1
|
An infection of Enterobacter ludwigii affects development and causes age-dependent neurodegeneration in Drosophila melanogaster. INVERTEBRATE NEUROSCIENCE 2019; 19:13. [PMID: 31641932 DOI: 10.1007/s10158-019-0233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
The effects of teeth-blackening bacteria Enterobacter ludwigii on the physiological system were investigated using the model organism Drosophila melanogaster. The bacteria were mixed with the fly food, and its effect was checked on the growth, development and behaviour of Drosophila. Microbes generate reactive oxygen species (ROS) within the haemolymph of the larvae once it enters into the body. The increased amount of ROS was evidenced by the NBT assay and using 2',7'-dichlorofluorescin diacetate dye, which indicates the mitochondrial ROS. The increased amount of ROS resulted in a number of abnormal nuclei within the gut. Besides that larvae walking became sluggish in comparison with wild type although the larvae crawling path did not change much. Flies hatched from the infectious larvae have the posterior scutellar bristle absent from the thorax and abnormal mechanosensory hairs in the eye, and they undergo time-dependent neurodegeneration as evidenced by the geotrophic and phototrophic assays. To decipher the mechanism of neurodegeneration, flies were checked for the presence of four important bioamines: tyramine, cadaverine, putrescine and histamine. Out of these four, histamine was found to be absent in infected flies. Histamine is a key molecule required for the functioning of the photoreceptor as well as mechanoreceptors. The mechanism via which mouth infectious bacteria E. ludwigii can affect the development and cause age-dependent neurodegeneration is explained in this paper.
Collapse
|
2
|
Rudisill SS, Martin BR, Mankowski KM, Tessier CR. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit. Biol Trace Elem Res 2019; 189:241-250. [PMID: 30022428 PMCID: PMC6338522 DOI: 10.1007/s12011-018-1442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.
Collapse
Affiliation(s)
- Samuel S Rudisill
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Bradley R Martin
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Kevin M Mankowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA.
| |
Collapse
|
3
|
Zhao J, Warman GR, Stanewsky R, Cheeseman JF. Development of the Molecular Circadian Clock and Its Light Sensitivity in Drosophila Melanogaster. J Biol Rhythms 2019; 34:272-282. [PMID: 30879378 DOI: 10.1177/0748730419836818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The importance of the circadian clock for the control of behavior and physiology is well established but how and when it develops is not fully understood. Here the initial expression pattern of the key clock gene period was recorded in Drosophila from embryos in vivo, using transgenic luciferase reporters. PERIOD expression in the presumptive central-clock dorsal neurons started to oscillate in the embryo in constant darkness. In behavioral experiments, a single 12-h light pulse given during the embryonic stage synchronized adult activity rhythms, implying the early development of entrainment mechanisms. These findings suggest that the central clock is functional already during embryogenesis. In contrast to central brain expression, PERIOD in the peripheral cells or their precursors increased during the embryonic stage and peaked during the pupal stage without showing circadian oscillations. Its rhythmic expression only initiated in the adult. We conclude that cyclic expression of PERIOD in the central-clock neurons starts in the embryo, presumably in the dorsal neurons or their precursors. It is not until shortly after eclosion when cyclic and synchronized expression of PERIOD in peripheral tissues commences throughout the animal.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| | - Guy Robert Warman
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| | - Ralf Stanewsky
- Institute for Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - James Frederick Cheeseman
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
4
|
Shaw B, Fountain MT, Wijnen H. Recording and reproducing the diurnal oviposition rhythms of wild populations of the soft- and stone- fruit pest Drosophila suzukii. PLoS One 2018; 13:e0199406. [PMID: 30379809 PMCID: PMC6209131 DOI: 10.1371/journal.pone.0199406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Drosophila suzukii is a horticultural pest on a global scale which causes both yield and economic losses on a range of soft- and stone-fruit. Tackling this pest is problematic but exploiting behavioral rhythms could increase the impact of control. To do this, a better understanding of behavioral patterns is needed. Within this study we aimed to investigate rhythms in reproductive behavior of wild D. suzukii under natural conditions in the field. Environmental parameters were also recorded to decipher how they influence these rhythms. Assays were then performed on laboratory cultures, housed under artificial conditions mimicking the temperature and light cycles, to see if these patterns were reproducible and rhythmic. We were able to promote field like oviposition patterns within the laboratory using realistic temperature and light cycles regardless of variations in other factors including substrate, humidity, and lighting type. Locomotion activity was also recorded under these mimicked conditions to identify how this behavior interacts with oviposition rhythms. Both our field and laboratory assays show that oviposition behavior is likely under the control of the circadian clock and primarily occurs during the day. However, consistent with prior reports we observed that these patterns become crepuscular when day-time temperature peaks exceeded 30°C. This was also found within locomotion rhythms. With an increased understanding of how these behaviors are influenced by environmental conditions, we highlight the importance of using realistic temperature and light cycles when investigating behavioral patterns. From an increased understanding of D. suzukii behavior we increase our ability to target the pest in the field.
Collapse
Affiliation(s)
- Bethan Shaw
- NIAB EMR, East Malling, Kent, United Kingdom
- University of Southampton, Southampton, United Kingdom
- * E-mail: (BS); (HW)
| | | | - Herman Wijnen
- University of Southampton, Southampton, United Kingdom
- * E-mail: (BS); (HW)
| |
Collapse
|
5
|
Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nat Commun 2018; 9:4247. [PMID: 30315165 PMCID: PMC6185921 DOI: 10.1038/s41467-018-06506-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer–Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila. The central circadian clock in Drosophila is made up of ~ 150 anatomically distributed neurons; the circuits underlying photoentrainment is unclear. This study describes ex vivo patch-clamp recording of the eye-mediated light response of all known circadian clock neurons, and shows that they are organized in parallel circuits centered around a hub.
Collapse
Affiliation(s)
- Meng-Tong Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Na Xiao
- IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Bowen Deng
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
6
|
Sharma N, Khurana N, Muthuraman A. Lower vertebrate and invertebrate models of Alzheimer's disease - A review. Eur J Pharmacol 2017; 815:312-323. [PMID: 28943103 DOI: 10.1016/j.ejphar.2017.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/20/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a common neurodegenerative disorder which is characterized by the presence of beta- amyloid protein and neurofibrillary tangles (NFTs) in the brain. Till now, various higher vertebrate models have been in use to study the pathophysiology of this disease. But, these models possess some limitations like ethical restrictions, high cost, difficult maintenance of large quantity and lesser reproducibility. Besides, various lower chordate animals like Danio rerio, Drosophila melanogaster, Caenorhabditis elegans and Ciona intestinalis have been proved to be an important model for the in vivo determination of targets of drugs with least limitations. In this article, we reviewed different studies conducted on theses models for the better understanding of the pathophysiology of AD and their subsequent application as a potential tool in the preclinical evaluation of new drugs.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, Punjab, India; Department of Pharmacology, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysuru 570015, Karnataka, India.
| |
Collapse
|
7
|
Herrero A, Romanowski A, Meelkop E, Caldart CS, Schoofs L, Golombek DA. Pigment-dispersing factor signaling in the circadian system ofCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2015; 14:493-501. [DOI: 10.1111/gbb.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Herrero
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - A. Romanowski
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - E. Meelkop
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - C. S. Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - L. Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - D. A. Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| |
Collapse
|
8
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
9
|
Cavanaugh DJ, Geratowski JD, Wooltorton JRA, Spaethling JM, Hector CE, Zheng X, Johnson EC, Eberwine JH, Sehgal A. Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell 2014; 157:689-701. [PMID: 24766812 DOI: 10.1016/j.cell.2014.02.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.
Collapse
Affiliation(s)
- Daniel J Cavanaugh
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jill D Geratowski
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer M Spaethling
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clare E Hector
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Xiangzhong Zheng
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erik C Johnson
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - James H Eberwine
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Fu C, Whitfield CW. Genes associated with honey bee behavioral maturation affect clock-dependent and -independent aspects of daily rhythmic activity in fruit flies. PLoS One 2012; 7:e29157. [PMID: 22606218 PMCID: PMC3350530 DOI: 10.1371/journal.pone.0029157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 11/22/2011] [Indexed: 11/25/2022] Open
Abstract
Background In the honey bee, the age-related and socially regulated transition of workers from in-hive task performance (e.g., caring for young) to foraging (provisioning the hive) is associated with changes in many behaviors including the 24-hour pattern of rhythmic activity. We have previously shown that the hive-bee to forager transition is associated with extensive changes in brain gene expression. In this study, we test the possible function of a subset of these genes in daily rhythmic activity pattern using neural-targeted RNA interference (RNAi) of an orthologous gene set in Drosophila melanogaster. Principal Findings Of 10 genes tested, knockdown of six affected some aspect of locomotor activity under a 12 h∶12 h light:dark regime (LD). Inos affected anticipatory activity preceding lights-off, suggesting a possible clock-dependent function. BM-40-SPARC, U2af50 and fax affected peak activity at dawn without affecting anticipation or overall inactivity (proportion of 15-min intervals without activity), suggesting that these effects may depend on the day-night light cycle. CAH1 affected overall inactivity. The remaining gene, abl, affected peak activity levels but was not clearly time-of-day-specific. No gene tested affected length of period or strength of rhythmicity in constant dark (DD), suggesting that these genes do not act in the core clock. Significance Taking advantage of Drosophila molecular genetic tools, our study provides an important step in understanding the large set of gene expression changes that occur in the honey bee transition from hive bee to forager. We show that orthologs of many of these genes influence locomotor activity in Drosophila, possibly through both clock-dependent and -independent pathways. Our results support the importance of both circadian clock and direct environmental stimuli (apart from entrainment) in shaping the bee’s 24-hour pattern of activity. Our study also outlines a new approach to dissecting complex behavior in a social animal.
Collapse
Affiliation(s)
- Chen Fu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana and Champaign, Illinois, United States of America
| | - Charles W. Whitfield
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana and Champaign, Illinois, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana and Champaign, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Coffee RL, Williamson AJ, Adkins CM, Gray MC, Page TL, Broadie K. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Hum Mol Genet 2011; 21:900-15. [PMID: 22080836 DOI: 10.1093/hmg/ddr527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior.
Collapse
Affiliation(s)
- R Lane Coffee
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hassaneen E, El-Din Sallam A, Abo-Ghalia A, Moriyama Y, Karpova SG, Abdelsalam S, Matsushima A, Shimohigashi Y, Tomioka K. Pigment-Dispersing Factor Affects Nocturnal Activity Rhythms, Photic Entrainment, and the Free-Running Period of the Circadian Clock in the Cricket Gryllus bimaculatus. J Biol Rhythms 2011; 26:3-13. [DOI: 10.1177/0748730410388746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pigment-dispersing factor (PDF) is a neuropeptide widely distributed in insect brains and plays important roles in the circadian system. In this study, we used RNA interference to study the role of the pigment-dispersing factor ( pdf) gene in regulating circadian locomotor rhythms in the cricket, Gryllus bimaculatus. Injections of pdf double-stranded RNA (ds pdf) effectively knocked down the pdf mRNA and PDF peptide levels. The treated crickets maintained the rhythm both under light-dark cycles (LD) and constant darkness (DD). However, they showed rhythms with reduced nocturnal activity with prominent peaks at lights-on and lights-off. Entrainability of ds pdf-injected crickets was higher than control crickets as they required fewer cycles to resynchronize to the LD cycles shifted by 6 h. The free-running periods of the ds pdf-injected crickets were shorter than those of control crickets in DD. These results suggest that PDF is not essential for the rhythm generation but involved in control of the nocturnality, photic entrainment, and fine tuning of the free-running period of the circadian clock.
Collapse
Affiliation(s)
- Ehab Hassaneen
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan, Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Alaa El-Din Sallam
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Ahmad Abo-Ghalia
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Yoshiyuki Moriyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Svetlana G. Karpova
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Salah Abdelsalam
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan,
| |
Collapse
|
13
|
Coffee RL, Tessier CR, Woodruff EA, Broadie K. Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. Dis Model Mech 2010; 3:471-85. [PMID: 20442204 DOI: 10.1242/dmm.004598] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.
Collapse
Affiliation(s)
- R Lane Coffee
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
14
|
Yasuyama K, Meinertzhagen IA. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum ofDrosophila melanogaster. J Comp Neurol 2010; 518:292-304. [DOI: 10.1002/cne.22210] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Gatto CL, Broadie K. Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 2009; 3:8. [PMID: 19738924 PMCID: PMC2737437 DOI: 10.3389/neuro.04.008.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/23/2009] [Indexed: 12/03/2022] Open
Abstract
Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| | | |
Collapse
|
16
|
A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J Neurosci 2009; 29:8312-20. [PMID: 19571122 DOI: 10.1523/jneurosci.0279-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circadian clocks synchronize to the solar day by sensing the diurnal changes in light and temperature. In adult Drosophila, the brain clock that controls rest-activity rhythms relies on neurons showing Period oscillations. Nine of these neurons are present in each larval brain hemisphere. They can receive light inputs through Cryptochrome (CRY) and the visual system, but temperature input pathways are unknown. Here, we investigate how the larval clock network responds to light and temperature. We focused on the CRY-negative dorsal neurons (DN2s), in which light-dark (LD) cycles set molecular oscillations almost in antiphase to all other clock neurons. We first showed that the phasing of the DN2s in LD depends on the pigment-dispersing factor (PDF) neuropeptide in four lateral neurons (LNs), and on the PDF receptor in the DN2s. In the absence of PDF signaling, these cells appear blind, but still synchronize to temperature cycles. Period oscillations in the DN2s were stronger in thermocycles than in LD, but with a very similar phase. Conversely, the oscillations of LNs were weaker in thermocycles than in LD, and were phase-shifted in synchrony with the DN2s, whereas the phase of the three other clock neurons was advanced by a few hours. In the absence of any other functional clock neurons, the PDF-positive LNs were entrained by LD cycles but not by temperature cycles. Our results show that the larval clock neurons respond very differently to light and temperature, and strongly suggest that the CRY-negative DN2s play a prominent role in the temperature entrainment of the network.
Collapse
|
17
|
Keny V, Vanlalnghaka C, Hakim SS, Barnabas RJ, Joshi DS. Two Oscillators Might Control the Locomotor Activity Rhythm of the High‐Altitude Himalayan Strain ofDrosophila Helvetica. Chronobiol Int 2009; 24:821-34. [DOI: 10.1080/07420520701649463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
A role for the PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol 2009; 7:e3. [PMID: 19402744 PMCID: PMC2671555 DOI: 10.1371/journal.pbio.1000003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/12/2008] [Indexed: 01/13/2023] Open
Abstract
Circadian clocks in eukaryotes rely on transcriptional feedback loops, in which clock genes repress their own transcription resulting in molecular oscillations with a period of ∼24 h. In Drosophila, the clock proteins Period (PER) and Timeless (TIM) operate in such a feedback loop, whereby they first accumulate in the cytoplasm of clock cells as a heterodimer. Nuclear translocation of the complex or the individual PER and TIM proteins is followed by repression of per and tim transcription, whereby PER seems to act as the prime repressor. We found that in addition to PER:TIM complexes, functional PER:PER homodimers exist in flies. Specific disruption of PER homodimers results in drastically impaired behavioral and molecular rhythmicity, pointing the biological importance of this clock protein complex. Analysis of PER subcellular distribution and repressor competence in the PER dimer mutant revealed defects in PER nuclear translocation and a disruption of rhythmic period transcription. The striking similarity of these phenotypes with that of reduced CKII activity suggests that the formation or function of the PER dimer is closely linked to this kinase. Our results confirm a previous structural model for PER and provide strong evidence that PER homodimers are important for circadian clock function. The current models of circadian clocks in flies and mammals involve the formation of complexes between clock proteins in the cytoplasm. These complexes are usually heterodimers (that is, made up of two different clock proteins) and appear to enter the nucleus at certain times of the circadian day in order to shut down their own gene expression by deactivating specific transcription factors. After progressive phosphorylation the repressor proteins eventually are degraded so that a new cycle of transcription can begin. Here we present evidence that in addition to heterodimeric complexes, the clock protein PERIOD (PER) also forms homodimers (pairs of identical proteins). Based on a structural model a PER mutant was designed, which is not able to form homodimers but can still bind to its partner TIMELESS (TIM). Flies expressing this mutant PER protein show abnormal clock function in regard to PER nuclear translocation, repressor activity, and behavioral rhythms. The circadian clock model in flies therefore needs to be extended by adding the PER:PER homodimer as a functional unit. Recent structural studies with mammalian PER proteins suggest that homodimers between clock proteins are an important general feature of eukaryotic clocks. The circadian molecular clock model needs to be extended by adding the PERIOD:PERIOD homodimer as a functional unit in rhythm generation in Drosophila. Blocking this dimerization leads to faulty nuclear localization, reduced repressor activity, and impaired behavioral rhythms.
Collapse
|
19
|
Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol 2009; 39:107-29. [PMID: 19214804 DOI: 10.1007/s12035-009-8057-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/22/2009] [Indexed: 02/06/2023]
Abstract
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
20
|
Cuesta M, Clesse D, Pévet P, Challet E. From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 2009; 55:338-47. [PMID: 19027018 DOI: 10.1016/j.yhbeh.2008.10.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/23/2008] [Accepted: 10/25/2008] [Indexed: 01/01/2023]
Abstract
Mammalian species can be defined as diurnal or nocturnal, depending on the temporal niche during which they are active. Even if general activity occurs during nighttime in nocturnal rodents, there is a patchwork of general activity patterns in diurnal rodents, including frequent bimodality (so-called crepuscular pattern, i.e., dawn and dusk peaks of activity) and a switch to a nocturnal pattern under certain circumstances. This raises the question of whether crepuscular species have a bimodal or diurnal - as opposed to nocturnal - physiology. To this end, we investigated several daily behavioral, hormonal and neurochemical rhythms in the diurnal Sudanian grass rat (Arvicanthis ansorgei) and the nocturnal Long-Evans rat (Rattus norvegicus). Daily rhythms of general activity, wheel-running activity and body temperature, with or without blocked wheel, were diurnal and bimodal for A. ansorgei, and nocturnal and unimodal for Long-Evans rats. Moreover, A. ansorgei and Long-Evans rats exposed to light-dark cycles were respectively more and less active, compared to conditions of constant darkness. In contrast to other diurnal rodents, wheel availability in A. ansorgei did not switch their general activity pattern. Daily, unimodal rhythm of plasma leptin was in phase-opposition between the two rodent species. In the hippocampus, a daily, unimodal rhythm of serotonin in A. ansorgei occurred 7 h earlier than that in Long-Evans rats, whereas a daily, unimodal rhythm of dopamine was unexpectedly concomitant in both species. Multiparameter analysis demonstrates that in spite of bimodal rhythms linked with locomotor activity, A. ansorgei have a diurnally oriented physiology.
Collapse
Affiliation(s)
- Marc Cuesta
- Département de Neurobiologie des Rythmes, Institut de Neurosciences Cellulaires et Intégratives, UMR7168, CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
21
|
Keny VL, Vanlalnghaka C, Hakim SS, Khare PV, Barnabas RJ, Joshi DS. Latitude dependent arrhythmicity in the circadian oviposition rhythm ofDrosophila ananassae. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291010701424788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Reumer A, Van Loy T, Clynen E, Schoofs L. How functional genomics and genetics complements insect endocrinology. Gen Comp Endocrinol 2008; 155:22-30. [PMID: 17686480 DOI: 10.1016/j.ygcen.2007.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 01/19/2023]
Abstract
Insects are the most abundant animal group on Earth and have been the subject of genetic and physiological studies since the beginning of the 19th century. The public interest in understanding their biology increased as many insects have proven to exert a severe impact on human welfare and the environment. To trigger insect physiological and endocrinological research, the genome of several economical and ecological important insect species was recently sequenced. Following the availability of these genomic data many so called 'post-genomic' technologies have been developed to characterise gene function and to unravel signalling pathways underlying biological processes. For some species genomic research is further complemented with mutagenesis and reverse genetic studies. In the following, we present an overview of genomic and functional genetic methodologies that boosted endocrine research in insects.
Collapse
Affiliation(s)
- Ank Reumer
- Animal Physiology and Neurobiology Section, Research Group Functional Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Wangjie Yu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | |
Collapse
|
24
|
Bachleitner W, Kempinger L, Wülbeck C, Rieger D, Helfrich-Förster C. Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:3538-43. [PMID: 17307880 PMCID: PMC1805525 DOI: 10.1073/pnas.0606870104] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to be synchronized by light-dark cycles is a fundamental property of circadian clocks. Although there are indications that circadian clocks are extremely light-sensitive and that they can be set by the low irradiances that occur at dawn and dusk, this has not been shown on the cellular level. Here, we demonstrate that a subset of Drosophila's pacemaker neurons responds to nocturnal dim light. At a nighttime illumination comparable to quarter-moonlight intensity, the flies increase activity levels and shift their typical morning and evening activity peaks into the night. In parallel, clock protein levels are reduced, and clock protein rhythms shift in opposed direction in subsets of the previously identified morning and evening pacemaker cells. No effect was observed on the peripheral clock in the eye. Our results demonstrate that the neurons driving rhythmic behavior are extremely light-sensitive and capable of shifting activity in response to the very low light intensities that regularly occur in nature. This sensitivity may be instrumental in adaptation to different photoperiods, as was proposed by the morning and evening oscillator model of Pittendrigh and Daan. We also show that this adaptation depends on retinal input but is independent of cryptochrome.
Collapse
Affiliation(s)
| | - Lena Kempinger
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Corinna Wülbeck
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Dirk Rieger
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
| | - Charlotte Helfrich-Förster
- University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythms 2007; 22:29-42. [PMID: 17229923 DOI: 10.1177/0748730406295754] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.
Collapse
|
26
|
Peschel N, Veleri S, Stanewsky R. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock. Proc Natl Acad Sci U S A 2006; 103:17313-8. [PMID: 17068124 PMCID: PMC1859927 DOI: 10.1073/pnas.0606675103] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organisms use the daily cycles of light and darkness to synchronize their internal circadian clocks with the environment. Because they optimize physiological processes and behavior, properly synchronized circadian clocks are thought to be important for the overall fitness. In Drosophila melanogaster, the circadian clock is synchronized with the natural environment by light-dependent degradation of the clock protein Timeless, mediated by the blue-light photoreceptor Cryptochrome (Cry). Here we report identification of a genetic variant, Veela, which severely disrupts this process, because these genetically altered flies maintain behavioral and molecular rhythmicity under constant-light conditions that usually stop the clock. We show that the Veela strain carries a natural timeless allele (ls-tim), which encodes a less-light-sensitive form of Timeless in combination with a mutant variant of the F-box protein Jetlag. However, neither the ls-tim nor the jetlag genetic variant alone is sufficient to disrupt light input into the central pacemaker. We show a strong interaction between Veela and cryptochrome genetic variants, demonstrating that the Jetlag, Timeless, and Cry proteins function in the same pathway. Veela also reveals a function for the two natural variants of timeless, which differ in their sensitivity to light. In combination with the complex array of retinal and extraretinal photoreceptors known to signal light to the pacemaker, this previously undescribed molecular component of photic sensitivity mediated by the two Timeless proteins reveals that an unexpectedly rich complexity underlies modulation of this process.
Collapse
Affiliation(s)
- Nicolai Peschel
- *Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany; and
| | - Shobi Veleri
- *Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany; and
| | - Ralf Stanewsky
- *Institute of Zoology, University of Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany; and
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|