1
|
Kim JY, Jeong YJ, Sung BH, Seo MJ, Yeom SJ. Sustainable Bioconversion of Methanol: A Renewable Employing Novel Alcohol Oxidase and Pyruvate Aldolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9165-9173. [PMID: 40173089 PMCID: PMC12007092 DOI: 10.1021/acs.jafc.4c12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Methanol is an ideal one-carbon (C1) feedstock for bioconversion into multicarbon value-added compounds. Biocatalytic approaches to methanol conversion provide sustainable and environmentally friendly alternatives to conventional methods. This process is facilitated by methanol-oxidizing enzymes, including alcohol oxidase (AOx). Here, we report an AOx from Pestalotiopsis fici (PfAOx) with the highest methanol oxidation activity and efficient heterologous expression compared to other AOxs. To investigate the bioconversion of a multicarbon compound (C4 chemical, 2-keto-4-hydroxybutyrate, 2-KHB) from cost-effective methanol, we developed a one-pot enzyme system including PfAOx and pyruvate aldolase from Deinococcus radiodurans (DrADL) with catalase from Bos taurus (BtCAT, commercially available enzyme) to remove toxic H2O2. The optimal reaction conditions for 2-KHB production using PfAOx, DrADL, and BtCAT were determined as pH 8.0, 35 °C, 0.9 mg mL-1 PfAOx, 0.3 mg mL-1 DrADL, 1.5 mg mL-1 BtCAT, 150 mM methanol, 100 mM pyruvate, and 5 mM Mg2+ with shaking at 200 rpm. Under these reaction conditions, 88.8 mM (10.4 g L-1) of 2-KHB was produced for 75 min, representing a 74.0-fold higher yield compared to previously reported 2-KHB production systems from methanol and pyruvate. This study demonstrates a promising multi-enzyme cascade approach for the bioconversion of methanol into valuable compounds.
Collapse
Affiliation(s)
- Ju-Young Kim
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ju Jeong
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bong Hyun Sung
- Synthetic
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Ju Seo
- Institute
of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic
of Korea
| | - Soo-Jin Yeom
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute
of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic
of Korea
- School
of Biological Sciences and Technology, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Institute
of Systems Biology & Life Science Informatics, Chonnam National University, Gwangju 61186, Republic
of Korea
| |
Collapse
|
2
|
Wang P, Wang X, Chandra S, Lielpetere A, Quast T, Conzuelo F, Schuhmann W. Hybrid Enzyme-Electrocatalyst Cascade Modified Gas-Diffusion Electrodes for Methanol Formation from Carbon Dioxide. Angew Chem Int Ed Engl 2025; 64:e202422882. [PMID: 39714465 DOI: 10.1002/anie.202422882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO2 reduction under selective formation of methanol. Ag-Bi2O3 selectively reduces gaseous CO2 to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol. The enzymatically oxidized redox cofactor NAD+ is regenerated through the enzyme diaphorase which is electrochemically coupled to the electrode by embedding it into a cobaltocene-based low-potential redox polymer. Methanol formation is confirmed using a highly selective biosensor based on alcohol oxidase in combination with horseradish peroxidase integrated into a specifically adapted redox polymer. The proposed hybrid electrocatalytic-bioelectrocatalytic cascade is an example for a general strategy for enhancing the selectivity of electrocatalytic reactions and/or to replace bioelectrochemically challenging steps such as the synthesis of formate from CO2 using highly oxygen-sensitive formate dehydrogenases by more robust inorganic electrocatalysts.
Collapse
Affiliation(s)
- Panpan Wang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Xin Wang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Shubhadeep Chandra
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Anna Lielpetere
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Present address, Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Thomas Quast
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Felipe Conzuelo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
3
|
Klos N, Osterthun O, Mengers HG, Lanzerath P, Graf von Westarp W, Lim G, Gausmann M, Küsters-Spöring JD, Wiesenthal J, Guntermann N, Lauterbach L, Jupke A, Leitner W, Blank LM, Klankermayer J, Rother D. Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources. JACS AU 2024; 4:4546-4570. [PMID: 39735920 PMCID: PMC11672146 DOI: 10.1021/jacsau.4c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO2, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages. While the different types of catalysts are often seen as competitive approaches, an increasing number of examples highlight, how combinations and concatenations of catalysts of the complete spectrum can open new roads to new products. Therefore, the second part focuses on the different catalysts either in one-step, one-pot transformations or in reaction cascades. In the former, the reaction conditions must be conflated but purification steps are minimized. In the latter, each catalyst can work under optimal conditions and the "hand-over points" should be chosen according to defined criteria like minimal energy usage during separation procedures. The examples are discussed in the context of the contributions of catalysis to the envisaged (bio)economy.
Collapse
Affiliation(s)
- Nina Klos
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Ole Osterthun
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Hendrik G. Mengers
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Patrick Lanzerath
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - William Graf von Westarp
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Guiyeoul Lim
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Marcel Gausmann
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan-Dirk Küsters-Spöring
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jan Wiesenthal
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Nils Guntermann
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Lars Lauterbach
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Andreas Jupke
- Fluid
Process Engineering (AVT.FVT), RWTH Aachen
University, Aachen, Nordrhein-Westfalen 52074, Germany
- Institute
of Bio- and Geosciences 2: Plant Science (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
| | - Walter Leitner
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Mülheim an der Ruhr, Nordrhein-Westfalen 45470, Germany
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Jürgen Klankermayer
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| | - Dörte Rother
- Institute
of Bio- and Geosciences 1: Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Nordrhein-Westfalen 52428, Germany
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Nordrhein-Westfalen 52074, Germany
| |
Collapse
|
4
|
Siddique R, Yadav RK, Singh S, Shahin R, Dubey AK, Singh AK, Singh AK, Gupta NK, Baeg JO, Kim TW. Photocatalytic oxygenation of sulfide using solar light and ingenious GQDs@AQ catalyst: Mechanistic and synthetic investigations. Photochem Photobiol 2024; 100:541-548. [PMID: 37740555 DOI: 10.1111/php.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
The combination of excellent electronic properties and thermal stability positions orange-derived graphene quantum dots (GQDs) as promising materials for solar light-based applications. Researchers are actively exploring their potential in fields such as photovoltaics, photocatalysis, optoelectronics, and energy storage. Their abundance, cost-effectiveness, and eco-friendly nature further contribute to their growing relevance in cutting-edge scientific research. Furthermore, only GQDs are not much more effective in the UV-visible region, therefore, required band gap engineering in GQDs material. In this context, we designed GQDs-based light harvesting materials, which is active in UV-visible region. Herein we synthesized GQDs coupled with 2,6-diaminoanthrquninone (AQ), that is, GQDs@AQ light harvesting photocatalyst the first time for the oxidation of sulfide to sulfoxide under visible light. For the integrating reactions of sulfide in aerobic conditions under visible light by GQDs@AQ photocatalyst exhibit utmost higher photocatalytic activity than simple GQDs due to low molar extinction coefficient and slow recombination charges. The use of GQDs@AQ light harvesting photocatalyst, showed the excellent organic transformation efficiency of sulfide to sulfoxide with excellent yield (94%). The high efficiency and excellent yield of 94% indicate the effectiveness of GQDs@AQ as a photocatalyst for these specific organic transformations.
Collapse
Affiliation(s)
- Rahnuma Siddique
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Arun K Dubey
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Atresh K Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - Jin-Ook Baeg
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Yeongson-ro, Cheonggye-myeon, Muan-gun, South Korea
| |
Collapse
|
5
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
6
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
7
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
8
|
Recent Applications and Strategies to Enhance Performance of Electrochemical Reduction of CO2 Gas into Value-Added Chemicals Catalyzed by Whole-Cell Biocatalysts. Processes (Basel) 2023. [DOI: 10.3390/pr11030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Carbon dioxide (CO2) is one of the major greenhouse gases that has been shown to cause global warming. Decreasing CO2 emissions plays an important role to minimize the impact of climate change. The utilization of CO2 gas as a cheap and sustainable source to produce higher value-added chemicals such as formic acid, methanol, methane, and acetic acid has been attracting much attention. The electrochemical reduction of CO2 catalyzed by whole-cell biocatalysts is a promising process for the production of value-added chemicals because it does not require costly enzyme purification steps and the supply of exogenous cofactors such as NADH. This study covered the recent applications of the diversity of microorganisms (pure cultures such as Shewanella oneidensis MR1, Sporomusa species, and Clostridium species and mixed cultures) as whole-cell biocatalysts to produce a wide range of value-added chemicals including methane, carboxylates (e.g., formate, acetate, butyrate, caproate), alcohols (e.g., ethanol, butanol), and bioplastics (e.g., Polyhydroxy butyrate). Remarkably, this study provided insights into the molecular levels of the proteins/enzymes (e.g., formate hydrogenases for CO2 reduction into formate and electron-transporting proteins such as c-type cytochromes) of microorganisms which are involved in the electrochemical reduction of CO2 into value-added chemicals for the suitable application of the microorganism in the chemical reduction of CO2 and enhancing the catalytic efficiency of the microorganisms toward the reaction. Moreover, this study provided some strategies to enhance the performance of the reduction of CO2 to produce value-added chemicals catalyzed by whole-cell biocatalysts.
Collapse
|
9
|
Liao Q, Guo M, Mao M, Gao R, Meng Z, Fan X, Liu W. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Xie S, Li Z, Li H, Fang Y. Integration of carbon capture with heterogeneous catalysis toward methanol production: chemistry, challenges, and opportunities. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2023.2166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shaoqu Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhuoxi Li
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, P. R. China
| | - Hengde Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Williams N, Hahn K, Goodman R, Chen X, Gu J. Surface Reorganization of Transition Metal Dichalcogenide Nanoflowers for Efficient Electrochemical Coenzyme Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3925-3933. [PMID: 36629401 PMCID: PMC9880950 DOI: 10.1021/acsami.2c17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In the past 20 years, enzymatic conversions have been intensely examined as a practical and environmentally friendly alternative to traditional organocatalytic conversions for chemicals and pharmaceutical intermediate production. Out of all commercial enzymes, more than one-fourth are oxidoreductases that operate in tandem with coenzymes, typically nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH). Enzymes utilize coenzymes as a source for electrons, protons, or holes. Unfortunately, coenzymes can be exorbitant; thus, recycling coenzymes is paramount to establishing a sustainable and affordable cell-free enzymatic catalyst system. Herein, cost-effective transition metal dichalcogenides (TMDCs), 2H-MoS2, 2H-WS2, and 2H-WSe2, were employed for the first time for direct electrochemical reduction of NAD+ to the active form of the NADH (1,4-NADH). Of the three TMDCs, 2H-WSe2 shows optimal activity, producing 1,4 NADH at a rate of 6.5 μmol cm-2 h-1 and a faradaic efficiency of 45% at -0.8 V vs Ag/AgCl. Interestingly, a self-induced surface reorganization process was identified, where the native surface oxide grown in the air was spontaneously removed in the electrochemical process, resulting in the activation of TMDCs.
Collapse
Affiliation(s)
- Nicholas Williams
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California92182, United States
| | - Karley Hahn
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California92182, United States
| | - Ryan Goodman
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California92182, United States
| | - Xiaowen Chen
- Catalytic
Carbon Transformation and Scale Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado80401, United States
| | - Jing Gu
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California92182, United States
| |
Collapse
|
12
|
Cocuzza C, Pietricola G, Zonca I, Dosa M, Romero O, Tommasi T, Cauda V, Fino D, Ottone C, Piumetti M. Simultaneous CO 2 reduction and NADH regeneration using formate and glycerol dehydrogenase enzymes co-immobilized on modified natural zeolite. RSC Adv 2022; 12:31142-31155. [PMID: 36349027 PMCID: PMC9620777 DOI: 10.1039/d2ra03459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the co-immobilization of formate dehydrogenase (FDH) and glycerol dehydrogenase (GlyDH) enzymes is proposed to reduce CO2 into formic acid, an important chemical intermediate. The reduction of carbon dioxide is carried out by FDH to obtain formic acid, simultaneously, the GlyDH regenerated the nicotinamide cofactor in the reduced form (NADH) by the oxidation of glycerol into dihydroxyacetone. Natural zeolite was selected as immobilization support given its good properties and low cost. The natural zeolite was modified with subsequent acid-alkaline attacks to obtain a mesostructurization of the clinoptilolite. The two enzymes were co-immobilized on clinoptilolite, previously hetero-functionalized with amino and glyoxyl groups. The distribution of the enzymes was confirmed by fluorescence microscopy analysis. Furthermore, a great increase in the retained activity for the formate dehydrogenase enzyme was noted, passing from 18% to 89%, when the mesostructured clinoptilolite was used as support. The immobilization yield of formate dehydrogenase and glycerol dehydrogenase is around 100% with all the supports studied. The promising results suggest a possible development of this procedure in enzyme immobilization and biocatalysis. The biocatalysts were characterized to find the optimal pH and temperature. Furthermore, a thermal stability test at 50 °C was carried out on both enzymes, in free and immobilized forms. Finally, it was shown that the biocatalyst is effective in reducing CO2, both by using the cofactor in the reduced form (NADH) or the oxidized form (NAD+), obtaining NADH through the regeneration with glycerol in this latter case.
Collapse
Affiliation(s)
- Clarissa Cocuzza
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Giuseppe Pietricola
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Ilaria Zonca
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Melodj Dosa
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Oscar Romero
- Bioprocess Engineering and Applied Biocatalysis Group, Departament of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona08193Spain
| | - Tonia Tommasi
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Debora Fino
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de ValparaísoAv. Brasil 2085ValparaísoChile+56 32 2372018
| | - Marco Piumetti
- Department of Applied Science and Technology, Politecnico di TorinoCorso Duca degli Abruzzi 24I-10129 TurinItaly+39 011 0904753
| |
Collapse
|
13
|
Aziz I, Sigurdardóttir SB, Lehmann J, Nambi A, Zhang W, Pinelo M, Kaiser A. Electrospun aluminum silicate nanofibers as novel support material for immobilization of alcohol dehydrogenase. NANOTECHNOLOGY 2022; 33:435601. [PMID: 35835080 DOI: 10.1088/1361-6528/ac810a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.
Collapse
Affiliation(s)
- Iram Aziz
- Department of Environmental Engineering, Technical University of Denmark, Building 115, Bygningstorvet, DK 2800 Kongens Lyngby, Denmark
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Sigyn Björk Sigurdardóttir
- Department of Chemical and Biochemical Engineering, Process and Systems Engineering Center (PROSYS), Technical University of Denmark, Søltofts Plads, Building 229, DK 2800 Kongens, Lyngby, Denmark
| | - Jonas Lehmann
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| | - Ashwin Nambi
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, Building 115, Bygningstorvet, DK 2800 Kongens Lyngby, Denmark
| | - Manuel Pinelo
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Andreas Kaiser
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, DK 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules 2022; 27:molecules27154913. [PMID: 35956865 PMCID: PMC9370104 DOI: 10.3390/molecules27154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The need to decrease the concentration of CO2 in the atmosphere has led to the search for strategies to reuse such molecule as a building block for chemicals and materials or a source of carbon for fuels. The enzymatic cascade of reactions that produce the reduction of CO2 to methanol seems to be a very attractive way of reusing CO2; however, it is still far away from a potential industrial application. In this review, a summary was made of all the advances that have been made in research on such a process, particularly on two salient points: enzyme immobilization and cofactor regeneration. A brief overview of the process is initially given, with a focus on the enzymes and the cofactor, followed by a discussion of all the advances that have been made in research, on the two salient points reported above. In particular, the enzymatic regeneration of NADH is compared to the chemical, electrochemical, and photochemical conversion of NAD+ into NADH. The enzymatic regeneration, while being the most used, has several drawbacks in the cost and life of enzymes that suggest attempting alternative solutions. The reduction in the amount of NADH used (by converting CO2 electrochemically into formate) or even the substitution of NADH with less expensive mimetic molecules is discussed in the text. Such an approach is part of the attempt made to take stock of the situation and identify the points on which work still needs to be conducted to reach an exploitation level of the entire process.
Collapse
|
15
|
Liao Q, Liu W, Meng Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol Adv 2022; 60:108024. [PMID: 35907470 DOI: 10.1016/j.biotechadv.2022.108024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
The overexploitation of fossil fuels has led to a significant increase in atmospheric carbon dioxide (CO2) concentrations, thereby causing problems, such as the greenhouse effect. Rapid global climate change has caused researchers to focus on utilizing CO2 in a green and efficient manner. One of the ways to achieve this is by converting CO2 into valuable chemicals via chemical, photochemical, electrochemical, or enzymatic methods. Among these, the enzymatic method is advantageous because of its high specificity and selectivity as well as the mild reaction conditions required. The reduction of CO2 to formate, formaldehyde, and methanol using formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), and alcohol dehydrogenase (ADH) are attractive routes, respectively. In this review, strategies for overcoming the common limitations of enzymatic CO2 reduction are discussed. First, we present a brief background on the importance of minimizing of CO2 emissions and introduce the three bottlenecks limiting enzymatic CO2 reduction. Thereafter, we explore the different strategies for enzyme immobilization on various support materials. To solve the problem of cofactor consumption, different state-of-the-art cofactor regeneration strategies as well as research on the development of cofactor substitutes and cofactor-free systems are extensively discussed. Moreover, aiming at improving CO2 solubility, biological, physical, and engineering measures are reviewed. Finally, conclusions and future perspectives are presented.
Collapse
Affiliation(s)
- Qiyong Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China.
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Higher Education Park, Fangshan District, Beijing 102488, PR China
| |
Collapse
|
16
|
Tunable green syngas generation from CO 2 and H 2O with sunlight as the only energy input. Proc Natl Acad Sci U S A 2022; 119:e2121174119. [PMID: 35727969 DOI: 10.1073/pnas.2121174119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbon-neutral synthesis of syngas from CO2 and H2O powered by solar energy holds grand promise for solving critical issues such as global warming and the energy crisis. Here we report photochemical reduction of CO2 with H2O into syngas using core/shell Au@Cr2O3 dual cocatalyst-decorated multistacked InGaN/GaN nanowires (NWs) with sunlight as the only energy input. First-principle density functional theory calculations revealed that Au and Cr2O3 are synergetic in deforming the linear CO2 molecule to a bent state with an O-C-O angle of 116.5°, thus significantly reducing the energy barrier of CO2RR compared with that over a single component of Au or Cr2O3. Hydrogen evolution reaction was promoted by the same cocatalyst simultaneously. By combining the cooperative catalytic properties of Au@Cr2O3 with the distinguished optoelectronic virtues of the multistacked InGaN NW semiconductor, the developed photocatalyst demonstrated high syngas activity of 1.08 mol/gcat/h with widely tunable H2/CO ratios between 1.6 and 9.2 under concentrated solar light illumination. Nearly stoichiometric oxygen was evolved from water splitting at a rate of 0.57 mol/gcat/h, and isotopic testing confirmed that syngas originated from CO2RR. The solar-to-syngas energy efficiency approached 0.89% during overall CO2 reduction coupled with water splitting. The work paves a way for carbon-neutral synthesis of syngas with the sole inputs of CO2, H2O, and solar light.
Collapse
|
17
|
Nazemi A, Steeves AH, Kastner DW, Kulik HJ. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. J Phys Chem B 2022; 126:4069-4079. [PMID: 35609244 DOI: 10.1021/acs.jpcb.2c02260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO2 to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations. We leverage charge shift analysis to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with similar, less negative ESPs for Se and S terminal chalcogens in comparison to O regardless of whether the metal is Mo or W. The orientation of the side chains and conformations of the cofactor also affect the ESP, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH, suggesting opportunities for a rational bioinspired catalyst design.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Preparation and characterization of Ni/Al2O3 for carbon nanofiber fabrication from CO2 hydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Abstract
Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
21
|
Promotion of the redox reaction at horseradish peroxidase modified electrode combined with ionic liquids under irreversible electrochemical conditions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Zeng X, Wang B, Zhang X, Zhang H, Fan M, Wang J, Ren B, Yang X, Bai X. Construction of the Sn-doped defect pyrochlore oxide KNbMoO 6·H 2O/g-C 3N 4 composite and its photocatalytic reduction of CO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03415h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Sn-doped defect pyrochlore oxide KNbMoO6·H2O/g-C3N4 composite can be used as a photocatalyst for conversion of CO2 in order to deal with energy and environmental issues.
Collapse
Affiliation(s)
- Xu Zeng
- Institute of Petrochemistry Heilong Jiang Academy of Sciences, Harbin, 150001, People's Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Bo Wang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xin Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Hong Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Meiqing Fan
- Measurement Biotechnique Research Center, College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Bo Ren
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xiaodong Yang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xuefeng Bai
- Institute of Petrochemistry Heilong Jiang Academy of Sciences, Harbin, 150001, People's Republic of China
| |
Collapse
|
23
|
Yoshikawa T, Makino F, Miyata T, Suzuki Y, Tanaka H, Namba K, Kano K, Sowa K, Kitazumi Y, Shirai O. Multiple electron transfer pathways of tungsten-containing formate dehydrogenase in direct electron transfer-type bioelectrocatalysis. Chem Commun (Camb) 2022; 58:6478-6481. [DOI: 10.1039/d2cc01541b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tungsten-containing formate dehydrogenase from Methylorubrum extroquens AM1 (FoDH1)—a promising biocatalyst for the interconversion of carbon dioxide/formate and nicotine adenine dinucleotide (NAD+)/NADH redox couples—was investigated from structural biology and bioelectrochemistry. FoDH1...
Collapse
|
24
|
Ahmad Rizal Lim FN, Marpani F, Anak Dilol VE, Mohamad Pauzi S, Othman NH, Alias NH, Nik Him NR, Luo J, Abd Rahman N. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. MEMBRANES 2021; 12:membranes12010028. [PMID: 35054554 PMCID: PMC8778536 DOI: 10.3390/membranes12010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed.
Collapse
Affiliation(s)
- Fatin Nasreen Ahmad Rizal Lim
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Fauziah Marpani
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Correspondence: ; Tel.: +60-35543-6510; Fax: +60-35543-6300
| | - Victoria Eliz Anak Dilol
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Syazana Mohamad Pauzi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Nur Hidayati Othman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nur Hashimah Alias
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nik Raikhan Nik Him
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Norazah Abd Rahman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| |
Collapse
|
25
|
Enzyme co-immobilization: Always the biocatalyst designers' choice…or not? Biotechnol Adv 2021; 51:107584. [DOI: 10.1016/j.biotechadv.2020.107584] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023]
|
26
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021; 10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro. In this review, the synthesis and application of pyruvate as a platform compound is used as an example to introduce cell-free biosynthesis systems. We systematically summarize a proposed methodology workflow of cell-free biosynthesis systems, including pathway design, enzyme mining, enzyme modification, multienzyme assembly, and pathway optimization. Some new methods, such as machine learning, are also mentioned in this review.
Collapse
Affiliation(s)
- Shiming Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xuewen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Biocatalytic Reduction of Formaldehyde to Methanol: Effect of pH on Enzyme Immobilization and Reactive Membrane Performance. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10568.472-480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thermodynamic stabled CO2 molecules can be biocatalytically reduced to methanol via three cascade dehydrogenases (formate, formaldehyde and alcohol) with the aid of cofactor as the electron donor. In this study, Alcohol dehydrogenase (EC 1.1.1.1), the third step of the cascade enzymatic reaction which catalyzed formaldehyde (CHOH) to methanol (CH3OH) will be immobilized in an ultrafiltration membrane. The enzyme will be immobilized in the support layer of a poly(ether)sulfone (PES) membrane via a technique called fouling induced enzyme immobilization. The objective of this study is to evaluate the effect of varying pH (acid (pH 5), neutral (pH 7) and alkaline (pH 9)) of the feed solution during immobilization process of ADH in the membrane in terms of permeate flux, observed rejection, enzyme loading and fouling mechanism. The experiment was conducted in a pressure driven, dead-end stirred filtration cell. Reaction conversion and biocatalytic productivity will be also evaluated. The results showed that permeate flux for acid solution were the lowest during immobilization. High concentration polarization and fouling resistance cause lower observed rejection for pH 7 and 9. Enzyme loading for pH 5 give 73.8% loading rate which is the highest compared to 62.4% at pH 7 and 70.1% at pH 9. Meanwhile, the conversion rate during the reaction shows that reaction on fouled membrane showed more than 90% conversion for pH 5 and 7. The fouling model predicted that irreversible fouling occurs during enzyme immobilization at pH 7 with standard blocking mechanism while reversible fouling occurs at pH 5 and 9 with intermediate and complete blocking, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
29
|
Calzadiaz-Ramirez L, Meyer AS. Formate dehydrogenases for CO 2 utilization. Curr Opin Biotechnol 2021; 73:95-100. [PMID: 34348217 DOI: 10.1016/j.copbio.2021.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
New measures for reducing atmospheric CO2 are urgently needed. Formate dehydrogenases (FDHs, EC 1.17.1.9) catalyze conversion of CO2 to formate (HCOO-) via a reverse catalytic ability. This enzymatic conversion of CO2 represents a novel first step approach for biocatalytic carbon capture and utilization targeting both CO2 reduction and substitution of petrochemical-based production of important commodity chemicals. To achieve robust and efficient FDH catalyzed CO2 conversion for sustainable large-scale implementation, it is critical to focus on the efficacy of the electron donor, enzyme stabilization, and on how the desired reverse FDH reactivity can be enhanced. Recent advances include the realization that NADH, the most common natural cofactor for reverse FDH catalysis, is an inefficient electron donor for FDH catalyzed CO2 conversion. Improved understanding of the redox reaction details and structure-function relations of both metal-dependent and metal-independent FDHs provides the foundation for achieving rational technological advancements to promote enzymatic CO2 utilization.
Collapse
Affiliation(s)
- Liliana Calzadiaz-Ramirez
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
30
|
Bhardwaj R, Sharma T, Nguyen DD, Cheng CK, Lam SS, Xia C, Nadda AK. Integrated catalytic insights into methanol production: Sustainable framework for CO 2 conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112468. [PMID: 33823414 DOI: 10.1016/j.jenvman.2021.112468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A continuous increase in the amount of greenhouse gases (GHGs) is causing serious threats to the environment and life on the earth, and CO2 is one of the major candidates. Reducing the excess CO2 by converting into industrial products could be beneficial for the environment and also boost up industrial growth. In particular, the conversion of CO2 into methanol is very beneficial as it is cheaper to produce from biomass, less inflammable, and advantageous to many industries. Application of various plants, algae, and microbial enzymes to recycle the CO2 and using these enzymes separately along with CO2-phillic materials and chemicals can be a sustainable solution to reduce the global carbon footprint. Materials such as MOFs, porphyrins, and nanomaterials are also used widely for CO2 absorption and conversion into methanol. Thus, a combination of enzymes and materials which convert the CO2 into methanol could energize the CO2 utilization. The CO2 to methanol conversion utilizes carbon better than the conventional syngas and the reaction yields fewer by-products. The methanol produced can further be utilized as a clean-burning fuel, in pharmaceuticals, automobiles and as a general solvent in various industries etc. This makes methanol an ideal fuel in comparison to the conventional petroleum-based ones and it is advantageous for a safer and cleaner environment. In this review article, various aspects of the circular economy with the present scenario of environmental crisis will also be considered for large-scale sustainable biorefinery of methanol production from atmospheric CO2.
Collapse
Affiliation(s)
- Reva Bhardwaj
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, 16227, South Korea
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| |
Collapse
|
31
|
Abstract
The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.
Collapse
|
32
|
Pietricola G, Tommasi T, Dosa M, Camelin E, Berruto E, Ottone C, Fino D, Cauda V, Piumetti M. Synthesis and characterization of ordered mesoporous silicas for the immobilization of formate dehydrogenase (FDH). Int J Biol Macromol 2021; 177:261-270. [PMID: 33621575 DOI: 10.1016/j.ijbiomac.2021.02.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
This work studied the influence of the pore size and morphology of the mesoporous silica as support for formate dehydrogenase (FDH), the first enzyme of a multi-enzymatic cascade system to produce methanol, which catalyzes the reduction of carbon dioxide to formic acid. Specifically, a set of mesoporous silicas was modified with glyoxyl groups to immobilize covalently the FDH obtained from Candida boidinii. Three types of mesoporous silicas with different textural properties were synthesized and used as supports: i) SBA-15 (DP = 4 nm); ii) MCF with 0.5 wt% mesitylene/pluronic ratio (DP = 20 nm) and iii) MCF with 0.75 wt% mesitylene/pluronic ratio (DP = 25 nm). As a whole, the immobilized FDH on MCF0.75 exhibited higher thermal stability than the free enzyme, with 75% of residual activity after 24 h at 50 °C. FDH/MCF0.5 exhibited the best immobilization yields: 69.4% of the enzyme supplied was covalently bound to the support. Interestingly, the specific activity increased as a function of the pore size of support and then the FDH/MCF0.75 exhibited the highest specific activity (namely, 1.05 IU/gMCF0.75) with an immobilization yield of 52.1%. Furthermore, it was noted that the immobilization yield and the specific activity of the FDH/MCF0.75 varied as a function of the supported enzyme: as the enzyme loading increased the immobilization yield decreased while the specific activity increased. Finally, the reuse test has been carried out, and a residual activity greater than 70% was found after 5 cycles of reaction.
Collapse
Affiliation(s)
- Giuseppe Pietricola
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Tonia Tommasi
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Melodj Dosa
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Enrico Camelin
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Emanuele Berruto
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, Chile.
| | - Debora Fino
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy
| | - Marco Piumetti
- Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Politecnico di Torino, I-10129 Turin, Italy.
| |
Collapse
|
33
|
Rodríguez M A, Rache LY, Brijaldo MH, Romanelli GP, Luque R, Martinez JJ. Biocatalytic transformation of furfural into furfuryl alcohol using resting cells of Bacillus cereus. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Singh P, Yadav RK, Kumar K, Lee Y, Gupta AK, Kumar K, Yadav BC, Singh SN, Dwivedi DK, Nam SH, Singh AP, Kim TW. Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00991e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful development of eosin-Y and sulfur-codoped g-C3N4 composite as a highly efficient photocatalyst for the regeneration of NADH/NADPH (64.38%/81.14%) and the light-driven oxidation of sulfide to sulfoxide with an yield of 99.6%.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Yubin Lee
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Abhishek K. Gupta
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Kuldeep Kumar
- Department of Physics, Babasaheb Bhimrao Ambedkar University of Lucknow, U.P, 226025, India
| | - B. C. Yadav
- Department of Physics, Babasaheb Bhimrao Ambedkar University of Lucknow, U.P, 226025, India
| | - S. N. Singh
- Department of Humanities and Management Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - D. K. Dwivedi
- Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, U.P, 273010, India
| | - Sang-Ho Nam
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
- Spectrochemical Analysis Center for Organic & Inorganic Materials and Natural Products, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, Punjab, 140413, India
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
- Spectrochemical Analysis Center for Organic & Inorganic Materials and Natural Products, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| |
Collapse
|
35
|
Zezzi do Valle Gomes M, Masdeu G, Eiring P, Kuhlemann A, Sauer M, Åkerman B, Palmqvist AEC. Improved biocatalytic cascade conversion of CO 2 to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01354h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 can be enzymatically reduced to methanol in a cascade reaction involving three enzymes: formate-, formaldehyde- and alcohol dehydrogenase (FateDH, FaldDH, ADH).
Collapse
Affiliation(s)
- Milene Zezzi do Valle Gomes
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Applied Chemistry, SE-41296 Gothenburg, Sweden
| | - Gerard Masdeu
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Physical Chemistry, SE-41296 Gothenburg, Sweden
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Björn Åkerman
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Physical Chemistry, SE-41296 Gothenburg, Sweden
| | - Anders E. C. Palmqvist
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Applied Chemistry, SE-41296 Gothenburg, Sweden
| |
Collapse
|
36
|
Pietricola G, Ottone C, Fino D, Tommasi T. Enzymatic reduction of CO2 to formic acid using FDH immobilized on natural zeolite. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Giannakopoulou A, Gkantzou E, Polydera A, Stamatis H. Multienzymatic Nanoassemblies: Recent Progress and Applications. Trends Biotechnol 2020; 38:202-216. [DOI: 10.1016/j.tibtech.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
|
38
|
Noritomi Y, Kuboki T, Noritomi H. Estimation of immobilized horseradish peroxidase in a low salt concentration for an irreversible electrochemical system. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Ma B, Sun S, He H, Lv R, Deng J, Huo T, Zhao Y, Yu H, Zhou L. An Efficient Metal-Free Photocatalytic System with Enhanced Activity for NADH Regeneration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | - Jianjun Deng
- Clinical Laboratory, Mianyang 404 Hospital, Mianyang 621000, China
| | | | | | | | | |
Collapse
|
40
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
41
|
Zhao TT, Feng GH, Chen W, Song YF, Dong X, Li GH, Zhang HJ, Wei W. Artificial bioconversion of carbon dioxide. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Zhu D, Ao S, Deng H, Wang M, Qin C, Zhang J, Jia Y, Ye P, Ni H. Ordered Coimmobilization of a Multienzyme Cascade System with a Metal Organic Framework in a Membrane: Reduction of CO 2 to Methanol. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33581-33588. [PMID: 31419104 DOI: 10.1021/acsami.9b09811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Enzymatic reduction of CO2 is of great significant, which involves an efficient multienzyme cascade system (MECS). In this work, formate dehydrogenase (FDH), glutamate dehydrogenase (GDH), and reduced pyridine nucleotide (NADH) (FDH&GDH&NADH), formaldehyde dehydrogenase (FalDH), GDH, and NADH (FalDH&GDH&NADH), and alcohol dehydrogenase (ADH), GDH, and NADH (ADH&GDH&NADH) were embedded in ZIF-8 (one kind of metal organic framework) to prepare three kinds of enzymes and coenzymes/ZIF-8 nanocomposites. Then by dead-end filtration these nanocomposites were sequentially located in a microporous membrane, which was combined with a pervaporation membrane to timely achieve the separation of product methanol. Incorporation of the pervaporation membrane was helpful to control reaction direction, and the methanol amount increased from 5.8 ± 0.5 to 6.7 ± 0.8 μmol. The reaction efficiency of an immobilized enzymes-ordered distribution in a membrane was higher than that disordered distribution in the membrane, and the methanol amount increased from 6.7 ± 0.8 to 12.6 ± 0.6 μmol. Moreover, it appeared that introduction of NADH into ZIF-8 enhanced the transformation of CO2 to methanol from 12.6 ± 0.6 to 13.4 ± 0.9 μmol. Over 50% of their original productivity was retained after 12 h of use. This method has wide applicability and can be used in other kinds of multienzyme systems.
Collapse
Affiliation(s)
- Dailian Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Shanshi Ao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Huihui Deng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Mei Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Cunqi Qin
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Juan Zhang
- School of Basic Medical Sciences , Ningxia Medical University , Yinchuan 750004 , People's Republic of China
| | - Yanrong Jia
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Peng Ye
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| | - Huagang Ni
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Department of Chemistry , Zhejiang Sci-Tech University , Hangzhou 310018 , People's Republic of China
| |
Collapse
|
43
|
Yuan M, Kummer MJ, Milton RD, Quah T, Minteer SD. Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00513] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Matthew J. Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Timothy Quah
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
44
|
Sigurdardóttir SB, Lehmann J, Grivel J, Zhang W, Kaiser A, Pinelo M. Alcohol dehydrogenase on inorganic powders: Zeta potential and particle agglomeration as main factors determining activity during immobilization. Colloids Surf B Biointerfaces 2019; 175:136-142. [DOI: 10.1016/j.colsurfb.2018.11.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023]
|
45
|
Oeggl R, Neumann T, Gätgens J, Romano D, Noack S, Rother D. Citrate as Cost-Efficient NADPH Regenerating Agent. Front Bioeng Biotechnol 2018; 6:196. [PMID: 30631764 PMCID: PMC6315136 DOI: 10.3389/fbioe.2018.00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
The economically efficient utilization of NAD(P)H-dependent enzymes requires the regeneration of consumed reduction equivalents. Classically, this is done by substrate supplementation, and if necessary by addition of one or more enzymes. The simplest method thereof is whole cell NADPH regeneration. In this context we now present an easy-to-apply whole cell cofactor regeneration approach, which can especially be used in screening applications. Simply by applying citrate to a buffer or directly using citrate/-phosphate buffer NADPH can be regenerated by native enzymes of the TCA cycle, practically present in all aerobic living organisms. Apart from viable-culturable cells, this regeneration approach can also be applied with lyophilized cells and even crude cell extracts. This is exemplarily shown for the synthesis of 1-phenylethanol from acetophenone with several oxidoreductases. The mechanism of NADPH regeneration by TCA cycle enzymes was further investigated by a transient isotopic labeling experiment feeding [1,5-13C]citrate. This revealed that the regeneration mechanism can further be optimized by genetic modification of two competing internal citrate metabolism pathways, the glyoxylate shunt, and the glutamate dehydrogenase.
Collapse
Affiliation(s)
- Reinhard Oeggl
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Timo Neumann
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Jochem Gätgens
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stephan Noack
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany
| | - Dörte Rother
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
46
|
Dry Reforming of Methane in a Pd-Ag Membrane Reactor: Thermodynamic and Experimental Analysis. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2040048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work is a study of CO2 Reforming of Methane (DRM) carried out in a catalytic Pd-based membrane reactor. A detailed thermodynamic analysis is carried out, calculating the chemical equilibrium parameters in two different cases: (a) DRM along with the Reverse Water Gas Shift (RWGS) reaction and (b) DRM along with both RWGS and the Boudouard Reaction (BR). The performance of membrane reactor is then experimentally analyzed in terms of methane conversion, hydrogen recovery and H2/CO reaction selectivity by varying feed pressure and CO2/CH4 feed molar ratio and 500 °C and GHSV = 100 h−1. Among the obtained results, a CH4 conversion of about 26% and a H2 recovery of 47% are achieved at low feed pressures, exceeding the traditional reactor equilibrium conversion. This effect can be attributed to the favorable thermodynamics coupled to the hydrogen permeation through the membrane. This study further demonstrates the general effectiveness of membrane-integrated reaction processes, which makes the production of syngas more efficient and performing, providing important environmental benefits.
Collapse
|
47
|
Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.04.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Lin S, Sun S, Wang K, Shen K, Ma B, Ren Y, Fan X. Bioinspired Design of Alcohol Dehydrogenase@nano TiO₂ Microreactors for Sustainable Cycling of NAD⁺/NADH Coenzyme. NANOMATERIALS 2018; 8:nano8020127. [PMID: 29495316 PMCID: PMC5853758 DOI: 10.3390/nano8020127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.
Collapse
Affiliation(s)
- Sen Lin
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China.
| | - Shiyong Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China.
| | - Ke Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China.
| | - Kexuan Shen
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Biaobiao Ma
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yuquan Ren
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Institute of Non-Metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaoyu Fan
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Mianyang 621010, China.
| |
Collapse
|
49
|
Wang Y, Sun J, Zhang H, Zhao Z, Liu W. Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00320c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TCPP was successfully used for visible light-driven NADH regeneration with a high yield of 81.5% and its immobilization was attempted.
Collapse
Affiliation(s)
- Yanzi Wang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Jing Sun
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Haohai Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Zhiping Zhao
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| | - Wenfang Liu
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
- China
| |
Collapse
|