preserving species at risk of extinction. Optimization of culture conditions led to the highest biomass concentrations for Thraustochytrium sp. being achieved at lower C-N ratios (<5.0), while the optimal biomass production for Aurantiochytrium sp. occurred in culture media with a high C-N ratio of 54:50. Regarding squalene production, Thraustochytrium sp. produced 26.13 mg/L in the fed-batch system after 72 h, and Aurantiochytrium sp. produced 54.97 mg/L in a batch system with 30 g/L glucose and 0.22 g/L nitrogen after 96 h, showcasing their potential for industrial applications. Moreover, the sensitivity analysis revealed that, on an industrial scale, both strains could produce up to 59.50 t of squalene annually in large-scale facilities, presenting a valuable and sustainable alternative for the biotechnological industry and significantly reducing the reliance on non-renewable and endangered sources such as shark liver oil and preventing the annual capture of over 156,661 sharks.
Collapse
Affiliation(s)
- Júnior Mendes Furlan
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | - Graciela Salete Centenaro
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | | | - Carlos Borges Filho
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | - Irineu Batista
- Portuguese Institute for Sea and Atmosphere, 1495-006 Lisbon, Portugal; (I.B.); (N.B.)
| | - Narcisa Bandarra
- Portuguese Institute for Sea and Atmosphere, 1495-006 Lisbon, Portugal; (I.B.); (N.B.)
| |
Collapse
|
2
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Singh D, Rani R, Sharma AK, Gupta RP, Ramakumar SSV, Mathur AS. Extraction, separation and purification of fatty acid ethyl esters for biodiesel and DHA from Thraustochytrid biomass. Biotechnol J 2024; 19:e2300350. [PMID: 38135869 DOI: 10.1002/biot.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
A novel approach for in situ transesterification, extraction, separation, and purification of fatty acid ethyl esters (FAEE) for biodiesel and docosahexaenoic acid (DHA) from Thraustochytrid biomass has been developed. The downstream processing of Thraustochytrids oil necessitates optimization, considering the higher content of polyunsaturated fatty acids (PUFA). While two-step methods are commonly employed for extracting and transesterifying oil from oleaginous microbes, this may result in oxidation/epoxidation of omega-3 oil due to prolonged exposure to heat and oxygen. To address this issue, a rapid single-step method was devised for in situ transesterification of Thraustochytrid oil. Through further process optimization, a 50% reduction in solvent requirement was achieved without significantly impacting fatty acid recovery or composition. Scale-up studies in a 4 L reactor demonstrated complete FAEE recovery (99.98% of total oil) from biomass, concurrently enhancing DHA yield from 16% to nearly 22%. The decolorization of FAEE oil with fuller's earth effectively removed impurities such as pigments, secondary metabolites, and waxes, resulting in a clear, shiny appearance. High-performance liquid chromatography (HPLC) analysis indicated that the eluted DHA was over 94.5% pure, as corroborated by GC-FID analysis.
Collapse
Affiliation(s)
- Dilip Singh
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| | - Rekha Rani
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| | - Ajay K Sharma
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| | - Sankara Sri Venkata Ramakumar
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, India
| |
Collapse
|
4
|
Ali MK, Liu X, Li J, Zhu X, Sen B, Wang G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants (Basel) 2023; 12:antiox12051034. [PMID: 37237900 DOI: 10.3390/antiox12051034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.
Collapse
Affiliation(s)
- Memon Kashif Ali
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiuping Liu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xingyu Zhu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Qingdao Institute for Ocean Technology of Tianjin University Co., Ltd., Qingdao 266237, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Koopmann IK, Müller BA, Labes A. Screening of a Thraustochytrid Strain Collection for Carotenoid and Squalene Production Characterized by Cluster Analysis, Comparison of 18S rRNA Gene Sequences, Growth Behavior, and Morphology. Mar Drugs 2023; 21:204. [PMID: 37103341 PMCID: PMC10140983 DOI: 10.3390/md21040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Carotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of thraustochytrids sensu lato for their potential to produce carotenoids and squalene was performed. A phylogenetic tree was built based on 18S rRNA gene sequences for taxonomic classification, revealing eight different clades of thraustochytrids. Design of experiments (DoE) and growth models identified high amounts of glucose (up to 60 g/L) and yeast extract (up to 15 g/L) as important factors for most of the strains. Squalene and carotenoid production was studied by UHPLC-PDA-MS measurements. Cluster analysis of the carotenoid composition partially mirrored the phylogenetic results, indicating a possible use for chemotaxonomy. Strains in five clades produced carotenoids. Squalene was found in all analyzed strains. Carotenoid and squalene synthesis was dependent on the strain, medium composition and solidity. Strains related to Thraustochytrium aureum and Thraustochytriidae sp. are promising candidates for carotenoid synthesis. Strains closely related to Schizochytrium aggregatum might be suitable for squalene production. Thraustochytrium striatum might be a good compromise for the production of both molecule groups.
Collapse
Affiliation(s)
- Inga K Koopmann
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Bettina A Müller
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Antje Labes
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| |
Collapse
|
6
|
Zhang H, Zhao X, Zhao C, Zhang J, Liu Y, Yao M, Liu J. Effects of glycerol and glucose on docosahexaenoic acid synthesis in Aurantiochyrium limacinum SFD-1502 by transcriptome analysis. Prep Biochem Biotechnol 2022; 53:81-92. [PMID: 35289738 DOI: 10.1080/10826068.2022.2042820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Docosahexaenoic acid (DHA) has numerous functions in adjusting the organic health and pragmatic value in medicine and food field. In this study, we compared glycerol and glucose as the only carbon source for DHA production by Aurantiochytrium. When the glycerol concentration was 120 g/L, the maximum DHA yield was 11.08 g/L, and the DHA yield increased significantly, reaching 47.67% of the total lipid content. When the cells grew in glucose, the DHA proportion was 37.39%. Transcriptome data showed that the glycolysis pathway and tricarboxylic acid cycle in Aurantiochytrium were significantly inhibited during glycerol culture, which promoted the tricarboxylic acid transport system and was conducive to the synthesis of fatty acids by acetyl coenzyme A; glucose as substrate activated fatty acid synthesis (FAS)pathway and produced more saturated fatty acids, while glycerol as substrate activated polyketide synthase (PKS)pathway and produced more long-chain polyunsaturated fatty acids. This laid a foundation for fermentation metabolism regulation and molecular transformation.
Collapse
Affiliation(s)
- Huaqiu Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Xiangying Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jiaxiang Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Mingjing Yao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Jianjun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
7
|
Hien HTM, Thom LT, Pham QH, Hong DD. Genome analysis of the heterotrophic microalga Thraustochytrium sp. TN22 to identify genes involved in exopolysaccharide and carotenoid biosynthesis pathways. Mar Genomics 2022; 61:100918. [DOI: 10.1016/j.margen.2021.100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
|
8
|
Chen X, Sen B, Zhang S, Bai M, He Y, Wang G. Chemical and Physical Culture Conditions Significantly Influence the Cell Mass and Docosahexaenoic Acid Content of Aurantiochytrium limacinum Strain PKU#SW8. Mar Drugs 2021; 19:671. [PMID: 34940670 PMCID: PMC8708202 DOI: 10.3390/md19120671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125-1.0 g/L), salinity (0-140% seawater), pH (3-9), temperature (16-36 °C), and agitation (140-230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Sai Zhang
- Polar Research Institute of China, Shanghai 200136, China;
| | - Mohan Bai
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Mariam I, Kareya MS, Nesamma AA, Jutur PP. Delineating metabolomic changes in native isolate Aurantiochytrium for production of docosahexaenoic acid in presence of varying carbon substrates. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
11
|
Abstract
Single-cell ingredients (SCI) are a relatively broad class of materials that encompasses bacterial, fungal (yeast), microalgal-derived products or the combination of all three microbial groups into microbial bioflocs and aggregates. In this review we focus on those dried and processed single-cell organisms used as potential ingredients for aqua-feeds where the microorganisms are considered non-viable and are used primarily to provide protein, lipids or specific nutritional components. Among the SCI, there is a generalised dichotomy in terms of their use as either single-cell protein (SCP) resources or single-cell oil (SCO) resources, with SCO products being those oleaginous products containing 200 g/kg or more of lipids, whereas those products considered as SCP resources tend to contain more than 300 g/kg of protein (on a dry basis). Both SCP and SCO are now widely being used as protein/amino acid sources, omega-3 sources and sources of bioactive molecules in the diets of several species, with the current range of both these ingredient groups being considerable and growing. However, the different array of products becoming available in the market, how they are produced and processed has also resulted in different nutritional qualities in those products. In assessing this variation among the products and the application of the various types of SCI, we have taken the approach of evaluating their use against a set of standardised evaluation criteria based around key nutritional response parameters and how these criteria have been applied against salmonids, shrimp, tilapia and marine fish species.
Collapse
|
12
|
Miranda AF, Nham Tran TL, Abramov T, Jehalee F, Miglani M, Liu Z, Rochfort S, Gupta A, Cheirsilp B, Adhikari B, Puri M, Mouradov A. Marine Protists and Rhodotorula Yeast as Bio-Convertors of Marine Waste into Nutrient-Rich Deposits for Mangrove Ecosystems. Protist 2020; 171:125738. [PMID: 32544845 DOI: 10.1016/j.protis.2020.125738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 01/27/2023]
Abstract
This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carbon sources: glycerol, glucose, fructose, galactose, xylose, and sucrose, starch, cellulose, malt extract, and potato peels. Up to 14g DW/L (4.6gDW/L-day and 2.8gDW/L-day) of biomass were produced by Aurantiochytrium and Thraustochytrium species, respectively. Thraustochytrids biomass contained up to 33% DW of lipids, rich in omega-3 polyunsaturated docosahexaenoic acid (C22:6, 124mg/g DW); up to 10.2mg/gDW of squalene and up to 61μg/gDW of total carotenoids, composed of astaxanthin, canthaxanthin, echinenone, and β-carotene. Along with the accumulation of these added-value chemicals in biomass, thraustochytrid representatives showed the ability to secrete extracellular polysaccharide matrixes containing lipids and proteins. Rhodotorula sp lipids (26% DW) were enriched in palmitic acid (C16:0, 18mg/gDW) and oleic acid (C18:1, 41mg/gDW). Carotenoids (87μg/gDW) were mainly represented by β-carotene (up to 54μg/gDW). Efficient growth on organic and inorganic sources of carbon and nitrogen from natural and anthropogenic wastewater pollutants along with intracellular and extracellular production of valuable nutrients makes the production of valuable chemicals from isolated species economical and sustainable.
Collapse
Affiliation(s)
- Ana F Miranda
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Tomer Abramov
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Faridah Jehalee
- School of Sciences, RMIT University, Melbourne, VIC, Australia; Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Mohini Miglani
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhiqian Liu
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone Rochfort
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083, Australia
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Benu Adhikari
- School of Sciences, RMIT University, Melbourne, VIC, Australia
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Miranda AF, Kumar NR, Spangenberg G, Subudhi S, Lal B, Mouradov A. Aquatic Plants, Landoltia punctata, and Azolla filiculoides as Bio-Converters of Wastewater to Biofuel. PLANTS (BASEL, SWITZERLAND) 2020; 9:E437. [PMID: 32244834 PMCID: PMC7238415 DOI: 10.3390/plants9040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
The aquatic plants, Azolla filiculoides, and Landoltia punctate, were used as complementing phytoremediators of wastewater containing high levels of phosphate, which simulates the effluents from textile, dyeing, and laundry detergent industries. Their complementarities are based on differences in capacities to uptake nitrogen and phosphate components from wastewater. Sequential treatment by L. punctata followed by A. filiculoides led to complete removal of NH4, NO3, and up to 93% reduction of PO4. In experiments where L. punctata treatment was followed by fresh L. punctata, PO4 concentration was reduced by 65%. The toxicity of wastewater assessed by shrimps, Paratya australiensis, showed a four-fold reduction of their mortality (LC50 value) after treatment. Collected dry biomass was used as an alternative carbon source for heterotrophic marine protists, thraustochytrids, which produced up to 35% dry weight of lipids rich in palmitic acid (50% of total fatty acids), the key fatty acid for biodiesel production. The fermentation of treated L. punctata biomass by Enterobacter cloacae yielded up to 2.14 mol H2/mole of reduced sugar, which is comparable with leading terrestrial feedstocks. A. filiculoides and L. punctata can be used as a new generation of feedstock, which can treat different types of wastewater and represent renewable and sustainable feedstock for bioenergy production.
Collapse
Affiliation(s)
- Ana F. Miranda
- School of Sciences, RMIT University, Bundoora West Campus, Bundoora VIC 3083, Australia;
| | - N. Ram Kumar
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - German Spangenberg
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora VIC 3083, Australia;
- School of Applied Systems Biology, La Trobe University, Bundoora VIC 3086, Australia
| | - Sanjukta Subudhi
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - Banwari Lal
- The Energy and Resources Institute, New Delhi 110 003, India; (N.R.K.); (S.S.); (B.L.)
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Bundoora West Campus, Bundoora VIC 3083, Australia;
| |
Collapse
|
14
|
Nham Tran TL, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar Drugs 2020; 18:E151. [PMID: 32155832 PMCID: PMC7142457 DOI: 10.3390/md18030151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Ana F. Miranda
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Andrew S. Ball
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Benu Adhikari
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Aidyn Mouradov
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| |
Collapse
|
15
|
Chen CY, Lee MH, Dong CD, Leong YK, Chang JS. Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
17
|
Xiao R, Li X, Leonard E, Tharayil N, Zheng Y. Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn stover on the astaxanthin production by Thraustochytrium striatum. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Furlan VJM, Batista I, Bandarra N, Mendes R, Cardoso C. Conditions for the Production of Carotenoids by Thraustochytrium sp. ATCC 26185 and Aurantiochytrium sp. ATCC PRA-276. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1603175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Irineu Batista
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Narcisa Bandarra
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Rogério Mendes
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| | - Carlos Cardoso
- Instituto Português do Mar e da Atmosfera (IPMA), Lisboa, Portugal
| |
Collapse
|
19
|
Zhang S, He Y, Sen B, Chen X, Xie Y, Keasling JD, Wang G. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism. Metab Eng Commun 2018; 6:39-48. [PMID: 29896446 PMCID: PMC5994804 DOI: 10.1016/j.meteno.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The unicellular heterotrophic thraustochytrids are attractive candidates for commercial polyunsaturated fatty acids (PUFA) production. However, the reactive oxygen species (ROS) generated in their aerobic fermentation process often limits their PUFA titer. Yet, the specific mechanisms of ROS involvement in the crosstalk between oxidative stress and intracellular lipid synthesis remain poorly described. Metabolic engineering to improve the PUFA yield in thraustochytrids without compromising growth is an important aspect of economic feasibility. To fill this gap, we overexpressed the antioxidative gene superoxide dismutase (SOD1) by integrating it into the genome of thraustochytrid Schizochytrium sp. PKU#Mn4 using a novel genetic transformation system. This study reports the ROS alleviation, enhanced PUFA production and transcriptome changes resulting from the SOD1 overexpression. SOD1 activity in the recombinant improved by 5.2-71.6% along with 7.8-38.5% decline in ROS during the fermentation process. Interestingly, the total antioxidant capacity in the recombinant remained higher than wild-type and above zero in the entire process. Although lipid profile was similar to that of wild-type, the concentrations of major fatty acids in the recombinant were significantly (p ≤ 0.05) higher. The PUFA titer increased up to 1232 ± 41 mg/L, which was 32.9% higher (p ≤ 0.001) than the wild type. Transcriptome analysis revealed strong downregulation of genes potentially involved in β-oxidation of fatty acids in peroxisome and upregulation of genes catalyzing lipid biosynthesis. Our results enrich the knowledge on stress-induced PUFA biosynthesis and the putative role of ROS in the regulation of lipid metabolism in oleaginous thraustochytrids. This study provides a new and alternate strategy for cost-effective industrial fermentation of PUFA.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaohong Chen
- State Key Laboratory of Systems Engines, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jay D. Keasling
- Berkeley Center for Synthetic Biology, University of California, Berkeley, CA 94720-3224, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Systems Engines, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. BIORESOURCE TECHNOLOGY 2018; 250:868-876. [PMID: 29174352 DOI: 10.1016/j.biortech.2017.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ling-Jun Geng
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ning Hao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ke-Quan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
21
|
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. BIORESOURCE TECHNOLOGY 2017; 244:1269-1280. [PMID: 28549813 DOI: 10.1016/j.biortech.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/26/2023]
Abstract
Terpenoids are major bioactive compounds produced by microalgae and other eukaryotic microorganisms. Mining metabolic potential of marine microalgae for commercial production of terpenoids suggest thraustochytrids as one of the promising cell factories. The identification of potential thraustochytrid strains and relevant laboratory scale bioprocesses has been pursued largely. Further investigations in the improvement of terpenoids biosynthesis expect relevant molecular mechanisms to be understood directing metabolic engineering of the pathways. In this review, fermentative and mechanistic studies to identify key enzymes and pathways that are associated to terpenoids biosynthesis in thraustochytrids are discussed. Exploration of biosynthesis mechanisms in other model organisms facilitated identification of potential molecular targets for engineering terpenoids biosynthetic pathway in thraustochytrids. In addition, the preliminary genetic manipulation and in silico analysis in this review provides a platform for system-level metabolic engineering towards thraustochytrid strains improvement. Overall, the review contributes comprehensive information to allow better terpenoids productivity in thraustochytrids.
Collapse
Affiliation(s)
- Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
23
|
Byreddy AR, Rao NM, Barrow CJ, Puri M. Evaluation of cell disruption method for lipase extraction from novel thraustochytrids. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar Drugs 2017; 15:md15040118. [PMID: 28417932 PMCID: PMC5408264 DOI: 10.3390/md15040118] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/29/2022] Open
Abstract
The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields.
Collapse
|
25
|
|
26
|
Puri M. Algal biotechnology for pursuing omega-3 fatty acid (bioactive) production. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Algae are spread in diversified ecosystems that include marine, freshwater, desert and hot springs and even snow and ice environments. Algae are classified as multicellular large sea weeds (macroalgae) or unicellular microalgae. Macroalgae are targeted for mining of natural biologically active components, which include proteins, linear peptides, cyclic peptides, and amino acids1. Recently, microalgae have been exploited for the production of high-value compounds such as lipids (omega-3 fatty acids), enzymes, polymers, toxins, antioxidants, and pigments (carotenoids)2. Thus, algal biotechnology is defined as ‘the technology developed using algae (macro or micro) to make or modify bioactive compounds, or products (nutritional supplements, fine chemicals) and renewable fuels for specific use’.
Collapse
|
27
|
Ren LJ, Sun XM, Ji XJ, Chen SL, Guo DS, Huang H. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2017; 223:141-148. [PMID: 27788427 DOI: 10.1016/j.biortech.2016.10.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/09/2023]
Abstract
Oxygen-mediated cell damage is an important issue in aerobic fermentation. In order to counteract these problems, effect of ascorbic acid on cell growth and docosahexaenoic acid (DHA) production was investigated in Schizochytrium sp. Addition of 9g/L ascorbic acid resulted in 16.16% and 30.44% improvement in cell dry weight (CDW) and DHA yield, respectively. Moreover, the total antioxidant capacity (T-AOC) of cells decreased from 2.17 at 12h to 0 at 60h and did not recover, while ascorbic acid addition could extend the time of arrival zero with the reduced intracellular ROS. However, ROS levels still increased after 72h. Therefore, to further solve the problem of high ROS levels and low T-AOC of cells after 72h, a two-point addition strategy was proposed. With this strategy, DHA yield was further increased to 38.26g/L. This work innovatively investigated the feasibility of manipulating Schizochytrium sp. cultivation through ROS level and T-AOC.
Collapse
Affiliation(s)
- Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-Lan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
28
|
Yu XJ, Sun J, Sun YQ, Zheng JY, Wang Z. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Byreddy AR, Gupta A, Barrow CJ, Puri M. A quick colorimetric method for total lipid quantification in microalgae. J Microbiol Methods 2016; 125:28-32. [DOI: 10.1016/j.mimet.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
|
30
|
Byreddy AR. Thraustochytrids as an alternative source of omega-3 fatty acids, carotenoids and enzymes. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/lite.201600019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Avinesh R. Byreddy
- Centre for Chemistry and Biotechnology; School of Life and Environmental Sciences, Deakin University, Waurn Ponds; Geelong Australia 3217
| |
Collapse
|
31
|
Byreddy AR, Barrow CJ, Puri M. Bead milling for lipid recovery from thraustochytrid cells and selective hydrolysis of Schizochytrium DT3 oil using lipase. BIORESOURCE TECHNOLOGY 2016; 200:464-469. [PMID: 26519698 DOI: 10.1016/j.biortech.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Marine microalgae present a renewable alternative source for sustainable production of omega-3 fatty acids, as compared to conventional sources such as krill oil and fish oil. In this study, we optimised a method for lipid extraction from marine thraustochytrids using a bead mill and enzymatic concentration of omega-3 fatty acids from the thraustochytrid oil. The optimised lipid extraction conditions were, bead size 0.4-0.6μm, 4500rpm, 4min of processing time at 5g biomass concentration. The maximum lipid yield (% dry weight basis) achieved at optimum conditions were 40.5% for Schizochytrium sp. S31 (ATCC) and 49.4% for Schizochytrium sp. DT3 (in-house isolate). DT3 oil contained 39.8% docosahexaenoic acid (DHA) as a percentage of lipid, a higher DHA percentage than S31. Partial hydrolysis of DT3 oil using Candida rugosa lipase was performed to enrich omega-3 polyunsaturated fatty acids (PUFAs) in the glyceride portion. Total omega-3 fatty acid content was increased to 88.7%.
Collapse
Affiliation(s)
- Avinesh R Byreddy
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Munish Puri
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3217, Australia.
| |
Collapse
|
32
|
Gupta A, Singh D, Byreddy AR, Thyagarajan T, Sonkar SP, Mathur AS, Tuli DK, Barrow CJ, Puri M. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity. Biotechnol J 2015; 11:345-55. [PMID: 26580151 DOI: 10.1002/biot.201500279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/09/2015] [Accepted: 10/14/2015] [Indexed: 11/06/2022]
Abstract
The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production.
Collapse
Affiliation(s)
- Adarsha Gupta
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia
| | - Dilip Singh
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia.,DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, IndianߚOil Corporation Limited, Faridabad, India
| | - Avinesh R Byreddy
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia
| | - Tamilselvi Thyagarajan
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia
| | - Shailendra P Sonkar
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, IndianߚOil Corporation Limited, Faridabad, India
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, IndianߚOil Corporation Limited, Faridabad, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia.
| | - Munish Puri
- Centre for Chemistry and Biotechnology, (CCB), School of Life and Environment Sciences, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
33
|
Ren LJ, Zhuang XY, Chen SL, Ji XJ, Huang H. Introduction of ω-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9770-6. [PMID: 26494394 DOI: 10.1021/acs.jafc.5b04238] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
ω-3 fatty acids play significant roles in brain development and cardiovascular disease prevention and have been widely used in food additives and the pharmaceutical industry. The aim of this study was to assess the feasibility of ω-3 desaturase for regulating fatty acid composition and sterol content in Schizochytrium sp. The exogenous ω-3 desaturase gene driven by ubiqutin promoter was introduced by 18S homologous sequence to the genome of Schizochytrium sp. Genetically modified strains had greater size and lower polar lipids than wild type strains. In addition, the introduction of ω-3 desaturase improved the ω-3/ω-6 ratio from 2.1 to 2.58 and converted 3% docosapentaenoic acid (DPA) to docosahexaenoic acid (DHA). Furthermore, squalene and sterol contents in lipid of the genetically modified strain reduced by 37.19 and 22.31%, respectively. The present study provided an advantageous genetically engineered Schizochytrium sp. for DHA production and effective metabolic engineering strategy for fatty acid producing microbes.
Collapse
Affiliation(s)
- Lu-jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-yan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-lan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
34
|
Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 2015; 99:8363-75. [DOI: 10.1007/s00253-015-6920-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
|
35
|
Byreddy AR, Gupta A, Barrow CJ, Puri M. Comparison of Cell Disruption Methods for Improving Lipid Extraction from Thraustochytrid Strains. Mar Drugs 2015; 13:5111-27. [PMID: 26270668 PMCID: PMC4557016 DOI: 10.3390/md13085111] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 11/17/2022] Open
Abstract
Lipid extraction is an integral part of biodiesel production, as it facilitates the release of fatty acids from algal cells. To utilise thraustochytrids as a potential source for lipid production. We evaluated the extraction efficiency of various solvents and solvent combinations for lipid extraction from Schizochytrium sp. S31 and Thraustochytrium sp. AMCQS5-5. The maximum lipid extraction yield was 22% using a chloroform:methanol ratio of 2:1. We compared various cell disruption methods to improve lipid extraction yields, including grinding with liquid nitrogen, bead vortexing, osmotic shock, water bath, sonication and shake mill. The highest lipid extraction yields were obtained using osmotic shock and 48.7% from Schizochytrium sp. S31 and 29.1% from Thraustochytrium sp. AMCQS5-5. Saturated and monounsaturated fatty acid contents were more than 60% in Schizochytrium sp. S31 which suggests their suitability for biodiesel production.
Collapse
Affiliation(s)
- Avinesh R Byreddy
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Waurn Ponds, Geelong 3217, Australia.
| | - Adarsha Gupta
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Waurn Ponds, Geelong 3217, Australia.
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Waurn Ponds, Geelong 3217, Australia.
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Waurn Ponds, Geelong 3217, Australia.
| |
Collapse
|
36
|
Gupta A, Abraham RE, Barrow CJ, Puri M. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. BIORESOURCE TECHNOLOGY 2015; 184:373-378. [PMID: 25497057 DOI: 10.1016/j.biortech.2014.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3.
Collapse
Affiliation(s)
- Adarsha Gupta
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Reinu E Abraham
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Geelong Technology Precinct, Deakin University, Geelong, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|
37
|
Vongsvivut J, Heraud P, Gupta A, Thyagarajan T, Puri M, McNaughton D, Barrow CJ. Synchrotron-FTIR microspectroscopy enables the distinction of lipid accumulation in thraustochytrid strains through analysis of individual live cells. Protist 2014; 166:106-21. [PMID: 25594491 DOI: 10.1016/j.protis.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 11/19/2022]
Abstract
The superior characteristics of high photon flux and diffraction-limited spatial resolution achieved by synchrotron-FTIR microspectroscopy allowed molecular characterization of individual live thraustochytrids. Principal component analysis revealed distinct separation of the single live cell spectra into their corresponding strains, comprised of new Australasian thraustochytrids (AMCQS5-5 and S7) and standard cultures (AH-2 and S31). Unsupervised hierarchical cluster analysis (UHCA) indicated close similarities between S7 and AH-7 strains, with AMCQS5-5 being distinctly different. UHCA correlation conformed well to the fatty acid profiles, indicating the type of fatty acids as a critical factor in chemotaxonomic discrimination of these thraustochytrids and also revealing the distinctively high polyunsaturated fatty acid content as key identity of AMCQS5-5. Partial least squares discriminant analysis using cross-validation approach between two replicate datasets was demonstrated to be a powerful classification method leading to models of high robustness and 100% predictive accuracy for strain identification. The results emphasized the exceptional S-FTIR capability to perform real-time in vivo measurement of single live cells directly within their original medium, providing unique information on cell variability among the population of each isolate and evidence of spontaneous lipid peroxidation that could lead to deeper understanding of lipid production and oxidation in thraustochytrids for single-cell oil development.
Collapse
Affiliation(s)
- Jitraporn Vongsvivut
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia.
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Adarsha Gupta
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Tamilselvi Thyagarajan
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Munish Puri
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
38
|
Ren LJ, Sun GN, Ji XJ, Hu XC, Huang H. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 157:107-113. [PMID: 24534791 DOI: 10.1016/j.biortech.2014.01.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Single cell oils (SCOs), a complex lipid system, contains neutral lipids (NLs), polar lipids (PLs) and unsaponifiable matters (UMs). To investigate the dynamic changes and the metabolic competition mechanism of different components of SCOs, changes in lipid composition of Schizochytrium sp. were monitored in lipid accumulation and turnover stages. Lipid content could reach 69.98% in biomass during the lipid accumulation stage, while, after the exhaustion of glucose, the content decreased to 45.51% and 20.6g/L non-oil biomass was synthesis. Polyunsaturated fatty acids (PUFAs) were easier to bind with PLs. NLs were preferentially converted to PLs during lipid turnover stage, accompanied by the degradation of saturated fatty acids and the increase of UMs. Meanwhile, a positive correlation between the synthesis of PUFAs and unsaponifiable matters exited in Schizochytrium sp., and increasing the content of UMs from 45 to 100mg/L could increase the PUFA percentage from 64% to 74% effectively.
Collapse
Affiliation(s)
- Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Guan-Nan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xue-Chao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
39
|
Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ. Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. BIORESOURCE TECHNOLOGY 2013; 143:308-314. [PMID: 23811063 DOI: 10.1016/j.biortech.2013.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
A fast growing strain of Chlorella saccharophila was isolated from the marine water of New Zealand and grown in heterotrophic conditions using glucose or glycerol as a carbon source. Biomass production was found to be higher in culture fed with glucose (2.14±0.08 g L(-1)) as compared to glycerol (0.378±0.04 g L(-1)). Lipid accumulation was similar for both carbon sources, at approximately 22% of dry cell weight. However, carotenoid yield was higher with glycerol (0.406±0.0125 mg g(-1)) than with glucose (0.21±0.034 mg g(-1)). Further optimization of the growth of the isolate gave maximal carotenoid production of 16.39±1.19 mg g(-1) total carotenoid, containing 11.32±0.64 mg g(-1) zeaxanthin and 5.07±0.55 mg g(-1) β-carotene. Comparison of various chemical and physical carotenoid extraction methods showed that ultrasonication was required for maximum extraction yields. The new strain has potential for biofuel, with carotenoid co-production.
Collapse
Affiliation(s)
- Dilip Singh
- Centre for Chemistry and Biotechnology, Waurn Ponds, Deakin University, Victoria 3217, Australia
| | | | | | | | | | | |
Collapse
|